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1 Smoothed Gaussian Perturbation

A proof of Lemma 1 in the paper can be found in the pre-print [2]]. For the sake of completeness, we provide here an
elementary proof (albeit with slightly worse constants). In particular, we are going to prove the following.

Lemma 1. Let A be an algorithm that on input X computes a vector jux € R deterministically and then outputs
Zx ~ N(px,0%I), where o% is a variance that depends on X. Let a = a(e,8) = 151/21n(4/5)/e and B =
B(e,d,d) = (2In2)e/5(vVd 4+ \/21n(4/5))2. Suppose that ¢ < 5, § and d are such 3 < In2, and the following are
satisfied for every pair of neighbouring datasets X ~ X':

2. |In(o%) — In(c%/)| < B.

2,

Then A is (g, 0)-differentially private.
We start with a simple characterization of (e, §)-differential privacy that will be useful for our proof.

Lemma 2. Let A(X) = 0x € R? be the output of a randomized algorithm on input X. Write fo. () for the
probability density of the output of A on input X. Suppose that for every pair of neighbouring datasets X ~ X' there
exists a measurable set © x x+ C R? such that the following are satisfied:

]. P[GX ¢ @X,X’] S 5;
2. forall 0 € ©x x: we have fo. (0) < e fo,,(0).
Then A is (g, 0)-differentially private.

Proof. Fix a pair of neighbouring datasets X ~ X’ and let £ C R? be any measurable set. Let © x_x+ be as in the
statement and write ©% y, = R?\ O x x. Using the assumptions on O x_x+ we see that

P[QX S E] = ]P)[QX e EFnN @X7X’] +P[9X e EnN @?X’X/]
< €E]P[9X/ e EnN 9){)){’} +4
< ePlox € E] +6 . O

Now we proceed with the proof of Lemmal[l} Let X ~ X’ be two neighbouring datasets and let us write Z; = Zx
and Zy = Zx for simplicity. Thus, for i = 1,2 we have that Z; ~ N (u;,02I) are d-dimensional independent
Gaussian random variables whose means and variances satisfy the assumptions of Lemma [I] for some ¢, > 0. The
density function of Z; is denoted by fz,(z). In order to be able to apply Lemma we want to show that the privacy
loss between Z; and Z5 defined as

—In le(z)




is bounded by ¢ for all z € 2, where Q C R? is an event with probability at least 1 — & under Z.

We can start by identifying a candidate €2. Since €2 has to have high probability w.r.t. Z, it should contain
11 because a ball around the mean is the event with the highest probability under a spherical Gaussian distribution
(among those with the same Lebesgue measure). For technical reasons, instead of a ball we will take a slightly more
complicated region, which for now we will parametrize by two quantities a, b > 0. The definition of this region will
depend on the difference of means A = o — puq:

Q=0,N ={z4+m eR || (z,A) | <a}n{z+m cRY||z| <b} . (2)

We need to choose a and b such that the probability P[Z; ¢ Q] < §, and for that we shall combine two different tail
bounds. On the one hand, note that Z = (Z; — p1, A) /(01]|Al]) ~ N(0,1) is a one dimensional standard Gaussian
random variable and recall that for any ¢ > 0:

P[Z] > ] < 2e /% . 3)

On the other hand, X = || Z1 — u1||? /o3 ~ x? follows a chi-squared distribution with d degrees of freedom, for which
is known [1]] that for all ¢ > 0:
P[X >d+2Vdt+2t] < et . 4)

To make our choices for a and b we can take them such that P[Z; ¢ Q,],P[Z; ¢ Q3] < §/2, since then by a union

bound we will get
P[Z1 ¢ Q) <P[Z1 ¢ Qa]+P[Z1 ¢ Qp] <0 . 5)

Since Z satisfies | Z| < 1/21n(4/d) with probability at least 1 — §/2, we can take
4
a=o1]|A|l 21115 =01||A||Cs . (6)

