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Abstract

We address the problem of sequential prediction
in the heteroscedastic setting, when both the sig-
nal and its variance are assumed to depend on
explanatory variables. By applying regret min-
imization techniques, we devise an efficient on-
line learning algorithm for the problem, without
assuming that the error terms comply with a spe-
cific distribution. We show that our algorithm
can be adjusted to provide confidence bounds
for its predictions, and provide an application to
ARCH models. The theoretical results are cor-
roborated by an empirical study.

1. Introduction
Heteroscedasticity refers to the case in which the variabil-
ity of the dependent variable (also called signal) is unequal
across the range of values of the explanatory variables (also
called features). In statistical modeling, the variability
is usually characterized through the conditional variance,
which is a key parameter in many statistical applications
such as volatility estimation in finance, disease phenotypes
prediction in medicine, and more.

Much work has been done on parameter estimation and
signal prediction using heteroscedastic models, mostly
relying on statistical assumptions on the error terms such
as Gaussianity or other symmetrical distributions. These
assumptions allow the use of Maximum Likelihood (ML)
techniques to recover consistent estimators for the signal
and its conditional variance. However, if these assump-
tions are not met in practice, the resulting estimators are
no longer consistent and the following statement from
(Whittaker & Robinson, 1967) is sometimes quoted:
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“Everybody believes in the exponential law of
errors: the experimenters, because they think it
can be proved by mathematics; and the mathe-
maticians, because they believe it has been es-
tablished by observation.”

In this paper we argue that traditional modeling assump-
tions on the signal generation can be substantially relaxed
while still maintaining the ability to solve the problem.
Moreover, we offer a novel online learning approach that
allows the signal to be partially adversarial and partially
stochastic. We show that our approach is more general than
a ML-based approach, and is capable of coping with rather
complex scenarios and models.

An important aspect of our work is bridging the gap be-
tween a statistical approach and a “pure” online learning
approach for sequential prediction problems. We claim that
while the statistical approach fails to model real-world data
due to strict distributional assumptions, the online learning
approach fails to do so due to lack of such assumptions, and
the actual “truth” lies somewhere in between them.

1.1. Main contribution

In this work we propose a new approach to handle het-
eroscedasticity —an online learning approach— that does
not require the error terms to be Gaussian, nor to comply
with a specific distribution as is common in the statistical
approach to the problem. The main contributions of this
work are as follows:

Casting the problem of heteroscedastic signal prediction
as an online learning problem, in which two terms of
regret are minimized in parallel: one captures the pre-
diction accuracy, and the other measures the quality
of the conditional variance estimation. This casting is
the key idea that enables handling non-Gaussian error
terms in this setting.

Design of an online learning algorithm that is suitable
to work with biased gradients. The necessity in our
case arises since the conditional variance is not ob-
served, and can only be estimated with bias.
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Derivation of worst case confidence bounds for the pre-
diction in each round, using regret analysis. Here,
worst case refers to the distribution of the error terms,
which is assumed to be unknown and might even vary
from round to round.

Application to ARCH Prediction in which the robust-
ness of our approach to non-Gaussian error terms is
demonstrated on synthetic data.

1.2. Related Work

Heteroscedastic models have been extensively studied,
mainly in the context of time series and regression. In
regression, perhaps the earliest heteroscedastic model that
was considered (see (Lee, 1973) for example) assumes the
following generation of the signal:

yt = u>xt + εt ∀t, (1)

where xt is a known feature vector and εt ∼ N (0, σ2
t ) for

σ2
t = v>xt. In this setting, u and v are unknown to us

and have to be regressed by the algorithm. Though many
such regression algorithms exist, they are all based on the
following principle: apply a known technique (e.g., least
squares or maximum likelihood) to recover ũ, and then
regress over ε̃2t = (yt− ũ>xt)2 to recover ṽ. A comparison
of several such algorithms appears in (Amemiya, 1977).

Clearly, the basic model (Equation (1)) suffers from many
shortcomings, such as lack of generality and the need for
strong assumptions on the error distribution. In the follow-
ing years, many works addressed these issues and proposed
more general frameworks to model heteroscedasticity. Ini-
tially, various parametric models of the conditional vari-
ance were considered:

σt = σ(1 + |v>xt|)λ
σt = σ|v>xt|λ

}
(Box & Hill, 1974);

σt = σeλv
>xt (Bickel, 1978);

σt =
√

1 + (v>xt)2 (Jobson & Fuller, 1980).

