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1 Smoothed Gaussian Perturbation
A proof of Lemma 1 in the paper can be found in the pre-print [2]. For the sake of completeness, we provide here an
elementary proof (albeit with slightly worse constants). In particular, we are going to prove the following.

Lemma 1. Let A be an algorithm that on input X computes a vector µX ∈ Rd deterministically and then outputs
ZX ∼ N (µX , σ

2
XI), where σ2

X is a variance that depends on X . Let α = α(ε, δ) = 15
√

2 ln(4/δ)/ε and β =

β(ε, δ, d) = (2 ln 2)ε/5(
√
d +

√
2 ln(4/δ))2. Suppose that ε ≤ 5, δ and d are such β ≤ ln 2, and the following are

satisfied for every pair of neighbouring datasets X ' X ′:

1. σX ≥ α‖µX − µX′‖2,

2. | ln(σ2
X)− ln(σ2

X′)| ≤ β.

Then A is (ε, δ)-differentially private.

We start with a simple characterization of (ε, δ)-differential privacy that will be useful for our proof.

Lemma 2. Let A(X) = θX ∈ Rd be the output of a randomized algorithm on input X . Write fθX (θ) for the
probability density of the output of A on input X . Suppose that for every pair of neighbouring datasets X ' X ′ there
exists a measurable set ΘX,X′ ⊂ Rd such that the following are satisfied:

1. P[θX /∈ ΘX,X′ ] ≤ δ;

2. for all θ ∈ ΘX,X′ we have fθX (θ) ≤ eεfθX′ (θ).

Then A is (ε, δ)-differentially private.

Proof. Fix a pair of neighbouring datasets X ' X ′ and let E ⊆ Rd be any measurable set. Let ΘX,X′ be as in the
statement and write Θc

X,X′ = Rd \ΘX,X′ . Using the assumptions on ΘX,X′ we see that

P[θX ∈ E] = P[θX ∈ E ∩ΘX,X′ ] + P[θX ∈ E ∩Θc
X,X′ ]

≤ eεP[θX′ ∈ E ∩ΘX,X′ ] + δ

≤ eεP[θX′ ∈ E] + δ .

Now we proceed with the proof of Lemma 1. Let X ' X ′ be two neighbouring datasets and let us write Z1 = ZX
and Z2 = ZX′ for simplicity. Thus, for i = 1, 2 we have that Zi ∼ N (µi, σ

2
i I) are d-dimensional independent

Gaussian random variables whose means and variances satisfy the assumptions of Lemma 1 for some ε, δ > 0. The
density function of Zi is denoted by fZi

(z). In order to be able to apply Lemma 2 we want to show that the privacy
loss between Z1 and Z2 defined as

L(z) = ln
fZ1

(z)

fZ2(z)
(1)

1



is bounded by ε for all z ∈ Ω, where Ω ⊂ Rd is an event with probability at least 1− δ under Z1.
We can start by identifying a candidate Ω. Since Ω has to have high probability w.r.t. Z1, it should contain

µ1 because a ball around the mean is the event with the highest probability under a spherical Gaussian distribution
(among those with the same Lebesgue measure). For technical reasons, instead of a ball we will take a slightly more
complicated region, which for now we will parametrize by two quantities a, b > 0. The definition of this region will
depend on the difference of means ∆ = µ2 − µ1:

Ω = Ωa ∩ Ωb = {z + µ1 ∈ Rd | | 〈z,∆〉 | ≤ a} ∩ {z + µ1 ∈ Rd | ‖z‖ ≤ b} . (2)

We need to choose a and b such that the probability P[Z1 /∈ Ω] ≤ δ, and for that we shall combine two different tail
bounds. On the one hand, note that Z = 〈Z1 − µ1,∆〉 /(σ1‖∆‖) ∼ N (0, 1) is a one dimensional standard Gaussian
random variable and recall that for any t ≥ 0:

P[|Z| > t] ≤ 2e−t
2/2 . (3)

On the other hand, X = ‖Z1−µ1‖2/σ2
1 ∼ χ2

d follows a chi-squared distribution with d degrees of freedom, for which
is known [1] that for all t ≥ 0:

P[X > d+ 2
√
dt+ 2t] ≤ e−t . (4)

To make our choices for a and b we can take them such that P[Z1 /∈ Ωa],P[Z1 /∈ Ωb] ≤ δ/2, since then by a union
bound we will get

P[Z1 /∈ Ω] ≤ P[Z1 /∈ ΩA] + P[Z1 /∈ ΩB ] ≤ δ . (5)

Since Z satisfies |Z| ≤
√

2 ln(4/δ) with probability at least 1− δ/2, we can take

a = σ1‖∆‖
√

2 ln
4

δ
= σ1‖∆‖Cδ . (6)