For X we have that d + 2/dIn(2/6) + 21n(2/8) < d + 2,/2d1In(2/6) + 21In(2/8) = (vVd + /21n(2/6))?. Hence,
we choose
b=o1(Vd++/2In(2/8)) = 01D;5 . (7)

Fixing this choice of (2, we now proceed to see under what conditions on o7 and oo we can get L(z) < ¢ for all
z € ). We start by expanding the definition of L(z) to get
d o3 e —zl* -2

L(z)= =1
(2) 2 . 0% 20% 20%

®)

The easiest thing to do is to separate this quantity into several parts and insist on each part being at most a fraction of
e. To simplify calculations we will just require that each part is at most ¢ = ¢/5. This reasoning applied to the first
term shows that we must satisfy
2
o
2 <e2e/d 9)
o1
Note that this becomes more restrictive as € = 0 or d — 0o, in which case we have efld 1.
Next we look at the second part and write z = 2z’ + 7 because this is the form of the vectors in 2. With some
algebra we get:

lpe = '+ p)lP Nl — G+ )l A2+ 27 —2¢"4)  |l12))?
20% 20% 20% 20%

(10)

To further decompose this quantity we write 2’ € R? as 2’ = z,, + 2,, where 2, = A (2, A) /||A|? is the orthogonal
projection of z onto the line spanned by the vector A, and z, is the corresponding orthogonal complement. Pythagora’s

Theorem implies ||2[|> = ||z, ||* + ||z0|%, and the RHS in the above expression is equal to
[A]? (¢, A) n | (', A) |? <1 B 1) n [EAs <1 B 1) (11
203 o3 20a? \oi  of 2 \o3 of



Now note that the last two terms can be upper bounded by zero if o1 < o9, but need to be taken into account otherwise.
Furthermore, if it were the case that 0; > g2 = 0, then these terms could grow unboundedly. Thus we shall require
that a bound of the form

2
g
- <7, 12)
03

holds for some v > 1 to be specified later. Nonetheless, we observe that under this assumption

1 1 y-1
oy of = of

13)

Furthermore, 2 € Q implies ||z,|* < [|2/]|? = ||z — pa|| < b? and | (', A) |? = | (z — p1, A) |* < a?. Thus we see

" (AP (1 1Y G-

e (7)< o
" 2ol (1 1Y _ D3y —1)

S (a) 19
By requiring that each of these bounds is at most € we obtain the following constraint for ~:

y<14 rm{ém , (16)

which can be satisfied by taking, for example:

Vo4 % (a7

(ﬂ+m)2 '

Note that for fixed d, small e and/or large d this choice of v will make (T2)) behave much like the bound (9) we
assumed above for 03 /o2, In fact, using that 1 + x > e*!"2 for all 0 < x < 1 we see that can be satisfied if

2¢/(vVd+ /21n(4/6))? < 1 and

(2In2)e
(va+ m)z

From here it is immediate to see that if the second condition |In(0?) — In(03)| < 3 in Lemmall|is satisfied, then (@)
and are both satisfied.

The missing ingredient to show that L(z) < ¢ for all z € 2 is an absolute lower bound on o;. This will follow
from bounding the remaining terms in L(z) as follows:

AP~ (&' A) _ [IA]? +204]|A[ICs

< exp (13)

2
71

2
03

19
203 o3 = 203 (19)
2
_ A+ 20 Ay o)
-2 o?
2
_ 3AJ + 201 AICs o
-2 o?
3[A% | 3IAlCs
= 22
207 + oL (22)

where we used that e < 1 implies v < 3. If we require each of these two terms to be at most €, we obtain the constraint:

A
o> uAHmaX{ﬁwa} _ 381G .
2¢’ € €



To conclude the proof just note that the above bound can be rewritten as o1 > «|A||, which is precisely the first
condition in Lemmal[ll

2 Privacy Analysis of DP-LSW

Lemma 3. Let X ~ X' be two neighbouring datasets of m trajectories with X = (x1,...,Tm—1,2) and X' =
(1, ., Tm—1,2"). Let X° = (x1,...,Zm_1). Let S, (resp. S,+) denote the set of states visited by x (resp. ’). Then
we have

