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Abstract

We investigate a new optimization problem in-
volving minimizing the Ratio of two Submodular
(RS) functions. We argue that this problem
occurs naturally in several real world applications.
We then show the connection between this
problem and several related problems including
minimizing the difference between submodular
functions (Iyer & Bilmes, 2012b; Narasimhan &
Bilmes, 2005), and to submodular optimization
subject to submodular constraints (Iyer & Bilmes,
2013). We show that RS optimization can be
solved with bounded approximation factors. We
also provide a hardness bound and show that our
tightest algorithm matches the lower bound up to
a log factor. Finally, we empirically demonstrate
the performance and good scalability properties
of our algorithms.

1. Introduction

A set function f : 2V — Ry is said to be submodular
(Fujishige, 2005) if for all subsets S, C V, it holds
that f(S) + f(T) > f(SUT)+ f(SNT). Defining
f(1S) & f(SUj) — f(S) as the gain of j € V in the
context of S C V, then f is submodular if and only if
f(41S) > f(4|T) forall S C T and j ¢ T. The function
f is monotone iff f(j|S) > 0,¥j ¢ S,S C V. W.lLo.g.,
we assume the ground setis V' = {1,2,--- ,n}. While
general set function optimization is often intractable, many
forms of submodular function optimization can be solved
near optimally or even optimally in certain cases, and
hence submodularity is also often called the discrete analog
of convexity (Lovdsz, 1983). Submodularity, moreover,
is inherent in a large set of real-world machine learning
applications, therefore making them useful in practice.

In this paper, we study a new class of discrete optimization
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problems that have the following form:

min LX)

Problem 1:
pcxcv g(X)

; ey

where f and ¢ are monotone non-decreasing submodu-
lar functions. We call the objective % a ratio of sub-
modular (RS) function. We do not require that either
f or g is normalized, we only assume f(f)) > 0 and
g(@) > 0. We assume, w.l.o.g., that both f and g satisfy
f(v) >0,g(v) > 0,Vv € V, since we may simply remove
any item v € V for consideration if g(v) = 0 and add any
item v € V to the solution if f(v) = 0. As a consequence
of this assumption and the monotonicity of f and g, we have
that f(A) > 0,9(A) >0,V Cc ACV.

We call this problem RS minimization. In Section 5, we
extend the algorithms here to handle non-monotone submod-
ular functions. We also consider a related problem called
RS maximization:

max g(X)

Problem 2: .
B S 0.0)

2
We observe that RS Minimization and RS Maximization are
equivalent, in that an algorithm for Problem 1 also solves
Problem 2. To be precise, given an a-approximation al-
gorithm (o > 1) for Problem 1, one can achieve a 1/«
approximation for Problem 2, using the solution obtained
by the algorithm for Problem 1.

1.1. Applications

In the below, we describe how Problems 1 and 2 appear
naturally in several machine learning applications.

Maximizing the F-Measure in Information Retrieval:

Consider the problem where one is given a set U of objects
(e.g., documents, images etc.) which can be expressed as
a bag of words WW. One can construct a bipartite graph
G(U,W, E), where U is the set of objects, W is the set of
words, and the edge e, ., € I between the object u and the
word w exists if the word w is present in the object u. Define
a neighborhood function I' : 2V — 2" on the bipartite
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graph G that maps from any subset of the objects X C U to
the set of words I'(X') C W contained in the objects. We are
interested in the information retrieval problem of finding a
set of objects that cover exactly a set of target words 7" C .
The quality of any subset X C U may be measured as the
F-Measure of the coverage on the target words T". More
formally, the quality measure can be defined as:

_ (X)) N T

T+ [D(X)|
The goal is to find a set of objects X that maximizes
the F-measure F'(X). Note that both |I'(X) N T| and

|T'| 4 |T'(X)| are monotone submodular. Hence the problem
is an instance of RS maximization (Problem 2).