For X we have that d+ 2
√
d ln(2/δ) + 2 ln(2/δ) ≤ d+ 2

√
2d ln(2/δ) + 2 ln(2/δ) = (

√
d+

√
2 ln(2/δ))2. Hence,

we choose
b = σ1(

√
d+

√
2 ln(2/δ)) = σ1Dδ . (7)

Fixing this choice of Ω, we now proceed to see under what conditions on σ1 and σ2 we can get L(z) ≤ ε for all
z ∈ Ω. We start by expanding the definition of L(z) to get

L(z) =
d

2
ln
σ2

2

σ2
1

+
‖µ2 − z‖2

2σ2
2

− ‖µ1 − z‖2

2σ2
1

. (8)

The easiest thing to do is to separate this quantity into several parts and insist on each part being at most a fraction of
ε. To simplify calculations we will just require that each part is at most ε = ε/5. This reasoning applied to the first
term shows that we must satisfy

σ2
2

σ2
1

≤ e2ε/d . (9)

Note that this becomes more restrictive as ε ≈ 0 or d→∞, in which case we have eε/d ≈ 1.
Next we look at the second part and write z = z′ + µ1 because this is the form of the vectors in Ω. With some

algebra we get:

‖µ2 − (z′ + µ1)‖2

2σ2
2

− ‖µ1 − (z′ + µ1)‖2

2σ2
1

=
‖∆‖2 + ‖z′‖2 − 2 〈z′,∆〉

2σ2
2

− ‖z
′‖2

2σ2
1

. (10)

To further decompose this quantity we write z′ ∈ Rd as z′ = zp + zo, where zp = ∆ 〈z′,∆〉 /‖∆‖2 is the orthogonal
projection of z onto the line spanned by the vector ∆, and zo is the corresponding orthogonal complement. Pythagora’s
Theorem implies ‖z′‖2 = ‖zp‖2 + ‖zo‖2, and the RHS in the above expression is equal to

‖∆‖2

2σ2
2

− 〈z
′,∆〉
σ2

2

+
| 〈z′,∆〉 |2

2‖∆‖2

(
1

σ2
2

− 1

σ2
1

)
+
‖zo‖2

2

(
1

σ2
2

− 1

σ2
1

)
. (11)
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Now note that the last two terms can be upper bounded by zero if σ1 ≤ σ2, but need to be taken into account otherwise.
Furthermore, if it were the case that σ1 � σ2 ≈ 0, then these terms could grow unboundedly. Thus we shall require
that a bound of the form

σ2
1

σ2
2

≤ γ , (12)

holds for some γ ≥ 1 to be specified later. Nonetheless, we observe that under this assumption

1

σ2
2

− 1

σ2
1

≤ γ − 1

σ2
1

. (13)

Furthermore, z ∈ Ω implies ‖zo‖2 ≤ ‖z′‖2 = ‖z − µ1‖ ≤ b2 and | 〈z′,∆〉 |2 = | 〈z − µ1,∆〉 |2 ≤ a2. Thus we see
that

| 〈z′,∆〉 |2

2‖∆‖2

(
1

σ2
2

− 1

σ2
1

)
≤ C2

δ (γ − 1)

2
, (14)

and
‖zo‖2

2

(
1

σ2
2

− 1

σ2
1

)
≤ D2

δ(γ − 1)

2
. (15)

By requiring that each of these bounds is at most ε we obtain the following constraint for γ:

γ ≤ 1 +
2ε

max{C2
δ , D

2
δ}

, (16)

which can be satisfied by taking, for example:

γ = 1 +
2ε(√

d+
√

2 ln(4/δ)
)2 . (17)

Note that for fixed δ, small ε and/or large d this choice of γ will make (12) behave much like the bound (9) we
assumed above for σ2

2/σ
2
1 . In fact, using that 1 + x ≥ ex ln 2 for all 0 ≤ x ≤ 1 we see that (12) can be satisfied if

2ε/(
√
d+

√
2 ln(4/δ))2 ≤ 1 and

σ2
1

σ2
2

≤ exp

 (2 ln 2)ε(√
d+

√
2 ln(4/δ)

)2

 . (18)

From here it is immediate to see that if the second condition | ln(σ2
1)− ln(σ2

2)| ≤ β in Lemma 1 is satisfied, then (9)
and (18) are both satisfied.