Later works showed that qualitatively similar results can
be obtained for any smooth (and known in advance) func-
tion σt = σ(xt) (Davidian & Carroll, 1987; Muller &
Stadtmuller, 1987). In a parallel line of work, (Fuller &
Rao, 1978) circumvented the need to come up with a spe-
cific parametric form of the conditional variance by assum-
ing that the signal is divided into finite number of groups,
where the variance within each group is equal. Their re-
sults rely as well on Gaussian distributional assumptions of
the error terms.

The problem of conditional variance estimation was also
studied in the context of nonparametric models. (Fan &
Yao, 1998) considered two-dimensional strictly stationary

processes {(yt, xt)} of the form

yt = m(xt) + σ(xt)εt ∀t,

where E [εt | xt] = 0 and E
[
ε2t | xt

]
= 1, and offered

residual based estimators which are locally linear. The
idea of nonparametric estimators was further studied in the
works of (Yu & Jones, 2004) who proposed likelihood-
based locally linear estimators; (Brown et al., 2007) who
applied the difference sequence idea to estimate the condi-
tional variance; and (Mishra et al., 2010) who incorporated
parametric and nonparametric estimators in a multiplicative
way.

In the field of time series analysis and prediction, it was
the seminal work of (Engle, 1982), in which the autore-
gressive conditional heteroscedastic (ARCH) model was
introduced, that led the development of a plethora of het-
eroscedastic models. Among the many extensions to the
ARCH model, one can find the GARCH model (Boller-
slev, 1986), the EGARCH model (Nelson, 1991), and
many other models that were shown to be highly effective
in practice.

In the learning literature, the study of heteroscedasticity is
rather limited. We note the work of (Zhu et al., 2013) that
is aimed at coping with high-dimensional heteroscedastic
data. Perhaps the closest works to ours, at least in spirit, are
the works of (Anava et al., 2013; 2015) who considered the
sequential prediction problem using the AR and ARMA
models in a partially (or fully) adversarial setting. We also
note the works of (Even-Dar et al., 2009; Yu et al., 2009),
who considered a hybrid setting in the context of Markov
decision processes.

2. Preliminaries and Model
Before defining our setting, we provide some useful back-
ground about kernel methods and the framework of Online
Convex Optimization (OCO).

2.1. Kernel Methods

A kernel is a function k : X ×X → R (for some X ⊂ Rd),
which is usually assumed to be continuous. A kernel is a
Mercer kernel if for any finite set of points {x1, . . . , xn}
the n × n matrix K, where Kij is defined to be k(xi, xj),
is positive semi-definite. For such kernels, it is well-known
that there exists a Hilbert spaceH and a mapping φ : X →
H such that k(xi, xj) = 〈φ(xi), φ(xj)〉, where 〈·, ·〉 is the
inner product in H. Two well-known examples of kernels
are the polynomial kernel k(xi, xj) =

(
1 + x>i xj

)p
and

the Gaussian kernel k(xi, xj) = exp
(
− 1

2σ2 ‖xi − xj‖2
)
,

which are particularly useful for modeling nonnegative en-
tities. See (Shawe-Taylor & Cristianini, 2004) for more
information on Kernel methods.
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Algorithm 1 LAZY OGD (on the `2 unit ball)
1: Input: learning rate ηt.
2: Set a1 = 0.
3: for t = 1 to T do
4: Play at and observe loss `t(at)
5: Set at+1 = − ηt

∑t
i=1∇`i(ai)

max{1,ηt‖
∑t

i=1∇`i(ai)‖}
6: end for

In our context, we will use kernel functions to characterize
the first and second moments of the signal. The motiva-
tion is to gain a modeling power without paying big com-
putational costs. This important property does not come
without drawbacks; perhaps the most prominent is the fact
that not all online algorithms are compatible with kernels.
We turn to present an online algorithm that is suited for ker-
nels: LAZY ONLINE GRADIENT DESCENT (OGD), which
is also known to be a special instance of FOLLOW THE
REGULARIZED LEADER (FTRL) algorithm.

2.2. Online Convex Optimization and LAZY OGD

One of the most well-studied frameworks of online learning
is Online Convex Optimization (OCO). In this framework,
an online player iteratively chooses an action at ∈ K, and
then suffers loss that is equal to `t(at). The action set K is
assumed to be a closed and bounded convex subset of Rd,
and the loss functions {`t}Tt=1 are assumed to be convex
functions from K to [0, 1]. The performance of the player
is measured using the regret criterion, defined as follows:

RT (`1, . . . , `T ) =

T∑
t=1

`t(at)−min
a∈K

T∑
t=1

`t(a),

where T is a predefined integer that denotes the total num-
ber of rounds played. The goal in this framework is to de-
sign efficient algorithms, whose regret grows sublinearly
in T , corresponding to an average per-round regret going
to zero as T increases.