F(X) 3)

Normalized Cuts and Ratio Cuts:  Another application
of RS optimization is the normalized cut and ratio cut prob-
lem, which have been extensively used in image segmen-
tation and clustering (Shi & Malik, 2000; Kawahara et al.,
2011). Let G = (V, E) be a similarity graph defined on the
set of vertices V, where w, 4 is the edge weight between the
vertex a and o’ € V' and measures the similarity between
these two vertices. Let h(A) = 3 4D uev\a Wa,ar
be the graph cut function defined on the graph G, and let
m(A) = > ,ca 2 vev Wa,v be the function that measures
the association of the subset A to the ground set V. The
normalized cut problem as defined in (Shi & Malik, 2000)
is to minimize the following objective:

MA) b "
m(A) — m(V) —m(4)’
which can further simplified as follows:
B(AYm(V) -

m(A)(m(V) —m(A))

Note that m(V) is a constant, and both h(A) and
m(A)(m(V)—m(A)) are symmetric submodular functions.
Therefore, the normalized cuts problem can be formulated as
a non-monotone instance of RS minimization (Problem 1).
A similar case is given in (Narasimhan & Bilmes, 2007).

Maximizing Diversity & Minimizing Cooperative Costs:

A final set of applications are related to simultaneously
maximizing diversity or coverage, while minimizing coop-
erative costs. Applications of this involve sensor placement,
feature selection (Krause et al., 2008; Iyer & Bilmes, 2012b;
Liu et al., 2013), and data subset selection (Lin & Bilmes,
2011; Wei et al., 2013; 2015a). While these problems are
often modeled as a difference of submodular functions, or
constrained submodular optimization, one can also model
them as a ratio of submodular functions, where the submod-
ular function f models the cooperative costs while g models
information and utility. The ratio % naturally models

the cost normalized utility of the set A. Maximizing %

(Problem 2) leads to the best cost normalized subset A.

Algorithm 1 A (1 + ¢)-approximation algorithm for RS
minimization using an exact algorithm for DS minimization

1: Input: f, g, € € [0,1) and an exact algorithm for DS
minimization.

2: Output: A (1 + €)-approximate solution for Prob. 1

3: Set Apax < % for arbitrary A C V, and Ay, < 0.

4: while A\ ax > (1 4+ €)Apin do

St A4 Amnthm

. _

7

8

X <—AargminX3@[f(X) - \g(X)].
if &) > X then

9(X)
: >\min — A
9: else
10: Amax — A
11:  endif

12: end while ~
13: Return X < argminy[f(X) — Ag(X)].

1.2. RoadMap of this Paper

The rest of the paper is organized as follows. We first de-
scribe connections between RS minimization and related
problems studied in the literature (Section 2). In particu-
lar, we show how this is closely related to the problem of
minimizing the difference between submodular functions
and to the problem of submodular optimization subject to
submodular lower bound and upper bound constraints. In
Section 3, we provide several approximation algorithms
along with the analysis of their approximation guarantees
for RS minimization. The algorithms include GreedyRatio,
Binary Search, Majorization-Minimization, and Ellipsoidal
Approximations. In Section 4, we prove matching hard-
ness bounds for this Problem. In Section 5, we consider
extensions of RS minimization where f and g may be su-
permodular and/or non-monotone submodular. Empirical
evaluations on synthetic data are given in Section 6.

2. Connections to Related Problems

Connections to DS optimization: A problem related to
the RS minimization is the Difference of Submodular (DS)
minimization defined as follows:

Problem: )I(ngll‘}_[f(X) - (X)), (6)

where A > 0. We call the objective f(X) — A\g(X) a
difference of submodular (DS) function. We show below
that, in fact, an exact algorithm for DS minimization can
be used as a subroutine to also solve RS minimization via a
simple binary search scheme as described in Alg. 1.

Lemma 2.1. Given € > 0 and an exact algorithm for solv-
ing DS minimization (Problem 6), Algorithm I provides a
(1 + €)-approximation for RS minimization (Problem 1), by
solving O(log(1/€)) instances of DS minimization.
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Proof. When the algorithm terminates, the following holds:

minx [f(X) — Aming(X)] > 0, which implies that f&; >

Amin, VX C V. Therefore, it holds that: £65 < A

9(X)
) f(X)
(14 €)Amin < (14 €) miny 505 -

N

O

While RS minimization and DS minimization are closely
related, we show below the class of set functions rep-
resentable as an RS function is strictly contained by
the class of DS functions. Thus, the DS minimization
problem encapsulates a strictly larger class of combinatorial
optimization problems.