The missing ingredient to show that L(z) ≤ ε for all z ∈ Ω is an absolute lower bound on σ1. This will follow
from bounding the remaining terms in L(z) as follows:

‖∆‖2

2σ2
2

− 〈z
′,∆〉
σ2

2

≤ ‖∆‖
2 + 2σ1‖∆‖Cδ

2σ2
2

(19)

≤ γ

2

‖∆‖2 + 2σ1‖∆‖Cδ
σ2

1

(20)

≤ 3

2

‖∆‖2 + 2σ1‖∆‖Cδ
σ2

1

(21)

=
3‖∆‖2

2σ2
1

+
3‖∆‖Cδ
σ1

, (22)

where we used that ε ≤ 1 implies γ ≤ 3. If we require each of these two terms to be at most ε, we obtain the constraint:

σ1 ≥ ‖∆‖max

{√
3

2ε
,

3Cδ
ε

}
=

3‖∆‖Cδ
ε

. (23)
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To conclude the proof just note that the above bound can be rewritten as σ1 ≥ α‖∆‖, which is precisely the first
condition in Lemma 1.

2 Privacy Analysis of DP-LSW
Lemma 3. Let X ' X ′ be two neighbouring datasets of m trajectories with X = (x1, . . . , xm−1, x) and X ′ =
(x1, . . . , xm−1, x

′). Let X◦ = (x1, . . . , xm−1). Let Sx (resp. Sx′ ) denote the set of states visited by x (resp. x′). Then
we have

‖FX − FX′‖2,Γ ≤
Rmax

1− γ

√ ∑
s∈Sx∪Sx′

ws
(|X◦s |+ 1)2

.

Proof. We start by noting that if s ∈ S \ (Sx ∪ Sx′), then FX,s = FX′,s. In the case s ∈ Sx ∪ Sx′ we can write
FX,s = (|X◦s |FX◦,s + Fx,s)/(|X◦s |+ 1). Using a symmetric expression for FX′,s we see that in this case

|FX,s − FX′,s| =
1

|X◦s |+ 1
|Fx,s − Fx′,s| ≤

1

|X◦s |+ 1
max{Fx,s, Fx′,s} ≤

1

|X◦s |+ 1

Rmax

1− γ
,

where we used that 0 ≤ Fx,s ≤ Rmax/(1− γ) for all s and x. When s ∈ Sx \ Sx′ we can use the same expression as
before for FX,s and write FX′,s = FX◦,s. A similar argument as in the previous case then yields

|FX,s − FX′,s| =
1

|X◦s |+ 1
|Fx,s − FX◦,s| ≤

1

|X◦s |+ 1

Rmax

1− γ
.

Note the same bound also holds for the case s ∈ Sx′ \ Sx. Finally, since we have seen that the same bound holds for
all s ∈ Sx ∪ Sx′ , we obtain ∑

s∈S
ws(FX,s − FX′,s)2 ≤ R2

max

(1− γ)2

∑
s∈Sx∪Sx′

ws
(|X◦s |+ 1)2

,

which yields the desired bound.

Corollary 4. If X is a dataset of trajectories, then the following holds for every neighbouring dataset X ′ ' X:

‖FX − FX′‖2,Γ ≤
Rmax

1− γ

√∑
s∈S

ws
max{|Xs|, 1}2

.

Proof. Using the notation from Lemma 3 we observe that |Xs| = |X◦s | + 1 if s ∈ Sx, and |Xs| = |X◦s | if s /∈ Sx.
Therefore, the following holds for any trajectories x, x′:∑

s∈Sx∪Sx′

ws
(|X◦s |+ 1)2

≤
∑
s∈S

ws
(|X◦s |+ 1)2

=
∑
s∈Sx

ws
|Xs|2

+
∑

s∈S\Sx

ws
(|Xs|+ 1)2

≤
∑
s∈SX

ws
|Xs|2

+
∑

s∈S\SX

ws ,

where SX denotes the set of states visited by at least one trajectory from X . Since s /∈ SX implies |Xs| = 0, we can
plug this bound into the result of Lemma 3 as follows:

‖FX − FX′‖2,Γ ≤
Rmax

1− γ

√∑
s∈SX

ws
|Xs|2

+
∑

s∈S\SX

ws =
Rmax

1− γ

√∑
s∈S

ws
max{|Xs|, 1}2

.

Lemma 5. The following holds for every v ∈ NS :

ϕwk (v) =
∑
s∈S

ws
max{vs − k, 1}2

.

Furthermore, for every k ≥ ‖v‖∞ − 1 we have ϕwk (v) =
∑
s ws.
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Proof. Recall that ϕwk (v) = max‖v′−v‖∞≤k ϕ
w(v′) with ϕw(v) =

∑
s ws/max{vs, 1}2 and observe the result fol-

lows immediately because

ϕwk (v) =
∑
s∈S

ws
min−k≤l≤k max{vs + l, 1}2

=
∑
s∈S

ws
max{vs − k, 1}2

.