£ = Fxllzr < 17— P >

SESLUS 1 ‘XO| + 1

Proof. We start by noting that if s € S\ (S; U S,/), then Fx s = Fx/ 5. Inthe case s € S, U S,y we can write
Fx o= (|X|Fxo s+ Fps)/(|XS| + 1). Using a symmetric expression for F'xs ; we see that in this case

1 1 1 Rmax

F s_F’s ziFms_Fm’s Simax Fzsan’s Si )
Focs = Bl = e o = Pl = g st Fod S e 75

where we used that 0 < Fj, ; < Rynax/(1 — ) for all s and x. When s € S, \ S,» we can use the same expression as
before for F'x , and write F'xs ¢ = F'xo ;. A similar argument as in the previous case then yields

1 1 R
7Fms_F°s Si .
el e T Bl S e T

|FX,5 _FX’,S| =

Note the same bound also holds for the case s € S,+ \ S,. Finally, since we have seen that the same bound holds for
all s € S, US,/, we obtain

R? W
dows(Fxs = Fxo)? < 7220 7 s
2 02, 2= (X4 D)

which yields the desired bound. O

Corollary 4. If X is a dataset of trajectories, then the following holds for every neighbouring dataset X' ~ X :

Rmax Ws
Fx — Fx/|lar < max{|X,[,1}2 °
| F'x X ||27F - 1— Zsmax{|Xs|7l}2

Proof. Using the notation from Lemma 3] we observe that |X,| = |XJ| + 1if s € S,, and |X,| = |XJ]if s ¢ S,.
Therefore, the following holds for any trajectories x, z':

Ws Ws
seg;‘sx,(Xﬂ_'_l)Q SZ(‘X°|—|—1 Z| 6|2+€§\:S |X‘_~_ 272 | |2+g€§\:sst’

where Sy denotes the set of states visited by at least one trajectory from X. Since s ¢ Sx implies | X;| = 0, we can
plug this bound into the result of Lemma [3]as follows:

max max Ws
Fx — Fx 5= max{|X.|. 112 ° =
| Fx xll2r < 1_ Z 5\2 + Z w _7\/2;8 max{|X,|,1}?

SESx seS\Sx

Lemma 5. The following holds for every v € NS :
w _ Ws
wi (V) = gs max{vs — k,1}2 °

Furthermore, for every k > ||v||oc — 1 we have ¢} (v) =3 ws.



Proof. Recall that ¢} (v) = max ), _| <k ¢* (v") with ¢*(v) = > ws/ max{vs, 1}* and observe the result fol-
lows immediately because

w w
w :E : s = S A O
#ic (v) = min_ << max{vs + 1, 1}2 Z; max{v, — k, 1}?

3 Privacy Analysis of DP-LSL

Lemma 6. Let X ~ X' be two neighbouring datasets of m trajectories with X = (x1,...,Zm—1,2) and X' =
(1., ¥m_1,2"). Let F, € RS (resp. Fy € RS) be the vector given by F,(s) = F, s (resp. Fu(s) = Fur ).
Define the diagonal matrices T, A, v € RS*S given by T'\y(s,8) = ps and Ny 1/(8,5) = ey — Lseur. If the
regularization parameter satisfies \ > ||<I>TAx7x/Fp<I> , then the following holds:

.
10% — 0%/ |2 H(Ax,x'q)@(—Fx#—Fx/) rp@HQ

24
2 S AT AL, &9

Proof. In order to simplify our notation we write § = 63 and 6’ = 0%, for the rest of the proof. Given a trajectory x
and a vector § € R? we shall also write £(z,0) = Y g ps(Fas — ¢ 0)% so that Jx () = =37 £(x;,6). Now
we proceed with the proof.