One of the popular algorithms for OCO is the LAZY OGD
algorithm (Algorithm 1), for which the following regret
bound is known1:

RLazy
T (`1, . . . , `T ) =

T∑
t=1

`t(at)−min
a∈K

T∑
t=1

`t(a)

≤ ‖a
∗‖2

ηT
+

T∑
t=1

ηt‖∇`t(at)‖2. (2)

where a∗ = arg mina∈K
∑T
t=1 `t(a). If the action

set K is assumed to be the `2 unit ball, then we have
RLazy
T (`1, . . . , `T ) ≤ 2G

√
T for a properly chosen ηt and

1We use ‖ · ‖ throughout the paper to denote the `2-norm.

G = maxa,t {‖∇`t(a)‖}. A complete analysis can be
found in (Hazan, 2011; Shalev-Shwartz, 2012).

2.3. Online Prediction of Heteroscedastic Signals

Assume the following iterative game between a player and
nature (which might be adversarial): at round t, nature
chooses xt ∈ X ⊂ Rd and generates yt ∈ R such that
E [ yt | xt ] = u>0 φ(xt) and Var [ yt | xt ] = v>0 ψ(xt),
where φ and ψ are induced by a Mercer kernel, and
‖u0‖, ‖v0‖ ≤ 1 are set beforehand by nature. A special
case, for instance, is the standard linear model

yt = u>0 xt +
√
v>0 xt · εt,

where the error terms εt are assumed to be distributed
N (0, 1). Note that the adversarial behavior of nature is
expressed in (1) the selection of xt; (2) the choice of the
parameters u0, v0; and (3) the distribution of yt given xt.

The player receives xt and has to provide a prediction
ỹt = u>t φ(xt) for yt and an estimation σ̃2

t = v>t ψ(xt)
for its conditional variance. The player, of course, is not
aware of nature’s selection of u0 and v0, but is aware of the
functions φ and ψ (in the sense of knowing to compute the
inner products 〈φ(xi), φ(xj)〉 and 〈ψ(xi), ψ(xj)〉 for any
xi, xj ∈ X ). After committing to ỹt and σ̃2

t , the player in-
curs two losses, one for the prediction error and the other
for the conditional variance inaccuracy:

`Sig
t (ut) =

(
yt − u>t φ(xt)

)2
`Var
t (vt) =

(
v>t ψ(xt)− v>0 ψ(xt)

)2
.

Naturally, the goal of the player is to (separately) minimize
the sum of losses, over a predefined number of rounds T .
Here also, we choose the regret to measure the performance
of the online player. Thus, for the signal prediction task we
have

RT (`Sig
1 , . . . , `Sig

T ) =

T∑
t=1

`Sig
t (ut)− min

‖u‖≤1

T∑
t=1

`Sig
t (u),

and for the conditional variance estimation we have

RT (`Var
1 , . . . , `Var

T ) =

T∑
t=1

`Var
t (vt)− min

‖v‖≤1

T∑
t=1

`Var
t (v). (3)

Notice that `Var
t (v) cannot be directly computed since

v>0 ψ(xt) is unknown at any stage, and thus a reasonable
goal would be to minimize E

[
RT (`Var

1 , . . . , `Var
T )
]
.

Readers, especially those familiar with online learning,
might wonder if our setting cannot be strengthened in cer-
tain ways. First of all, in many online learning applications,
nothing is assumed about the data generation, and we might
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envision a scenario in which the signal yt is generated arbi-
trarily. However, this setting is ill-defined in the context of
conditional variance estimation, as the notion of variance
does not exist for non-stochastic signal. This fact causes
the regret term in Equation (3), along with learning in this
setting, to be meaningless.

2.4. Our Assumptions

Throughout this work we assume the following:

(1) For any t, it holds that E [ yt | xt ] = u>0 φ(xt) and
Var [ yt | xt ] = v>0 ψ(xt), where φ and ψ are func-
tions induced by a Mercer kernel, and ‖u0‖, ‖v0‖ ≤ 1.

(2) It holds that ‖φ(x)‖ , ‖ψ(x)‖ ≤ 1 for any x ∈ X .