3 Privacy Analysis of DP-LSL
Lemma 6. Let X ' X ′ be two neighbouring datasets of m trajectories with X = (x1, . . . , xm−1, x) and X ′ =
(x1, . . . , xm−1, x

′). Let Fx ∈ RS (resp. Fx′ ∈ RS ) be the vector given by Fx(s) = Fx,s (resp. Fx′(s) = Fx′,s).
Define the diagonal matrices Γρ,∆x,x′ ∈ RS×S given by Γρ(s, s) = ρs and ∆x,x′(s, s) = Is∈x − Is∈x′ . If the
regularization parameter satisfies λ > ‖Φ>∆x,x′ΓρΦ‖, then the following holds:

‖θλX − θλX′‖2
2

≤

∥∥∥(∆x,x′Φθ
λ
X − Fx + Fx′

)>
ΓρΦ

∥∥∥
2

λ− ‖Φ>∆x,x′ΓρΦ‖
. (24)

Proof. In order to simplify our notation we write θ̄ = θλX and θ̄′ = θλX′ for the rest of the proof. Given a trajectory x
and a vector θ ∈ Rd we shall also write `(x, θ) =

∑
s∈Sx ρs(Fx,s − φ

>
s θ)

2 so that JX(θ) = 1
m

∑m
i=1 `(xi, θ). Now

we proceed with the proof.
Let us start by noting that because JλX(θ) is λ/m-strongly convex, we have JλX(θ1)− JλX(θ2) ≥ 〈∇JλX(θ2), θ1 −

θ2〉+ λ
2m‖θ1 − θ2‖22 for any θ1, θ2 ∈ Rd. Thus, using that optimality implies∇JλX(θ̄) = ∇JλX′(θ̄′) = 0, we get

λ

m
‖θ̄ − θ̄′‖22 ≤ JλX(θ̄′)− JλX(θ̄) + JλX′(θ̄)− JλX′(θ̄′)

= JX(θ̄′)− JX(θ̄) + JX′(θ̄)− JX′(θ̄′)

=
1

m

(
`(x, θ̄′)− `(x, θ̄) + `(x′, θ̄)− `(x′, θ̄′)

)
,

where the equalities follows from definitions of X , X ′, JλX and JX . If we now expand the definition of `(x, θ) we see
that

`(x, θ̄′)− `(x, θ̄) =
∑
s∈Sx

ρs
(
(φ>s θ̄

′)2 − (φ>s θ̄)
2 − 2Fx,sφ

>
s (θ̄′ − θ̄)

)
,

`(x′, θ̄)− `(x′, θ̄′) =
∑
s∈Sx′

ρs
(
(φ>s θ̄)

2 − (φ>s θ̄
′)2 − 2Fx′,sφ

>
s (θ̄ − θ̄′)

)
.

Using the identity (φ>s θ̄
′)2− (φ>s θ̄)

2 = (θ̄′+ θ̄)>φsφ
>
s (θ̄′− θ̄), we rewrite `(x, θ̄′)− `(x, θ̄) + `(x′, θ̄)− `(x′, θ̄′) as∑

s∈S
ρs
[
(Is∈x − Is∈x′)(θ̄′ + θ̄)>φsφ

>
s − 2(Fx,s − Fx′,s)φ>s

]
(θ̄′ − θ̄) , (25)

where we implicitly used that Fx,s = 0 whenever s /∈ x. Finally, using the definitions in the statement we can
rearrange the above expression to show that

λ

m
‖θ̄ − θ̄′‖22 ≤

1

m

(
(θ̄′ + θ̄)>Φ>∆x,x′ − 2(Fx − Fx′)>

)
ΓρΦ(θ̄′ − θ̄)

=
2

m

(
θ̄>Φ>∆x,x′ − (Fx − Fx′)>

)
ΓρΦ(θ̄′ − θ̄) +

1

m
(θ̄′ − θ̄)>Φ>∆x,x′ΓρΦ(θ̄′ − θ̄)

≤ 2

m
‖
(
θ̄>Φ>∆x,x′ − (Fx − Fx′)>

)
ΓρΦ‖2‖θ̄′ − θ̄‖2 +

1

m
‖Φ>∆x,x′ΓρΦ‖‖θ̄′ − θ̄‖22 ,

where we used the Cauchy–Schwartz inequality and the definition of operator norm. The result now follows by solving
for ‖θ̄ − θ̄′‖2 in the above inequality.
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Corollary 7. Let X be a dataset of trajectories and suppose λ > ‖Φ‖2‖ρ‖∞. Then the following holds for any
neighbouring dataset X ′ ' X:

‖θλX − θλX′‖2 ≤
2Rmax‖Φ‖

(1− γ)(λ− ‖Φ‖2‖ρ‖∞)

√
ϕλX ,

where

ϕλX =

‖Φ‖‖ρ‖∞√
2λ

√∑
s∈S

ρs|Xs|+ ‖ρ‖2

2

.