Let us start by noting that because J3 (#) is A/m-strongly convex, we have J3 (61) — J3 (62) > (VI (62),0; —
02) + 5|01 — 02]|3 for any 61,6, € RY. Thus, using that optimality implies V.J§ (6) = VJ3, (') = 0, we get

A _ _ _
pod 0|5 < Jx(0") = Ix(0) + T3 (0) — J3.(0')

= Jx(0') = Ix(0) + Jx:(0) — Jx: ()
= % (U(z,0") — €(z,0) + £(2,0) — £(2,0")) ,

where the equalities follows from definitions of X, X', J 3\( and Jx. If we now expand the definition of ¢(x, §) we see
that

0a,0) — tw.0) = 3 p ((610) — (610) 2P0l (7 7)) .
SES,

Ua',0) — (2", 6) = D ps ((6]8)° — (6]0') —2F0 6] (8- 6))

SES,/
Using the identity (¢] 0")2 — (o] 0)% = (0" +0) " psd] (6 — 0), we rewrite £(x,0') — £(x,0) + £(a’,0) — £(2',0) as
Z Ps [(Hs&‘ac - HsEx/)(é/ =+ é)—rﬁbs(b;r - 2(F9c,s - Fx’,s)‘ﬁj} (él - é) > (25)
s€S

where we implicitly used that F,, ; = 0 whenever s ¢ z. Finally, using the definitions in the statement we can
rearrange the above expression to show that

2o L (@0 A 2~ F)) T )
- % (0T8T Ayar — (Fy — Fy) )T, 0(0 — ) + %(9” —§) T AT, — )
< 2O A — (e o)) T — B 87 AT 03
where we used the Cauchy—Schwartz inequality and the definition of operator norm. The result now follows by solving
for ||@ — €'||2 in the above inequality. O



Corollary 7. Let X be a dataset of trajectories and suppose X > || ®||?||pllcc. Then the following holds for any
neighbouring dataset X' ~ X :

2 Bmax |2
103 — 0% 112 < X

o A== l22plle) ¥ 7

where
2
A [@lllllo
= s XS +

Proof. We start by noting that ||A, .|| < 1and ||[T',|| = |/p||oc, hence submultiplicativity of matrix operator norms

yields |® A, T,®|| < [|®]|?||p||oc- On the other hand, for the numerator in (24) we have
T
|(Acw@0) — P+ Fo) T Tp0 | < (1% 2 @lollo + (2 = o) T, ) ] - (26)

Bounding the individual entries in £, and Fyy by Riax/(1 — ) we get ||(Fy — Fur) "Tpll2 < Rumaxllpll2/(1 = 7).
The last step is to bound the norm [|§% |2, for which we use the closed-form solution to argmin, J% (¢) given in the

paper and write:
< max Z pS|X ‘ >
seS

To bound the last remaining norm let use write UXV T for the SVD of 1"%2(1), where V e R4 with VTV =VVT =
1. With this we can write:

A
01 < | (@7Txe 4 5 n e

Ao
I Fx llo.ry < H(@Tr o+ o 1) 1pTry/?

A A\
@ Tx®+—I)'or/’ =V (22 + I) U . (27)
2m 2m
Now we use that |U| = ||V| = 1 and /(2% + a) < 1/(2y/a) for any = > 0 to get ||V (X2 + (A\/2m))~1SUT| <
\/m/2\. Thus we get a bound for 0% ||2 that when plugged into (Z6) yields the desired result. O

Lemma 8. The following holds for every v € NS

2

[HlAlloo

A —

> psmax{vg + k,m} + |l
SES

Furthermore, for every k > m — ming vs we have @7 (v) = <‘|®‘I‘Ip‘|wr\/ ses Ps +lpll2 )

Proof. The proof is similar to that of Lemma [5]and is omitted. O

4 Utility Analysis of DP-LSW

The goal of this section is to show that as the size m of the dataset X grows, the differentially private solution 6%
provided by algorithm DP-LSW is not much worse than the one obtained by directly minimizing J¥(6). In other
words, for large datasets the noise introduced by the privacy constraint is negligible. We do so by proving a O(1/m?)
bound for the expected empirical excess risk given by Ex ,[J% (%) — J%(%)]. Our analysis starts with a lemma
that leverages the law of total expectation in order to reduce the bound to a quantity that only depends on Ex [0%].