(3) It holds that yt ∈ [−1, 1] for any t.

We note that these assumptions can be relaxed, and
are merely here to simplify the exposition and calcula-
tions. In assumption (1), it would be sufficient to require
E [ yt | xt ] ≈ u>0 φ(xt) and Var [ yt | xt ] ≈ v>0 ψ(xt), for
a small enough bias (that would be added to our regret
bound). Assumption (2) can be replaced by the assump-
tion that ‖φ(x)‖ , ‖ψ(x)‖ ≤ C for some C < ∞ (which
need not be known in advance, as the algorithm can be eas-
ily adjusted to handle this case by using a standard dou-
bling trick). Assumption (3) can be relaxed to light tail
assumption. That is, we can assume that yt lies in a finite
interval with high probability (which holds in particular for
Gaussian errors), without increasing the complexity of the
problem at hand.

3. Our Approach
The main challenge in our setting is the fact that the condi-
tional variance is not revealed to us at any stage, and yet we
wish to compete against the best conditional variance esti-
mator in hindsight. To circumvent this issue, we use biased
estimators of the conditional variance instead of the actual
ones. The bias follows from the fact that the expected value
of signal is also unknown, and can only be approximated by
our online algorithm.

Next, we take a step back from our setting, and present a
general working scheme for OCO with biased gradient es-
timators. This scheme was considered before (e.g., in the
work of (Huh & Rusmevichientong, 2013)), but the exist-
ing algorithms are not suitable to our setting due to lack
of generality (and in particular, inability of coping with
kernels). Throughout this section, we denote by Ft−1 the
sigma-algebra that is generated by all the actions played up
to round t, and all losses occurred up to round t− 1.

3.1. OCO with Biased Gradient Estimators

Consider the OCO framework described in Section 2.2,
with the following change: after committing to an action
at, the online player only receives a feedback in the form
of a biased gradient estimator at at. For this framework,
we can prove the following:

Proposition 3.1. Let {`t}Tt=1 be a sequence of loss func-
tions, and {˜̀t}Tt=1 a sequence of corresponding approxi-
mation functions for which it holds that

E[∇˜̀
t(a) | Ft−1] = ∇`t(a) + bt(a),

for any t and a ∈ K. Denote by {at}Tt=1 the sequence of
actions that a first-order algorithm A outputs for {ht}Tt=1,
where ht(a) = `t(a) + a>(∇˜̀

t(at)−∇`t(at)). Then,

E[RT (`1, . . . , `T )] =

T∑
t=1

E [`t(at)]−
T∑
t=1

`t(a
∗)

≤ E
[
BAT (h1, . . . , hT )

]
−

T∑
t=1

E
[
(at − a∗)>bt(at)

]
,

where a∗ = arg mina∈K
∑T
t=1 `t(a), and BAT (h1, . . . , hT )

is a regret bound of algorithm A applied to {ht}Tt=1.

Basically, the proposition states that one can provide biased
gradient estimators as an input to any first-order online al-
gorithm, and incur a corresponding additional term in the
regret. The proof of this Proposition appears in the supple-
mentary material.

3.2. Algorithm and Analysis

We turn to present our algorithm (Algorithm 2) along with
its analysis. We start by defining

˜̀Var
t (vt) =

(
v>t ψ(xt)− (yt − u>t φ(xt))

2
)2
, (4)

which is an approximation to `Var
t (vt). This definition plays

an important role in our analysis, since `Var
t (vt) is unob-

served at any stage.

Note that despite the inefficient representation of Al-
gorithm 2, in practice the predictions and the variance
estimations are generated efficiently using a simple kernel
trick. This form is easier to analyze and is thus stated here.
For Algorithm 2 we can prove the following:

Theorem 3.2. Algorithm 2 generates online sequences
{ut}Tt=1 and {vt}Tt=1, for which it holds that

RT (`Sig
1 , . . . , `Sig

T )

=

T∑
t=1

`Sig
t (ut)− min

‖u‖≤1

T∑
t=1

`Sig
t (u) ≤ 8T 1/2,
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Algorithm 2
1: Input: learning rates ηSig, ηVar.
2: Set u1 = 0 and v1 = 0.
3: for t = 1 to T do
4: Play ut and observe loss `Sig

t (ut)
5: Play vt and suffer loss `Var

t (vt)

6: Set ut+1 = − ηSig
∑t

i=1∇`
Sig
i (ui)

max{1,ηSig‖
∑t

i=1∇`
Sig
i (ui)‖}

7: Set vt+1 = − ηVar
∑t

i=1∇˜̀Var
i (vi)

max{1,ηVar‖
∑t

i=1∇˜̀Var
i (vi)‖}

8: end for

and also

E
[
RT (`Var

1 , . . . , `Var
T )
]

=

T∑
t=1

E
[
`Var
t (vt)

]
− min
‖v‖≤1

T∑
t=1

`Var
t (v) ≤ 64T 1/2,

if we choose ηSig = ηVar = 1
2
√
T

.