Proof. We start by noting that ‖∆x,x′‖ ≤ 1 and ‖Γρ‖ = ‖ρ‖∞, hence submultiplicativity of matrix operator norms
yields ‖Φ>∆x,x′ΓρΦ‖ ≤ ‖Φ‖2‖ρ‖∞. On the other hand, for the numerator in (24) we have∥∥∥(∆x,x′Φθ

λ
X − Fx + Fx′

)>
ΓρΦ

∥∥∥
2
≤
(
‖θλX‖2‖Φ‖‖ρ‖∞ + ‖(Fx − Fx′)>Γρ‖2

)
‖Φ‖ . (26)

Bounding the individual entries in Fx and Fx′ by Rmax/(1 − γ) we get ‖(Fx − Fx′)>Γρ‖2 ≤ Rmax‖ρ‖2/(1 − γ).
The last step is to bound the norm ‖θλX‖2, for which we use the closed-form solution to argminθ J

λ
X(θ) given in the

paper and write:

‖θλX‖2 ≤
∥∥∥∥(Φ>ΓXΦ +

λ

2m
I)−1Φ>Γ

1/2
X

∥∥∥∥ ‖FX‖2,ΓX
≤
∥∥∥∥(Φ>ΓXΦ +

λ

2m
I)−1Φ>Γ

1/2
X

∥∥∥∥
(
Rmax

1− γ

√∑
s∈S

ρs|Xs|
m

)
.

To bound the last remaining norm let use write UΣV > for the SVD of Γ
1/2
X Φ, where V ∈ Rd×d with V >V = V V > =

I . With this we can write:

(Φ>ΓXΦ +
λ

2m
I)−1Φ>Γ

1/2
X = V

(
Σ2 +

λ

2m
I

)−1

ΣU> . (27)

Now we use that ‖U‖ = ‖V ‖ = 1 and x/(x2 + a) ≤ 1/(2
√
a) for any x ≥ 0 to get ‖V (Σ2 + (λ/2m)I)−1ΣU>‖ ≤√

m/2λ. Thus we get a bound for ‖θλX‖2 that when plugged into (26) yields the desired result.

Lemma 8. The following holds for every v ∈ NS :

ϕλk(v) =

‖Φ‖‖ρ‖∞√
2λ

√∑
s∈S

ρs max{vs + k,m}+ ‖ρ‖2

2

.

Furthermore, for every k ≥ m−mins vs we have ϕλk(v) =
(
‖Φ‖‖ρ‖∞

√
m√

2λ

√∑
s∈S ρs + ‖ρ‖2

)2

.

Proof. The proof is similar to that of Lemma 5 and is omitted.

4 Utility Analysis of DP-LSW
The goal of this section is to show that as the size m of the dataset X grows, the differentially private solution θwX
provided by algorithm DP-LSW is not much worse than the one obtained by directly minimizing JwX(θ). In other
words, for large datasets the noise introduced by the privacy constraint is negligible. We do so by proving a O(1/m2)

bound for the expected empirical excess risk given by EX,η[JwX(θ̂wX) − JwX(θwX)]. Our analysis starts with a lemma
that leverages the law of total expectation in order to reduce the bound to a quantity that only depends on EX [σ2

X ].

Lemma 9.
EX,η[JwX(θ̂wX)− JwX(θwX)] = ‖Γ1/2Φ‖2FEX [σ2

X ] . (28)
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Proof. By the law of total expectation it is enough to show that

Eη[JwX(θ̂wX)− JwX(θwX)|X] = σ2
X‖Γ1/2Φ‖2F . (29)

Let X be an arbitrary dataset. Expanding the definition of JwX(θ) we have that for any θ ∈ Rd

JwX(θ) = F>XΓFX + θ>Φ>ΓΦθ − 2F>XΓΦθ . (30)

On the other hand, since ∇θJwX(θwX) = 0, we have θwX
>Φ>ΓΦ = F>XΓΦ. Thus, using the definition θ̂wX = θwX + η, a

simple algebraic calculation yields

JwX(θ̂wX)− JwX(θwX) = η>Φ>ΓΦη − F>XΓΦη − η>Φ>ΓΦθwX . (31)

Finally, taking the expectation over η ∼ N (0, σ2
XI) of the above expression we get

Eη[JwX(θ̂wX)− JwX(θwX)] = Eη[η>Φ>ΓΦη] = σ2
X Tr(Φ>ΓΦ) = σ2

X‖Γ1/2Φ‖2F . (32)

In order to bound EX [σ2
X ] we recall the variance has the form σ2

X = C2ψwX , where C is a constant independent of
X and

ψwX = max
k≥0

e−kβ
∑
s∈S

ws
max{|Xs| − k, 1}2

≤
∑
s

ws

(
max
k≥0

e−kβ

max{|Xs| − k, 1}2

)
. (33)

Thus, we can bound EX [σ2
X ] = C2EX [ψwX ] by providing a bound for the expectation of each individual maximum in

(33). The two following technical lemmas will prove useful.