Lemma 2.2. Any RS function can be expressed as a DS
function. However, there exists an instance of a DS function
that cannot be represented as an RS function.

Proof. The first half of the lemma holds since any RS func-
tion is a set function, and any set function can be expressed
as a DS function (Narasimhan & Bilmes, 2005).

To show the second half of the Lemma, we give a counter-
example as follows: Let V = {1,2}, h(X) = f1(X) —
g1(X) where f1(X) = 1/2|X| and g;(X) = |X|. Note
that h(X), by definition, is a DS function. Assume that

h(X) can be expressed as gzg; with fo(X) and g2(X)

being non-decreasing submodular functions. We then have

that fo(0) = fo(V) = 0, since £ Eﬂg = fQEvg 0. How-

ever, we have that fo({1}) = h({l})gg({l}) > 0, which
contradicts the monotonicity of fs. [

In Section 3, we give bounded approximation algorithms
for RS minimization. This is unlike DS minimization that,
in the worst case, is inapproximable (Iyer & Bilmes, 2012b)
— hence, we cannot simply optimize log f/¢g and expect
guarantees. Nevertheless, there are a number of heuristic
approaches to DS optimization that work well in prac-
tice (Iyer & Bilmes, 2012b; Narasimhan & Bilmes, 2005;
Kawahara & Washio, 2011). Moreover, there are several
special cases of DS minimization that can be solved exactly
(Section 3) and hence where a (1 + €)-approximation for
RS minimization may be obtained via Algorithm 1.

Relation to SCSC and SCSK: Another related and re-
cently studied class of problems is submodular optimization
subject to submodular cover and submodular knapsack con-
straints (Iyer & Bilmes, 2013), namely:

Problem (SCSC): min{f(X)|g(X) > ¢}, @)
Problem (SCSK): max{g(X)| f(X) <b}, (8

which generalize (Wolsey, 1982; Atamtiirk & Narayanan,
2009). These problems are referred to as Submodular Cost
Submodular Cover (SCSC) and Submodular Cost Submod-
ular Knapsack (SCSK), respectively. As shown in (Iyer
& Bilmes, 2013), both SCSC and SCSK admit bi-criterion

Algorithm 2 Approx. algorithm for RS minimization using
an approximation algorithm for SCSC.

1: Input: f, g, e > 0, and a [0, p] bicriterion approxima-

tion algorithm for SCSC.
(1+6)

2: Output: An Z approximation for Problem 1.

3 cg(V), X, o V,and X + X..

4 while g(X ) > minjev g(j) do

5: — (146t

6: X < [o, p] approx. for Problem 7 with c.
f(X X.

7. if ((X; > j((X ; then

8: X « X,

9: endif

10: end while

11: Return X.

approximation algorithms. Without loss of generality, we
concentrate on SCSC. An algorithm is a [o, p] bi-criterion
algorithm for SCSC if it is guaranteed to obtain a set X
such that f(X) < o f(X™) (approximate optimality) and
g9(X) > pc (approximate feasibility), where X* is the opti-
mizer for SCSC. Note that it typically holds that o > 1 and
p < 1. Interestingly, we show in the below that any [0, p] bi-
criterion algorithm for SCSC can be used as a subroutine to
yield a %-approximation algorithm for RS minimization via
a simple linear search strategy as described in Algorithm 2.

Lemma 2.3. Given e > 0, Algorithm 2 is guaranteed to find
a solution X which is a 2 7 (14 €)-approximation for RS min-

imization in O(1/€) calls to a [0, p| bi-criterion algorithm
for SCSC.