Proof. Notice that applying Algorithm 2 to {`Sig
t }Tt=1 is

equivalent to applying LAZY OGD, and thus it trivially
holds that RT (`Sig

1 , . . . , `Sig
T ) ≤ 8T 1/2. For {`Var

t }Tt=1 we
have to work somewhat harder. Our proof relies on the fact
that Algorithm 2 generates an online sequence {ut}Tt=1 for
which it holds that

T∑
t=1

E
[(
u>t φ(xt)− u>0 φ(xt)

)2]
− min
‖u‖≤1

T∑
t=1

(
u>φ(xt)− u>0 φ(xt)

)2 ≤ 8T 1/2.

This observation is proved in the supplementary material.
This immediately implies that

T∑
t=1

E
[(
u>t φ(xt)− u>0 φ(xt)

)2] ≤ 8T 1/2,

since min‖u‖≤1

∑T
t=1

(
u>φ(xt)− u>0 φ(xt)

)2
= 0 for the

case where ‖u0‖ ≤ 1, which holds by assumption (1).

Next, we use the definition of ˜̀Var
t in Equation 4 to derive

E
[
∇˜̀Var

t (vt) | Ft−1

]
= ∇`Var

t (vt) + bt(vt),

where bt(vt) = −2ψ(xt)(u
>
0 φ(xt) − u>t φ(xt))

2. Notice
that bt(vt) does not depend on vt in this case. Defining
ht(v) = `Var

t (v)+v>(∇˜̀Var
t (vt)−∇`Var

t (vt)) and applying
LAZY OGD to {ht}Tt=1 gives (by Proposition 3.1):

E[RT (`Var
1 , . . . , `Var

T )] =

T∑
t=1

E
[
`Var
t (vt)

]
−

T∑
t=1

`Var
t (v∗)

≤ E [BT (h1, . . . , hT )]−
T∑
t=1

E
[
(vt − v∗)>bt(vt)

]
,

where v∗ = arg minv
∑T
t=1 `t(v), and BT (h1, . . . , hT ) is

the regret bound of LAZY OGD for {ht}Tt=1. It can be
easily shown that E [BT (h1, . . . , hT )] ≤ 32T 1/2.

Finally, we can bound
T∑
t=1

E
[
(vt − v∗)>bt(vt)

]
= −2

T∑
t=1

E
[
(vt − v∗)>ψ(xt)(u

>
0 φ(xt)− u>t φ(xt))

2
]

≤ 4

T∑
t=1

E
[
(u>0 φ(xt)− u>t φ(xt))

2
]
≤ 32T 1/2,

which completes the proof.

3.3. Worst-Case Confidence Bounds

We are now interested in using the results from the previous
section to generate confidence bounds for our prediction.
More formally, given a probability α ∈ (0, 1) our task is to
provide a sequence {ct}Tt=1 for which it holds that:

1

T

T∑
t=1

P
(
|u>t φ(xt)− yt| ≥ ct

)
≤ α. (5)

In words, the expected proportion of the predictions for
which the distance to the actual signal exceeds the corre-
sponding ct is at most α. The above trivially holds if we
choose large enough constants {ct}Tt=1, and thus we are
interested not only in finding such constants, but also in
showing that they are tight in a sense.

To derive Equation (5), we somewhat abuse notations
and define `Sig

t (u) = 1
c2t

(
yt − u>φ(xt)

)2
and `Var

t (v) =

1
c4t

(
v>ψ(xt)− v>0 ψ(xt)

)2
. Notice that here also we need

an estimated loss for `Var
t as it is not revealed to us. Thus,

we define

˜̀Var
t (v) =

1

c4t

(
v>ψ(xt)−

(
yt − u>t φ(xt)

)2)2

.