Lemma 9. .
ExnlJ%(0%) — J%(0%)] = [T?®|FEx[0%] - (28)



Proof. By the law of total expectation it is enough to show that

E,[T(8%) — JE(0%)1X] = o% TV 2®% . (29)
Let X be an arbitrary dataset. Expanding the definition of J¥ (6) we have that for any 6 € R

JU(0) = FxTFx +0"®'T®) — 2FLT'd0 . (30)

On the other hand, since VJ%(0%) = 0, we have #% ' & T'® = F{T'®. Thus, using the definition §% = 6% + 17, a
simple algebraic calculation yields

JUOL) — JEO%) =0 @ Tdy — FxIdn—n' & TIY . (31)
Finally, taking the expectation over ) ~ A'(0, 0% ) of the above expression we get

E,[J¢(0%) — J¢(0%)] = Ey[n" @ Tdn] = 0% Tr(®'TP) = 0% [IT'/*® 7 . (32)
O

In order to bound E x [0 ] we recall the variance has the form 0% = C?%}, where C is a constant independent of
X and

—kB
w _ —kB Ws < € 33
vx rl?g())(e 26;9 max{|X;| — k,1}2 — Es:ws (rl?;i(})( max{|X,| — k, 1}2) . &9

Thus, we can bound Ex[0%] = C*Ex [¢%] by providing a bound for the expectation of each individual maximum in
(33). The two following technical lemmas will prove useful.

Lemma 10. Let b > 0 and a > 1. Then the following holds:

oba & b<2/a
max ———— =1 el7® b>2 (34)
0<e<a-1 (a — x)? >
%bze_“b otherwise
Proof. The result follows from a simple calculation. O

Lemma 11. Suppose B, ;, is a binomial random variable with m trials and success probability p. Then the following

hold:
1 11— (1—p)mtt
E[Bm,ﬁl]_ p(m+1)
1 6 1—(1—p)mt2 L pm+1) i
E[%HB”@] Sp(m+1)< e e U )



Proof. The first expectation is a classical exercise in probability textbooks. The second one can be proved as follows:

1 1 (m _
E |:BQI[Bm,p>1:| zzﬁ<k>pk(l—p)m i
m,p 1
“ 1 m\ K
< _ 1—p)m
—6;(1f+1)(k+2)(k)p( P)
6 i m+ 1)!

k1] _ pym—k

_ 1 (
_p(m+1)zk+2(k+ D(m — k)’

6 LA |
= ; = QIP[BerLp =k+1]
m+

1
= P|B,, =7
(m+1) ;]‘f‘l [ +1,p ]]

6 1 1
= i —P[Bmt1,p =0 — =P[Bpi1p =1
p(mﬂ)( [Bmﬂﬁpﬂ] Borrip = 0]~ BB, ])

6 1—(1—p)m*2 ma1  pPm+1) m

p(m + 2)

where we used the first equation in the last step, and the bound (k + 1)(k + 2)/k* < 6 for k > 1 in the first
inequality. O

Recall that p; denotes the probability that a trajectory from X visits states s. Because these trajectories are i.i.d.
we have that | X,| = B, p, is a binomial random variable. Therefore, we can combine the last two lemmas to prove
the following.