Proof. Let X* = argminy % and ¢* = g(X™*). During
the linear search procedure, we must have searched a c
such that ¢ < ¢* < (1 + €)c. For such ¢, we have that
f(X.) < of(X*) and g(X.) > pc, thanks to the [0, p]
bi-criterion guarantee. Therefore, we obtain the following:

FXe) « o FXT) g HOF(XT) _ ollte) F(X7)
oX0) Sp e S ST gxy U

Using the same argument, we may connect SCSK to RS
maximization via the same linear search strategy. While
Lemma 2.3, — showing that a bicriterion approximation
algorithm for SCSC (or SCSK) can be utilized to solve RS
minimization (maximization) with bounded approximation
factors — is theoretically interesting, Algorithm 2 may not
be practical for large-scale problems, since it involves solv-
ing O(1/e) instances of SCSC. In Section 3, we provide a
number of more efficient approximation algorithms for RS
minimization, while still offering similar guarantees.
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Algorithm 3 GREEDRATIO for RS minimization

—_

Input: f and g. .
Output: An approximation solution X.
Initialize: Xg < 0, R < V and i < 0.
while R # () do
v € argmin, .
Xi—i—l — Xi Uw.
R« {v € Rlg(v|Xi41) > 0}
141+ L.
end while

t* € argmin, gglg

Return X « Xix.

—

S B A A U ol

—

3. Approximation Algorithms for RS
Minimization
In this section, we study four separate cases of RS min-

imization depending on whether f or g, are modular or
submodular.

3.1. Modular f and Modular ¢

When both f and g are modular, RS minimization be-
comes very easy. We introduce a simple greedy algorithm—
GREEDRATIO (Algorithm 3) to handle this scenario. The
idea of GREEDRATIO is to, in each iteration, greedily add an
element to the solution set such that the ratio of the marginal
gain by this element is the smallest. When the algorithm
terminates, a chain of sets X; C ..., C Xy (¢ is the total
number of iterations) is obtained, and the algorithm sim-
ply outputs the set X;« that achieves the minimum ratio.
Though simple, we show below that GREEDRATIO is guar-
anteed to yield the optimal solution for RS minimization in
this case.

Theorem 3.1. When f and g are modular, GREEDRATIO
finds the optimal solution for RS minimization with a com-
plexity of O(nlogn).

Proof. Since both f and g are modular functions, we have
that f(v|X) = f(v) and g(v|X) = g(v) forall X C V and
v € V'\ X. As a simpler implementation of GREEDRATIO,
one may first obtain a non-decreasing order of the items in V'
as 0 = {vg,, ..., Ve, } according to their ratio of singleton

f(w) f(voy) . CE) .
scores ‘r5 Namely, g(vai) < < FICRE It is easy to

verify that for any threshold 7 > 0, the set X™ = {v €
V] Hv) < 7} is among the chain of solutions { X} ;. Let

g(v)
X* € argmin % and r* = gE§*§~ Observe that if any

item v satisfies g E:}’; < r*, the item must be contained in

X*, otherwise, adding v to X* would further decrease the
objective. Let X7 = {v e v|L « r*}. Note that X"

9(v)
is contained in the chain of the solutions {X;}? ; and that
LX7) — 1% Therefore, the output X is optimal.

g(Xm")

The complexity of algorithm involves computing all n ratio
of singleton scores and then takes another O(n logn) to sort
them.

O

3.2. Modular f and Submodular g

Next, we study a slightly more general form where f is
modular and ¢ is submodular. We show below that this
scenario can still be solved up to a constant 1/(1 — 1/e)
factor by the same greedy algorithm— GREEDRATIO.

Theorem 3.2. When f is modular and g is submodular,
GREEDRATIO is guaranteed to obtain a solution X such
that

f(X) e f(X¥)

2 < :
“e—1g(X*)

9
9(X) ®

where X* € argming - xcy %.

—

Proof. This simply follows as a special case of Theorem 3.4
(cf. Section 3.4) when k; = 0. O

We point out that GREEDRATIO may require a time com-
plexity of O(n?) function evaluations in the worst case.
However, thanks to the lazy evaluation trick as described
in (Minoux, 1978), Line 5 in GREEDRATIO need not to
recompute the marginal gain for every item in each round,
allowing GREEDRATIO to scale to large data sets.