Note that ct might be random, yet it must hold that
E [ct | Ft−1] = ct. That is, ct is known given the actions
played up to round t, and the losses occurred up to time
t− 1. Otherwise, the losses are not well defined. Now, we
can prove the following:

Proposition 3.3. Let `Sig
t , `Var

t and ˜̀Var
t be as defined above

and let α ∈ (0, 1). Then, Algorithm 2 generates online
sequences {ut}Tt=1 and {vt}Tt=1, for which it holds that:

1

T

T∑
t=1

P
(
|u>t φ(xt)− yt| ≥ ct

)
≤ α,

for ct =

√
2 max{β,v>t ψ(xt)}

α and β = 16T−1/4.
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Remark: The constant
√

2 can be further improved to 1
(infinitesimally) by adjusting the value assigned to β. For
simplicity, we prove only the result stated in the claim.

As mentioned before, finding a sequence {ct}Tt=1 for which
1
T

∑T
t=1 P

(
|u>t φ(xt)− yt| ≥ ct

)
≤ α is meaningless, un-

less this sequence is tight in some sense. In our context, we
need to show that there exist an error distribution for which
the above holds in the other direction. Thus, we set some
k ≥ 1, and define the following error distribution:

εt =
(
yt − u>0 φ(xt)

)
=

 −k
√
v>0 ψ(xt), w.p. 1

2k2

0, w.p. 1− 1
k2

k
√
v>0 ψ(xt), w.p. 1

2k2

One can easily verify that for this distribution E [yt | xt] =
u>0 φ(xt) and Var [yt | xt] = v>0 ψ(xt). Now, note that for
the choice ct = k

√
v>0 ψ(xt) it holds that:

P
(
|yt − u>t φ(xt)| ≥ ct

)
≥ P (|εt| ≥ ct)

= P

(
|εt| ≥ k

√
v>0 ψ(xt)

)
=

1

k2
.

Setting k =
√

1
α gives the result.

4. Extensions and Applications
Here we extend the result of the previous section to several
interesting cases. The first is the multivariate case, in which
yt ∈ Rn and the conditional variance then takes the form
of a matrix. The second is an extension of our approach
to higher moments, which enable the derivation of tighter
confidence bounds for the prediction.

4.1. The Multivariate Case

In the multivariate case, the considered game is described
as follows. At round t, nature chooses xt ∈ Rd and gener-
ates yt ∈ Rn such that:

(1) E [ yt | xt ] = U0φ(xt), where φ : Rd → Rd̂ and U0

is an n × d̂ matrix with ‖U0‖F ≤ 1. Here and on,
‖ · ‖F refers to the Frobenius norm.

(2) Var [ yt | xt ] = V0ψ(xt), where ψ : Rd → Rd̄ and
V0 is an n × n × d̄ tensor such that ‖V0‖F ≤ 1 and
Vijk = Vjik for any i, j and k.

Here also, the player receives xt and has to provide a pre-
diction ỹt = Utφ(xt), and an estimation Σ̃2

t = Vtψ(xt) for
its covariance matrix. After committing to ỹt and Σ̃2

t , the
player suffers two losses:

`Sig
t (Ut) = ‖yt − Utφ(xt)‖2 ,

`Var
t (Vt) = ‖Vtψ(xt)− V0ψ(xt)‖2F .

The regret is defined accordingly. Notice that in this setting
as well an estimation for `Var

t is required, and thus we define
an approximation ˜̀Var

t as follows:∥∥V ψ(xt)− (yt − Utφ(xt))(yt − Utφ(xt))
>∥∥2

F
.

Applying Algorithm 2 to the extended setting yields the
following result:

Corollary 4.1. Algorithm 2 generates online sequences
{Ut}Tt=1 and {Vt}Tt=1, for which it holds that

T∑
t=1

`Sig
t (Ut)− min

‖U‖F≤1

T∑
t=1

`Sig
t (U) ≤ 8

√
nT ,

and also

T∑
t=1

E
[
`Var
t (Vt)

]
− min
‖V ‖F≤1

T∑
t=1

`Var
t (V ) = 64n

√
T .

The proof resembles the proof of Theorem 3.2, and is thus
omitted here.

4.2. Higher Moments

The motivation in this section is to refine the result from
Section 3.3 to higher moments. That is, to derive confi-
dence bounds for the prediction which account for higher
moments (other than the first and the second). We present
here only a high level description of our approach and de-
fer the technical parts to future work. We start by providing
some useful background.