Lemma 12. Suppose 8 < 2. Then we have:

e kP P pree LR (1 —(1—eP)p)™ ps>0
E < ) pZ(m+1)(m+2) s s ’ 35
XSS max{|X,| — k, 1}2} 1 Ps =0 G

Proof. Note in the first place that Lemma [T0]implies
e kP

%20 max{|X,| —

1 e o _pix
F 1) :H\XS\:0+H1§|XS|<2/BW thix, 2278 Fe ol (36)

where we used that in the case | X;| = 0 the maximum is 1. If p; = 0, then obviously | Xs| = 0 almost surely and
the expectation of (36) equals 1. On the other hand, when p, > 0 we use the linearity of expectation and bound each
term separately. Clearly, Ex (I x —o] = Px[Bm,p, = 0] = (1 — ps)™. On the other hand, by looking up the moment
generating function of a binomial distribution we have

e? 5 e? e? _ m
X[H|XS|22/5Z626 AIX:N) < 252]]5)([ —AIXN) = 152(1 —(L—ePpy)™ . (37)
The remaining term is bounded by
1 1
Ex H1§|XS|<2/5W <Ex |\Licix, 75| - (38)

Therefore, applying Lemma [TT|and upper bounding some negative terms by zero, we get

e kB } 6 e2?

+ (1-(1—ePp)™ . (39)

E <
X [max S pPm+(m+2) 4

k>0 max{|Xs| — k, 1}?



Now we can combine Lemmas[I6]and [12] using Equation [33]to get our final result.

Theorem 13. Let Sy = {s € S|ps =0} and Sy = S\ Sp. Let C' = a Ry || (T 2®) ||| T 20| p /(1 — 7). Suppose
B < 2. Then we have the following:

~ 6 6252
B2 0%) — JE0P)] < O Zws+Zws( e e R (R R LY

The following version is the one given in the paper for reasons of space. It is easily obtained by noting that
e?/4 <6,m? < (m+1)(m +2), and when 8 < 1/2then 1 — (1 — e ?)p, <1 — Bps/2.

Corollary 14. Let Sy = {s € S|ps = 0} and S; = S\ So. Let C' = AR [|(TY2®)||[|TV2®|| /(1 — 7). Suppose
B < 1/2. Then Ex | JL(0%) — JE(0%)] is upper bounded by:

Bps\ ™
w7 (1-F))

The following is an immediate consequence of these results.

Zws+62ws(

s€So seESL

Corollary 15. If ws = 0 for all s € Sy, then Ex ,,[J%(0%) — JL(0%)] = O(1/m?).

S Utility Analysis of DP-LSL

The analysis in this section follows a scheme similar to the previous one. We start by taking the expectation of the
excess empirical risk with respect to the Gaussian perturbation 7).

Ad 1

(2 F S pullas I, |> ] 0)
m
seS

Proof. Let X be an arbitrary dataset with m trajectories. Recalling that 9’\ = QA + 1 we get:

Lemma 16.

Ex.qlJ3(0%) = JA(03)] = Ex

A

TR(BY) = T3 (0%) = ZZ (67032 = (01 8%)? — 2Fu, 0] n) + 5 (16X 13— 10X113)

i=1 SESM

1 & A
== > ps (" 0s0 [+ 20T 007 0% — 2Fr w0 0) + o (I3 + 207 0%)

1=1 s€Sy,;

Taking the expectation over 1 ~ A (0, 03 I) in the above expression we get

R A
E,[J3 (0%) — Jx (0%)] Z Z ps Tr O-X+7dUX .
i=1 s€S,,
The result now follows from noting that Y-\, 3 s ps Tr(¢s) ) = D c 5 psll @3] Xs|. O

In order to bound the expression given by previous lemma we will expand the definition of ox = Cj /1%, with
Cy = 2Rumax||®]|/(1 — 7)(A — ||®]]]|p||o0 )» and note that using the straightforward bound (a + b)? < 2a% + 2b% we



have:

A —kB @[l .
= maxe 4+ — E smin{| X | + k,m
vx s oll2 N SESP {1 }

< 2Hp||§ H ”pHoo Zps max Bmin{‘XS| + k’m})
s€S

The following lemma can be used to bound the maximums inside this sum.
Lemma 17. Suppose a > 0 and b > 0. Then the following holds:

a b<a/2

,tax e 2% (a4 x) = { me22(m=a) > /2 41)
srsmea 1 _2ab

555 otherwise

Assuming we have 23 < 1 < m, previous lemma yields:

1
_ 92k . 2B[Xs
rlglgé( (6 ﬁmln{|Xs| + k,m}) = | X[l x,|>28 + 26,66 Al |H|Xs|§25 < |Xs| + 5H|X |=0 - (42)

When taking the expectation of the upper bound for (@0) obtained by plugging in (@2), several quantities involving
products of correlated binomial random variables will appear. Next lemma gives expressions for all these expectations.