3.3. Submodular f and Modular g

In contrast to the case above where f is modular and g is
submodular, we show that here, the opposite case, can actu-
ally be exactly optimized using the binary search strategy
in Algorithm 1. The key observation is that the correspond-
ing DS minimization becomes an instance of submodular
minimization, which can be optimally solved in poly-time.
Hence, one can achieve a (1 + €)-approximation for this
case as a Corollary of Theorem 2.1:

Corollary 3.3. When f is submodular and g is modular,
using an exact submodular minimization algorithm as a
subroutine, Algorithm 1 provides a (1 + €)-approximation
for RS minimization in O(log(1/€)) calls to the subroutine.

3.4. Submodular f and Submodular g

Lastly, we study the most general form of RS minimization
with both f and g being submodular. GREEDRATIO can
again be shown to yield a curvature dependent bound for
this problem. The curvature of a submodular function f is
defined as follows: (Conforti & Cornuejols, 1984; Vondrik,
2010; Iyer et al., 2013a; Wei et al., 2014):

[0V \ v)

o € [0,1]. (10)

ky =1—min
veV
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The curvature x ; measures how close a submodular function
f is to a modular function. f is fully curved if Ky = 1
and is modular if Ky = 0. In the below, we show that
GREEDRATIO approximates the RS minimization problem
with a factor in terms of the curvature x ¢ of the function f.

Theorem 3.4. GREEDRATIO is guaranteed to obtain a so-
lution X such that

FX) 1 (X
X

(%) STam gy Y

where X™* € argming- xcy % and Ky is the curvature
of the submodular function f.

Proof. 1t is equivalent to prove the following:

( ) > (1 _e(r@f—l))g

53 oL (12)

~

Denote X7, X5,...,X; as the chain of sets obtained by
the greedy algorithm and z,...,x, as the sequence of
items added during the algorithm. Note ¢ is the number
of rounds when the algorithm terminates. Denote k as the
largest index in {1,..., ¢} such that f(X}) < f(X™). For

i=1,2,...,k,itholds that:
g(X™) < g(Xi1) + Z g(v|X;_1)
veEX*\X;_1
g(xi|Xi71)
<g(X;_1)+ = f(v|X;_
gIXiz1) o~ g(zi|Xi—1)

The last inequality follows since Fol% D S Fox ) 3
required by the greedy algorithm. Given the definition of
the curvature k¢, we have the following

*®\ g(xz|Xz 1) )
g(X ) g(X )S f(zz|X1—1) U€X*\Xl 1f(U‘X7171)
g(wi| Xi—1)

= iy 210
g($z|Xz 1) 1 *
S FaX1=r &)

Rearranging the inequality, we obtain the following:

g(X*) — g(Xi)
g(X*) —g(Xi1) —

(1- Hf)f(xi|Xi—1)

o)

} ,» (13)

Algorithm 4 ELLIPSOIDAPPROX

1: Input: f and g .
2: Output: An approximation solution X.

3: Vwf < the ellipsoidal approximation for f
4

\w (X)) \\ e(1+6

: X € argmin y 9% —Approximately
solved by Algorithm 2
5: Return X

which implies

(1= kp)f (@i Xiz1) .
14[1 foey 9
(14)

k (I—r ) f (041X 1)
<L g as)

i=1
(I—rp)F(Xg)

< [T g x (16)

Using the fact 1 — z < e~*, we then obtain the following:

S00) [\ USR] 1000
el s oy
_ —(1—ky) g(X*)

> {1 e~ (1=ry } o) (18)

Since (1 — e~(17%4)*)2~1 monotonically decreases in
and ;g’“g < 1, we have the following:

fX) fXe) o1 fX)

g(X) ~ g(Xy) T 1—erTlg(X) 4

O

We point out that Theorem 3.4 generalizes Theorem 3.2
when f is modular, i.e., k5 = 0. Note that the approxima-
tion guarantee of GREEDRATIO deteriorates as the curvature
# ¢ of the function f increases and becomes unbounded (and
hence vacuous) when the f is fully curved, i.e., k5 = 1.