Lemma 10. Let b > 0 and a ≥ 1. Then the following holds:

max
0≤x≤a−1

e−bx

(a− x)2
=


1
a2 b < 2/a

e1−ab b > 2
e2

4 b
2e−ab otherwise

(34)

Proof. The result follows from a simple calculation.

Lemma 11. Suppose Bm,p is a binomial random variable with m trials and success probability p. Then the following
hold:

E
[

1

Bm,p + 1

]
=

1− (1− p)m+1

p(m+ 1)
,

E
[

1

B2
m,p

IBm,p≥1

]
≤ 6

p(m+ 1)

(
1− (1− p)m+2

p(m+ 2)
− (1− p)m+1 − p(m+ 1)

2
(1− p)m

)
.
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Proof. The first expectation is a classical exercise in probability textbooks. The second one can be proved as follows:

E
[

1

B2
m,p

IBm,p≥1

]
=

m∑
k=1

1

k2

(
m

k

)
pk(1− p)m−k

≤ 6

m∑
k=1

1

(k + 1)(k + 2)

(
m

k

)
pk(1− p)m−k

=
6

p(m+ 1)

m∑
k=1

1

k + 2

(m+ 1)!

(k + 1)!(m− k)!
pk+1(1− p)m−k

=
6

p(m+ 1)

m∑
k=1

1

k + 2
P[Bm+1,p = k + 1]

=
6

p(m+ 1)

m+1∑
j=2

1

j + 1
P[Bm+1,p = j]

=
6

p(m+ 1)

(
E
[

1

Bm+1,p + 1

]
− P[Bm+1,p = 0]− 1

2
P[Bm+1,p = 1]

)
=

6

p(m+ 1)

(
1− (1− p)m+2

p(m+ 2)
− (1− p)m+1 − p(m+ 1)

2
(1− p)m

)
,

where we used the first equation in the last step, and the bound (k + 1)(k + 2)/k2 ≤ 6 for k ≥ 1 in the first
inequality.

Recall that ps denotes the probability that a trajectory from X visits states s. Because these trajectories are i.i.d.
we have that |Xs| = Bm,ps is a binomial random variable. Therefore, we can combine the last two lemmas to prove
the following.

Lemma 12. Suppose β ≤ 2. Then we have:

EX
[
max
k≥0

e−kβ

max{|Xs| − k, 1}2

]
≤

{
6

p2s(m+1)(m+2) + e2β2

4 (1− (1− e−β)ps)
m ps > 0 ,

1 ps = 0 .
(35)

Proof. Note in the first place that Lemma 10 implies

max
k≥0

e−kβ

max{|Xs| − k, 1}2
= I|Xs|=0 + I1≤|Xs|<2/β

1

|Xs|2
+ I|Xs|≥2/β

e2

4
β2e−β|Xs| , (36)

where we used that in the case |Xs| = 0 the maximum is 1. If ps = 0, then obviously |Xs| = 0 almost surely and
the expectation of (36) equals 1. On the other hand, when ps > 0 we use the linearity of expectation and bound each
term separately. Clearly, EX [I|Xs|=0] = PX [Bm,ps = 0] = (1− ps)m. On the other hand, by looking up the moment
generating function of a binomial distribution we have

EX [I|Xs|≥2/β
e2

4
β2e−β|Xs|] ≤ e2

4
β2EX [e−β|Xs|] =

e2

4
β2(1− (1− e−β)ps)

m . (37)

The remaining term is bounded by

EX
[
I1≤|Xs|<2/β

1

|Xs|2

]
≤ EX

[
I1≤|Xs|

1

|Xs|2

]
. (38)

Therefore, applying Lemma 11 and upper bounding some negative terms by zero, we get

EX
[
max
k≥0

e−kβ

max{|Xs| − k, 1}2

]
≤ 6

p2
s(m+ 1)(m+ 2)

+
e2β2

4
(1− (1− e−β)ps)

m . (39)
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Now we can combine Lemmas 16 and 12 using Equation 33 to get our final result.