Lemma 18. Recall that ps = P[s € x] and | X| is a binomial random variable with m trials and success probability
ps. Define ps o =P[s € x Ns' € ] and ps s =Pls € x AN s’ ¢ x] forany s,s’ € S. Then we have the following:

E[|Xs[] = mps,
2. E[ljx,j=o] = (1 = ps)™,
3. E[|Xs[*] = m®p? + m(ps — p3),
4. B[ X[|Xs[] = m(m — 1)psps +mps,sr,
5. E[| X[l x,,|=0] = mps,s (1 — per)™ "
Proof. All equations follow from straightforward calculations. O

Theorem 19. Suppose 3 < 1/2 and X > ||®||?||ploo- Let Oy = 2aRmax||®]|/(1 — Y)X = [|®]]2|lplloc ). Then we
have

E X(OAY — JA (oM < 02 d|[®[*lpll% IPE: 2
xalJx (0x) — Jx (0%)] < CX Zpsps — = +2[lpl2ll¢s Iz

2
seS

A 1 dH‘I)H leloo m
+ EdHPH% m § ps(1 —ps) XH(I)”QHpHgo E psps’psp8’||¢8||§
seS s,8'€S

1 1
+ X”(PHQHPHgo ZPi”%H%(Ps _pg) + Z psps’H(bs”g (ps,s’ — PsDs’ + T
seS S,S/ES 6,6
s#s’

ﬁs,s’ (]- - ps’)m_1>

10



Proof. Combining Lemma.w1th ([@2) and the definition of 0% yields the following upper bound for Ex ,,[.J% (%) —

T2 (03):
LS 1
( + —s§esjpgn¢ J3IX. |> <2|p||2 S o, (|Xs| T Mﬂx@.—o)ﬂ

seS

C3Ex

Terms that do not involve products of the form | X || X | or | X|I|x_|—o can be straightforwardly reduced to linear
combinations of expectations in Lemma[I8] The remaining term yields the following:

Bx | 3 popeloulBIXl (X1 + 5o5Tw, 1m0

s,8’€S

1
=S Rl 1] (1%.1+ 5010 |

seS

1
+ D popsll6sl3Ex {IXSI <|Xs'+ o5 Xorl= 0)}

s,s'€S
s#s’

=3 02513 (m*p? + m(ps — p2))

seS

+ X pupellll (mlm = Dpap + mpee +
s,s'€S
s#s’

1
S MPs,s’ 1- s’ ml )
55 (= )"

where we used Lemma 8] again. Thus we get:

A A d||®
Exq[Jx (0%) = Jx (0%)] < Ci{ ol 41 ” Hp”“’ Z (mpg 2iﬁ(lps)’")

m
2[|pll3 2 || Hp”oo 2 2,2 2
+ m Zpsp8||¢5||2m Z ||¢SH2 m p; + m(ps ps))
seS seS

¢ 50 1 m—
” ” ”pH Z PsPs’ ”d’ H2 < ( - 1)p9p9’ + Mps,s + s——MPs, s/ (1 7173/) 1)

s,8'€S 2e B
s;ﬁs
The final result is obtained by grouping the terms in this expression by their dependence in A and m. O

Note that if we take A = w(1) with respect to m in the above theorem, then Cy = O(1/)) and we get the following
corollary.

Corollary 20. Suppose A = w(1) with respect to m. Then we have

. 1 1 m
ExalJx(0%) = Jx(0x)] = O (m +yz+ A3> : (43)
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