Ellipsoid Approximation: To yield a bounded approxi-
mation algorithm for RS minimization, we provide an al-
gorithmic framework—ELLIPSOIDAPPROX, which involves
computing the ellipsoidal approximation (EA) of a submod-
ular function. As shown in Goemans et. al (Goemans
et al., 2009), one can approximate any monotone submodu-
lar function f(X) in polynomial time by a surrogate func-
tion f \/wfi for a certain modular weight vector
wl € ]RV such that

Vw/(X) < f(X) < O(vnlogn)

w!(X),VX C V.
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To apply the idea of EA to RS minimization, we first replace
f(X) by its ellipsoidal approximation \/w/(X), and then
the problem becomes

X
min 710()

pcxcv  g(X) (20)

for which we may use Algorithm 2 (i.e., linear search with
SCSC) to solve. At every round of Algorithm 2, the SCSC
problem has the following form:

min{/w/(X)|g(X) = c}, 21)
which is effectively,
min{w’ (X)|g(X) > c}. (22)

Note that Eqn. 22 can be solved by the greedy algorithm
with a [1,(1 — 1/e)] bicriterion approximation guaran-
tee (Iyer & Bilmes, 2013), which then leads to a constant
factor approximation for Eqn. 20 thanks to Lemma 2.3. The
following result provides a worst-case approximation factor
of this approach for RS minimization:

Theorem 3.5. Let vVw/ be the ellipsoidal approximation

for f and X be the output solution of Algorithm 2 on
Vwl(X)

mingcxcv e O it then holds that

f(X) f(X7)
— < O(v/nlogn) ) (23)
9(X) 9(X*)
Proof. Let X* € argmin y % Since the output solution

X of Algorithm 2 has a constant
for Eqn. 20, it then holds that

=55 (1 4 €)-approximation

I(X) O(v/nlogn w 24

g(f()g (vnlogn) (%) 24

< O(\/ﬁlogn)e_ 1(1 +e€) guzj;((fi*) (25)
fX)

< O(\/ﬁlogn)g(X*) (26)

O

As we will see, the O(+/n log n)-approximation factor pro-
vided by this approach matches the lower bound (hardness)
of the RS minimization up to a log factor.

Majorization-Minimization: While the Ellipsoidal Ap-
proximation algorithm provides the tightest approximation
factor, it does not scale very well even to medium scale
problems (Iyer & Bilmes, 2013). To this end we propose
another framework — Majorization-Minimization (MMIN,
see Alg. 5) — that achieves a slightly worse approximation

Algorithm 5 MMIN for RS minimization

1: Input: f and g .

2: Output: An approximation solution X.

3: Initialize: An arbitrary set X 0 and t < 0.

4: repeat

5:  pick a subgradient h; at X of g

6:  pick a supergradient m; at X* of f

7. A € argminy {t(()){()) \\ (1 + €)—Approximately
solved by Algorithm 1

8: B € argminy ";t%) \\ =% —Approximately
solved by GREEDRATIO
9: X' argminyc iy py %
10 t+t+1
11: until we have converged (X! = X~ 1)

12: Return X + X!

factor, but that scales quite well to large scale problems.
In the spirit of (Iyer et al., 2013b; Wei et al., 2015b), this
framework uses modular lower and modular upper bounds
of a submodular function (Iyer et al., 2013b) to transform
the originally hard RS minimization problem to a special
case with either f or g being modular. For either case, the
result admits constant approximation algorithms as shown
in Section 3.2 and 3.3. Moreover, the resulting guarantees
can be translated to a curvature dependent guarantee for the
original RS minimization.

Akin to convex functions, submodular functions have tight
modular lower bounds. These bounds are related to the
subdifferential 97 (Y") of the submodular set function f ata
set Y C V, which is defined (Fujishige, 2005) as:

op(Y) ={y e R": 27)
FOO) = y(X) > F(Y) = y(Y) forall X C V}

For a vector z € RY and X C V, we write 2(X) =
>_jex ©(j). Denote a subgradient at Y by hy € 0¢(Y).
The extreme points of 97 (Y") may be computed via a greedy
algorithm: Let 7 be a permutation of V' that assigns the
elements in Y to the first |Y| positions (7 (i) € Y if and
only if 7 < [Y'|). Each such permutation defines a chain
with elements ST = 0, ST = {w(1),7(2),...,7(¢)} and

fy| = Y. This chain defines an extreme point 1§ of 97 (Y")
with entries

hy(m(i)) = F(S7) — F(S71)- (28)

Defined as above, hj, forms a modular lower bound of f,
tightatY —ie., h{(X) = ZjeX hE(5) < f(X),VX C
Vand hi(Y) = f(Y).