Recall that for a random variableX that has a moment gen-
erating function MX that is finite in some open interval I
about 0, it holds that: (1) X has moments of all orders; and
(2) we can represent MX(s) =

∑∞
n=0

E[Xn]sn

n! for s ∈ I.
By Chernoff bounds, we know we can upper bound the tail
events of X as follows:

P (X ≥ x) ≤ e−sxMX(s) for s > 0,

and
P (X ≤ x) ≤ e−sxMX(s) for s < 0.

The above can further be optimized over s to derive tight
bounds. In our context, these facts can be used to generate
confidence bounds of the form we are interested in (as in
Equation (5)).

Thus, assume that for each yt and its corresponding feature
vector xt it holds that:

E [(yt − E [ yt ])
n
] = u>n φn(xt),

for n ∈ {1, . . . , k}. In words, the n-th moment of the
error term is given by the inner product between some
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vector un and a function of xt that is known in advance.
This assumption generalizes the assumptions presented in
Section 2 to higher moments. In addition, assume that∑∞
n=0

u>
n φn(xt)s

n

n! ≈
∑k
n=1

u>
n φn(xt)s

n

n! for some k, which
is independent of T . This assumption holds, for instance,
when (yt − E [ yt | xt ]) ∈ [−1, 1]. Then, for a given yt we
can derive the following bound:

P (yt − E [ yt ] ≥ c) ≤ e−sc
k∑

n=0

u>n φn(xt)s
n

n!
,

for s > 0, and the symmetric inequality for s < 0. This,
again, can be optimized over s to derive the optimal bound.
Notice, however, that u1, . . . , uk are unknown to us, and
thus we need the regret analysis from which we can derive
vectors u1,t, . . . , uk,t with the following guarantee:

E [RnT ] =

T∑
t=1

E [`nt (un,t)]− min
‖u‖≤1

T∑
t=1

`nt (u) = o(T ),

for n ∈ {1, . . . , k}. Here, as before, we use the definition
`nt (u) = (u>φn(xt) − u>n φn(xt))

2 and its corresponding
estimate ˜̀n

t (u) = (u>φn(xt) − ynt )2 to derive the regret
bounds.

5. Application to ARCH Models
We turn to present an application of our result to ARCH
models. We first provide some background and then pro-
ceed to formally define the adaptation to our framework
and our main result.

5.1. Background

Let {yt}Tt=1 be a time series (that is, a series of signal ob-
servations). The traditional ARCH(p) (short for autore-
gressive conditional heteroskedasticity) model of (Engle,
1982) is parameterized by lag p and coefficient vectors
u0, v0 ∈ Rp+1. The model assumes that yt is a noisy linear
combination of the previous p observations. That is,

yt = u0(0) +

p∑
k=1

u0(k)yt−k + εt. (6)

The error term εt in this model is assumed to be split into a
stochastic piece zt and a time-dependent standard deviation
σt, characterizing the typical size of the error terms so that
εt = σtzt. The random variable zt is usually assumed to
be a white noise process. The term σ2

t complies with the
following model:

σ2
t = v0(0) +

p∑
k=1

v0(k)ε2t−k, (7)

where v0(0) > 0, and v0(k) ≥ 0 for all k > 0. Notice that
the AR(p) model is a special case of the ARCH(p) model,
where the v0(k) coefficients are all zero for k > 0.

5.2. Adaptation to Our Setting

In our context, we will describe the setting as follows: First,
some coefficient vectors (u0, v0) are fixed by the adversary.
At each round t, the adversary generates εt from some zero-
mean distribution with variance σ2

t , and then use it to de-
termine yt via Equation (6). We emphasize that (u0, v0)
and the noise terms (along with their distribution) are not
revealed to us at any point.

At round t, we need to make a prediction ỹt for the sig-
nal and another prediction σ̃2

t for its conditional variance.
After that, we incur two losses:

`Sig
t (ut) = (yt − ỹt(ut))2 and `Var

t (vt) =
(
σ2
t − σ̃2

t (vt)
)2
.

Naturally, ỹt(ut) should be of the form ỹt(ut) = ut(0) −∑p
k=1 ut(k)yt−k, but the main question is what should be

the form of σ̃2
t (vt)? Recall that εt−p, . . . , εt−1 are unob-

served, and thus we cannot straightforwardly apply our ap-
proach (which requires knowing the feature vector).