Theorem 13. Let S0 = {s ∈ S|ps = 0} and S+ = S \ S0. Let C = αRmax‖(Γ1/2Φ)†‖‖Γ1/2Φ‖F /(1− γ). Suppose
β ≤ 2. Then we have the following:

EX,η[JwX(θ̂wX)− JwX(θwX)] ≤ C2

∑
s∈S0

ws +
∑
s∈S+

ws

(
6

p2
s(m+ 1)(m+ 2)

+
e2β2

4
(1− (1− e−β)ps)

m

) .

The following version is the one given in the paper for reasons of space. It is easily obtained by noting that
e2/4 ≤ 6, m2 ≤ (m+ 1)(m+ 2), and when β ≤ 1/2 then 1− (1− e−β)ps ≤ 1− βps/2.

Corollary 14. Let S0 = {s ∈ S|ps = 0} and S+ = S \S0. Let C = αRmax‖(Γ1/2Φ)†‖‖Γ1/2Φ‖F /(1−γ). Suppose
β ≤ 1/2. Then EX,η[JwX(θ̂wX)− JwX(θwX)] is upper bounded by:

C2

∑
s∈S0

ws + 6
∑
s∈S+

ws

(
1

p2
sm

2
+ β2

(
1− βps

2

)m) .

The following is an immediate consequence of these results.

Corollary 15. If ws = 0 for all s ∈ S0, then EX,η[JwX(θ̂wX)− JwX(θwX)] = O(1/m2).

5 Utility Analysis of DP-LSL
The analysis in this section follows a scheme similar to the previous one. We start by taking the expectation of the
excess empirical risk with respect to the Gaussian perturbation η.

Lemma 16.

EX,η[JλX(θ̂λX)− JλX(θλX)] = EX

[(
λd

2m
+

1

m

∑
s∈S

ρs‖φs‖22|Xs|

)
σ2
X

]
. (40)

Proof. Let X be an arbitrary dataset with m trajectories. Recalling that θ̂λX = θλX + η we get:

JλX(θ̂λX)− JλX(θλX) =
1

m

m∑
i=1

∑
s∈Sxi

ρs

(
(φ>s θ̂

λ
X)2 − (φ>s θ

λ
X)2 − 2Fxi,sφ

>
s η
)

+
λ

2m

(
‖θ̂λX‖22 − ‖θλX‖22

)

=
1

m

m∑
i=1

∑
s∈Sxi

ρs
(
η>φsφ

>
s η + 2η>φsφ

>
s θ

λ
X − 2Fxi,sφ

>
s η
)

+
λ

2m

(
‖η‖22 + 2η>θλX

)
.

Taking the expectation over η ∼ N (0, σ2
XI) in the above expression we get

Eη[JλX(θ̂λX)− JλX(θλX)] =
1

m

m∑
i=1

∑
s∈Sxi

ρs Tr(φsφ
>
s )σ2

X +
λ

2m
dσ2

X .

The result now follows from noting that
∑m
i=1

∑
s∈Sxi

ρs Tr(φsφ
>
s ) =

∑
s∈S ρs‖φs‖22|Xs|.

In order to bound the expression given by previous lemma we will expand the definition of σX = Cλ

√
ψλX , with

Cλ = 2Rmax‖Φ‖/(1− γ)(λ− ‖Φ‖2‖ρ‖∞), and note that using the straightforward bound (a+ b)2 ≤ 2a2 + 2b2 we
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have:

ψλX = max
k≥0

e−kβ

‖ρ‖2 +
‖Φ‖‖ρ‖∞√

2λ

√∑
s∈S

ρs min{|Xs|+ k,m}

2

≤ 2‖ρ‖22 +
‖Φ‖2‖ρ‖2∞

λ

∑
s∈S

ρs max
k≥0

(
e−2kβ min{|Xs|+ k,m}

)
.

The following lemma can be used to bound the maximums inside this sum.

Lemma 17. Suppose a ≥ 0 and b > 0. Then the following holds:

max
0≤x≤m−a

e−2bx(a+ x) =


a b < a/2

me−2b(m−a) b > m/2
1

2ebe
2ab otherwise

(41)

Assuming we have 2β < 1 ≤ m, previous lemma yields:

max
k≥0

(
e−2kβ min{|Xs|+ k,m}

)
= |Xs|I|Xs|>2β +

1

2eβ
e2β|Xs|I|Xs|≤2β ≤ |Xs|+

1

2eβ
I|Xs|=0 . (42)

When taking the expectation of the upper bound for (40) obtained by plugging in (42), several quantities involving
products of correlated binomial random variables will appear. Next lemma gives expressions for all these expectations.