We can also define a modular upper bound of a submodu-
lar function f via its superdifferentials 0 (V) (Jegelka &
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Bilmes, 2011; Iyer & Bilmes, 2012a) at Y:
oM(Y)={y eR":
FX) —y(X) < f(Y) -

It is possible, moreover, to provide specific supergradi-
ents (Iyer & Bilmes, 2012a; Iyer et al., 2013b) that define
the following two modular upper bounds (when referring
either one, we use my ):

(29)
y(Y);foral X CV}

mb (V)2 £ =3 FGIX\D)+Y. £G10),
jEX\Y JEY\X
(30)
mi,(V) 2 F(X) =Y FGIVA) +D. FUIX).
JEX\Y JEY\X

Then m’ (V) > f(Y) and m¥ ,(Y) > f(Y),VY C V
and m¥ | (X) = m¥ ,(X) = f(X).

Having formally defined the tight modular upper and lower
bounds, we are ready to discuss how to apply this machinery
to RS minimization. MMIN consists of two stages. In
the first stage, it replaces f by its modular upper bound
and keep ¢ as it is, and then solves the resulting problem
using the algorithms proposed in Section 3.2. In the second
stage, MMIN replaces g by its modular lower bound and
keep f as itis, and then solves the resulting problem using
the algorithms described in Section 3.3. Lastly, MMIN
outputs the better among these two solutions. We show
below that MMIN yields a bounded approximation for RS
minimization in terms of the curvature both of x; and .

Theorem 3.6. MMIN admits a worst-case approximation
factor of O(min{ 1+(n71’3(17w) , 1+(n71’;(17%) ).

Proof. To prove this theorem, we utilize the Lemma
from (Iyer et al., 2013a), that stated the following: Given a
monotone submodular function f, it holds that

n
< f™( X
FX) < ™ ;(f S A
€19

where fm(X ) is the simple modular upper bound of f.

Since, fm approximates f by a factor of m

the ratio f™(X)/g(X) also approximates f(X)/g(X) b

the same factor. Moreover, the same bound holds for approx-
imating g(X) by its modular lower bound. Hence MMin,
produces the two subproblems as discussed in Sections 3.2
and 3.3. Both subproblems admit constant approximation
algorithms. O

Observe that Theorem 3.6 provides a worst-case approxima-
tion for RS minimization that interpolates between the cases
when f and g are modular and submodular. In particular,
when either f or g are modular, MMIN provides a constant
factor guarantee for this problem.

4. Hardness of RS Optimization

In this section, we provide a worst case hardness result
(lower bound) for RS minimization. We show that when
f and g are submodular, the problem is NP hard, and one
cannot approximate it better than a factor of O(+/n), which
matches the bound of ELLIPSOIDAPPROX up to a log factor.

Theorem 4.1. There exist an instance of submodular func-
tion f and g such that no poly-time algorithm can achieve
an approximation factor better than n*/?>=<, for any ¢ > 0.

Proof. We prove this result using the hardness construction
from (Goemans et al., 2009; Svitkina & Fleischer, 2008).
The main idea of the proof technique is to construct two
submodular functions f(X) and fr(X) that with high prob-
ability are indistinguishable. Thus, also with high probabil-
ity, no algorithm can distinguish between the two functions
and the gap in their values provides a lower bound on the
approximation.

Define two monotone submodular functions ¢g(X) =
min{|X|,a} and f(X) = min{3 + |X N R|,|X|,a},
where R C V is a random set of cardinality a. Let o
and f3 be an integer such that « = xy/n/5 and 8 = 22 /5
for an 22 = w(logn). Given an arbitrary € > 0, set
22 = n? = w(logn). Then the ratio between g(R) and
f(R) is n'/?7¢. A Chernoff bound analysis very similar
to (Svitkina & Fleischer, 2008) reveals that any algorithm
that uses a polynomial number of queries can distinguish
f and ¢ with probability only n~«(1), and therefore cannot
reliably distinguish the functions with a polynomial number
of queries. Since no algorithm can distinguish between f
and g, any algorithm will achieve a minimum value of 1 for

the following optimization problem: min x %, whereas

the optimal solution has a value 1/n'/2~¢ O

5. Non-Monotone Submodular and
Supermodular f and g

In this section, we investigate extensions of RS minimization
to the case when f and g are non-monotone submodular,
and even supermodular.