5.3. Main Result

Our main result relies on the fact that Proposition 3.1 does
not require the feature vector to be explicitly given, but only
that the gradient of the approximated loss are close enough
to the gradient of the original loss. Thus, if we let ε̃2t (ut) =
(yt − ỹt(ut))2 and consequently define

˜̀Var
t (v) =

(
ε̃2t (ut)− v(0)−

p∑
k=1

v(k)ε̃2t−k(ut−k)

)2

,

then we can prove the following result:

Corollary 5.1. Let `Sig
t , `Var

t , and ˜̀Var
t be as defined above.

Then, Algorithm 2 generates online sequences {ut}Tt=1 and
{vt}Tt=1, for which it holds that

RT (`Sig
1 , . . . , `Sig

T ) ≤ O(T 1/2),

and also that

E
[
RT (`Var

1 , . . . , `Var
T )
]
≤ O(T 1/2),

if we choose ηSig = ηVar = 1
2
√
T

.

The corollary relies on the fact that attaining a regret bound
for `Sig

1 , . . . , `Sig
T is a standard task in OCO. This regret

bound implies that ε̃2t (ut) is close in average to ε2t , which
in turn implies that∇˜̀Var

t is close to ∇`Var
t .

5.4. Experimental Results

Most of the works on time series prediction consider what
we call the offline setting: given a time series, compute the
model parameters (in our case, the ARCH coefficients) and
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Figure 1. MSE of the prediction and the conditional variance estimation as a function of time.

MSE@1000 for the signal prediction task MSE@1000 for the variance estimation task

Gaussian errors Uniform errors Discrete errors Gaussian errors Uniform errors Discrete errors

MLE 0.1823 (0.0159) 0.2037 (0.0137) 0.0580 (0.0119) 0.0157 (0.0139) 0.0138 (0.0121) 0.0625 (0.0207)

Algorithm 2 0.1799 (0.0134) 0.2025 (0.0065) 0.0526 (0.0108) 0.0141 (0.0021) 0.0058* (0.0087) 0.0499* (0.0092)

Table 1. MSE@1000 of the prediction and the conditional variance estimation. Bold font marks the best results, and asterisk indicates
significance level of 0.05. Standard deviations of the results are presented in brackets.

measure the prediction error. Our online setting can be seen
as a sequential offline setting, in which at round t we are
given the time series values up to round t− 1 and our task
is to predict the signal and its variance at round t. In light
of this, we adapt the state-of-the-art offline baseline (MLE)
to the online setting. Note that this adaptation does not
weaken the offline baseline in any way, and is used only for
comparison purposes. In the plots we present the average
accumulated loss up to round t for t = 1, . . . , 1000.

To test the robustness of our approach to different error dis-
tributions, we generate three time series using the ARCH
model (Equations (6) and (7)) with u0 = (0, 0.55, 0.11)
and v0 = (0.1, 0.25, 0.25), each differs only in its er-
ror distribution. We consider the following distributions
of the stochastic piece of the error terms: zt ∼ N (0, 1);
zt ∼ Uni(−

√
3,
√

3); and a discrete distribution

zt =

 k, w.p. 1
2k2

0, w.p. 1− 1
k2

−k, w.p. 1
2k2

where k =
√

20. In all cases, one can easily verify that
E [zt] = 0 and E

[
z2
t

]
= 1. This implies that the first and

second moments of yt conditioned on the history are equal.

We apply our algorithm and the MLE baseline (Engle,
1982) to the three time series. Figure 1 presents the MSE
of the prediction and the MSE of the estimated conditional

variance with respect to the true conditional variance (the
latter is known as the data is synthetically generated). Ta-
ble 1 presents the MSE at the end of both tasks, where bold
font marks the best results, and asterisk indicates signif-
icance level of 0.05. To ensure stability, we average the
results over 50 runs.

As evidenced by Figure 1 and Table 1, both algorithms per-
form roughly the same in the signal prediction task regard-
less of the error distribution. However, the online algorithm
significantly surpasses the standard MLE in the variance
estimation task, mainly when the time series exhibits some
complicated error distribution (uniform or discrete). These
empirical findings support the theoretical results and vali-
date the generality of the online approach in practice.

6. Conclusion and Discussion
In this paper we presented an approach for the problem
of sequential signal prediction in heteroscedastic environ-
ment. The main novelty of our approach is the fact that we
allow the signal to be partially adversarial, in contrast to
traditional methods that require it to be fully stochastic. To
date, we are not aware of many works pursuing this direc-
tion (even outside the scope of sequential prediction of het-
eroscedastic sequences). We hope to extend this approach
more broadly to bridge the gap between the statistical ap-
proach and online learning.
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