Lemma 18. Recall that ps = P[s ∈ x] and |Xs| is a binomial random variable with m trials and success probability
ps. Define ps,s′ = P[s ∈ x ∧ s′ ∈ x] and p̄s,s′ = P[s ∈ x ∧ s′ /∈ x] for any s, s′ ∈ S. Then we have the following:

1. E[|Xs|] = mps,

2. E[I|Xs|=0] = (1− ps)m,

3. E[|Xs|2] = m2p2
s +m(ps − p2

s),

4. E[|Xs||Xs′ |] = m(m− 1)psps′ +mps,s′ ,

5. E[|Xs|I|Xs′ |=0] = mp̄s,s′(1− ps′)m−1.

Proof. All equations follow from straightforward calculations.

Theorem 19. Suppose β < 1/2 and λ > ‖Φ‖2‖ρ‖∞. Let Cλ = 2αRmax‖Φ‖/(1 − γ)(λ − ‖Φ‖2‖ρ‖∞). Then we
have

EX,η[JλX(θ̂λX)− JλX(θλX)] ≤ C2
λ

{∑
s∈S

ρsps

(
d‖Φ‖2‖ρ‖2∞

2
+ 2‖ρ‖22‖φs‖22

)
+
λ

m
d‖ρ‖22 +

1

m

d‖Φ‖2‖ρ‖2∞
4eβ

∑
s∈S

ρs(1− ps)m +
m

λ
‖Φ‖2‖ρ‖2∞

∑
s,s′∈S

ρsρs′psps′‖φs‖22

+
1

λ
‖Φ‖2‖ρ‖2∞

∑
s∈S

ρ2
s‖φs‖22(ps − p2

s) +
∑
s,s′∈S
s6=s′

ρsρs′‖φs‖22
(
ps,s′ − psps′ +

1

2eβ
p̄s,s′(1− ps′)m−1

)
 .
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Proof. Combining Lemma 16 with (42) and the definition of σ2
X yields the following upper bound for EX,η[JλX(θ̂λX)−

JλX(θλX)]:

C2
λEX

[(
λd

2m
+

1

m

∑
s∈S

ρs‖φs‖22|Xs|

)(
2‖ρ‖22 +

‖Φ‖2‖ρ‖2∞
λ

∑
s∈S

ρs

(
|Xs|+

1

2eβ
I|Xs|=0

))]
.

Terms that do not involve products of the form |Xs||Xs′ | or |Xs|I|Xs′ |=0 can be straightforwardly reduced to linear
combinations of expectations in Lemma 18. The remaining term yields the following:

EX

 ∑
s,s′∈S

ρsρs′‖φs‖22|Xs|
(
|Xs′ |+

1

2eβ
I|Xs′ |=0

)
=
∑
s∈S

ρ2
s‖φs‖22EX

[
|Xs|

(
|Xs|+

1

2eβ
I|Xs|=0

)]
+
∑
s,s′∈S
s6=s′

ρsρs′‖φs‖22EX
[
|Xs|

(
|Xs′ |+

1

2eβ
I|Xs′ |=0

)]

=
∑
s∈S

ρ2
s‖φs‖22

(
m2p2

s +m(ps − p2
s)
)

+
∑
s,s′∈S
s6=s′

ρsρs′‖φs‖22
(
m(m− 1)psps′ +mps,s′ +

1

2eβ
mp̄s,s′(1− ps′)m−1

)
,

where we used Lemma 18 again. Thus we get:

EX,η[JλX(θ̂λX)− JλX(θλX)] ≤ C2
λ

{
λd‖ρ‖22
m

+
d‖Φ‖2‖ρ‖2∞

2m

∑
s∈S

ρs

(
mps +

1

2eβ
(1− ps)m

)
+

2‖ρ‖22
m

∑
s∈S

ρsps‖φs‖22m+
‖Φ‖2‖ρ‖2∞

λm

∑
s∈S

ρ2
s‖φs‖22

(
m2p2

s +m(ps − p2
s)
)

+
‖Φ‖2‖ρ‖2∞

λm

∑
s,s′∈S
s6=s′

ρsρs′‖φs‖22
(
m(m− 1)psps′ +mps,s′ +

1

2eβ
mp̄s,s′(1− ps′)m−1

)
The final result is obtained by grouping the terms in this expression by their dependence in λ and m.

Note that if we take λ = ω(1) with respect tom in the above theorem, thenCλ = O(1/λ) and we get the following
corollary.

Corollary 20. Suppose λ = ω(1) with respect to m. Then we have

EX,η[JλX(θ̂λX)− JλX(θλX)] = O

(
1

λm
+

1

λ2
+
m

λ3

)
. (43)

References
[1] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection. Annals of

Statistics, pages 1302–1338, 2000.

[2] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private data analysis,
2011.

11


	Smoothed Gaussian Perturbation
	Privacy Analysis of DP-LSW
	Privacy Analysis of DP-LSL
	Utility Analysis of DP-LSW
	Utility Analysis of DP-LSL