5.1. Non-Monotone Submodular f and g

Given a modular function g and a non-monotone submod-
ular function f, one can use the Binary Search algorithm
(Algorithm 1), in which case the corresponding DS sub-
problem becomes an instance of submodular minimization.
Correspondingly, one can easily extend Theorem 2.1 to
this case, and achieve a 1 + € approximation factor for this
problem. We can also extend our algorithms to the sce-
nario when one of the functions is monotone submodular,
while the other one is non-monotone. For example, if f is
monotone submodular, while g is non-monotone, one can
use Ellipsoidal Approximation on f, and keep g as it is.
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The problem then becomes, min x -~ ;Efx()X) which is equiv-
9(X)

alent to max x . We can then convert this to SCSK,
Vwy(X)

max{g(X)|\/ws(X) < b}, which is an instance of non-
monotone submodular knapsack, which also has constant
factor guarantees (Feige et al., 2011). Furthermore, if f is
non-monotone, while g is monotone, one can replace g by
its modular upper bound, thereby obtaining an instance of
an RS optimization problem, with a non-monotone f and a
modular g, which can be solved by using the Binary search
algorithm (Algorithm 1) as discussed at the beginning of this
section. Finally, in case both f and g are non-monotone sub-
modular (a generalization of (Narasimhan & Bilmes, 2007)),
one can use Algorithm 1 and repeatedly solve the resulting
DS optimization problem. While this has no guarantees,
this is a reasonable heuristic for this problem.

5.2. Extensions to Supermodular f and g

Consider an instance of Problem 1, when f is modular or
submodular, but g is supermodular. One can then use Algo-
rithm 1, and the corresponding DS optimization subproblem
becomes an instance of submodular minimization, which
can exactly solved. Hence in this case Problem 1 is solv-
able in polynomial time. One can also consider an alternate
case, when f is supermodular, and ¢ is either modular or
submodular. In this case, the resulting DS optimization
problem (using Algorithm 1) becomes an instance of sub-
modular maximization, which can be approximately solved.
While this does not directly correspond to an approxima-
tion guarantee for the original problem, it does provide a
reasonable heuristic for solving the problem. When both
f and g are monotone supermodular, it remains an open
problem whether it admits any polynomial time algorithm
with bounded approximations.

6. Experiments

We empirically evaluate our proposed algorithmic frame-
works for RS minimization, including in particular MMIN,
GREEDRATIO, and ELLIPSOIDAPPROX, on a synthetic data
set. In particular, we evaluate on a generalized form of the
F-measure function:

ID(X)NT]

B = S a—wro)

(32)

where 0 < A < 1 is a parameter that determines a trade-
off weight between precision and recall. Note F)—g 5 is
the same as the F-measure function defined in Eqn. 3. We
instantiate the F-measure function on a randomly generated
bipartite graph G(U, W, E). The bipartite graph is defined
with |U| = 100 and |W| = 100. We define an edge between
u € U andw € W independently with probability p = 0.05.
The set of targets 7' C W is also randomly chosen with a
fixed size 20, i.e., |T'| = 20. We run the experiments on 10
instances of the randomly and independently generated data,

and we report the averaged results.

As a baseline, we also
implement a random

sampling method, compaisonot s goitms on syntheic data
where we randomly
choose 100 subsets

X C U with size
|X| = 50 and report
their averaged function
valuation in terms of
F and their standard
deviation. In Figure 1, “
we compare the perfor-
mance of all methods
on with the varying
A. We observe that
GREEDRATIO, though
very efficient, achieves consistently the best performance
for all cases of A among all optimization algorithms.
Comparable performance is achieved by MMIN and
ELLIPSOIDAPPROX, although ELLIPSOIDAPPROX is much
more computationally intensive.

Figure 1. synthetic data experi-
ment
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