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Abstract
We present the first differentially private algo-
rithms for reinforcement learning, which apply
to the task of evaluating a fixed policy. We es-
tablish two approaches for achieving differential
privacy, provide a theoretical analysis of the pri-
vacy and utility of the two algorithms, and show
promising results on simple empirical examples.

1. Introduction
Learning how to make decisions under uncertainty is be-
coming paramount in many practical applications, such as
medical treatment design, energy management, adaptive
user interfaces, recommender systems etc. Reinforcement
learning (Sutton & Barto, 1998) provides a variety of algo-
rithms capable of handling such tasks. However, in many
practical applications, aside from obtaining good predic-
tive performance, one might also require that the data used
to learn the predictor be kept confidential. This is espe-
cially true in medical applications, where patient confiden-
tiality is very important, and in other applications which
are user-centric (such as recommender systems). Differen-
tial privacy (DP) (Dwork, 2006) is a very active research
area, originating from cryptography, but which has now
been embraced by the machine learning community. DP
is a formal model of privacy used to design mechanisms
that reduce the amount of information leaked by the re-
sult of queries to a database containing sensitive informa-
tion about multiple users (Dwork, 2006). Many super-
vised learning algorithms have differentially private ver-
sions, including logistic regression (Chaudhuri & Mon-
teleoni, 2009; Chaudhuri et al., 2011), support vector ma-
chines (Chaudhuri et al., 2011; Rubinstein et al., 2012;
Jain & Thakurta, 2013), and the lasso (Thakurta & Smith,
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2013). However, differential privacy for reinforcement
learning tasks has not been tackled yet, except for the sim-
pler case of bandit problems (Smith & Thakurta, 2013;
Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016).

In this paper, we tackle differential privacy for reinforce-
ment learning algorithms for the full Markov Decision Pro-
cess (MDP) setting. We develop differentially private al-
gorithms for the problem of policy evaluation, in which a
given way of behaving has to be evaluated quantitatively.
We start with the batch, first-visit Monte Carlo approach to
policy evaluation, which is well understood and closest to
regression algorithms, and provide two differentially pri-
vate versions, which come with formal privacy proofs as
well as guarantees on the quality of the solution obtained.
Both algorithms work by injecting Gaussian noise into the
parameters vector for the value functions, but they differ
in the definition of the noise amount. Our privacy analysis
techniques are related to previous output perturbation for
empirical risk minimization (ERM), but there are some do-
main specific challenges that need to be addressed. In par-
ticular, the notion of neighbouring datasets we use is mo-
tivated by medical applications where individual patients
generate full trajectories. In this case two datasets differ-
ing in a single patient yield regression problems differing
in multiple correlated regression targets. Our utility analy-
sis identifies parameters of the MDP that control how easy
it is to maintain privacy in each case. The theoretical util-
ity analysis, as well as some illustrative experiments, show
that the accuracy of the private algorithms does not suffer
(compared to usual Monte Carlo) when the data set is large.

The rest of the paper is organized as follows. In Sec. 2
we provide background notation and results on differen-
tial privacy and Monte Carlo methods for policy evalua-
tion. Sec. 3 presents our proposed algorithms. The privacy
analysis and the utility analysis are outlined in Sec. 4 and
Sec. 5 respectively. Detailed proofs for both of these sec-
tions are given in the Supplementary Material. In Sec. 6 we
provide empirical illustrations of the scaling behaviour of
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the proposal algorithms, using synthetic MDPs, which try
to mimic characteristics of real applications. Finally, we
conclude in Sec. 7 with a discussion of related work and
avenues for future work.

2. Background
2.1. Differential Privacy

DP takes a user-centric approach, by providing privacy
guarantees based on the difference of the outputs of a learn-
ing algorithm trained on two databases differing in a single
user. The central goal is to bound the loss in privacy that a
user can suffer when the result of an analysis on a database
with her data is made public. This can incentivize users
to participate in studies using sensitive data, e.g. mining of
medical records. In the context of machine learning, dif-
ferentially private algorithms are useful because they al-
low learning models in such a way that their parameters do
not reveal information about the training data (McSherry
& Talwar, 2007). For example, one can think of using his-
torical medical records to learn prognostic and diagnostic
models which can then be shared between multiple health
service providers without compromising the privacy of the
patients whose data was used to train the model.

To formalize the above discussion, let X be an input space
and Y an output space. Suppose A is a randomized al-
gorithm that takes as input a tuple X = (x1, . . . , xm) of
elements from X for some m ≥ 1 and outputs a (random)
element A(X) of Y . We interpret X ∈ Xm as a dataset
containing data from m individuals and define its neigh-
bouring datasets as those that differ from X in their last1

element: X ′ = (x1, . . . , xm−1, x
′
m) with xm 6= x′m. We

denote this (symmetric) relation by X ' X ′. Algorithm A
is (ε, δ)-differentially private for some ε, δ > 0 if for every
m ≥ 1, every pair of datasets X,X ′ ∈ Xm, X ' X ′, and
every measurable set Ω ⊆ Y we have

P[A(X) ∈ Ω] ≤ eεP[A(X ′) ∈ Ω] + δ . (1)

This definition means that the distribution over possible
outputs of A on inputs X and X ′ is very similar, so re-
vealing this output leaks almost no information on whether
xm or x′m was in the dataset.

A simple way to design a DP algorithm for a given func-
tion f : Xm → Y is the output perturbation mechanism,
which releases A(X) = f(X) + η, where η is noise sam-
pled from a properly calibrated distribution. For real out-
puts Y = Rd, the Laplace (resp. Gaussian) mechanism (see

1Formally, a neighbouring datasets is one which differs in one
element, not necessarily the last. However, here we assume the or-
der of the elements in X does not affect the distribution of A(X),
and thus define without loss of generality neighbouring datasets
as always differing in the last element.

e.g. Dwork & Roth (2014)) samples each component of the
noise η = (η1, . . . , ηd) i.i.d. from a Laplace (resp. Gaus-
sian) distribution with standard deviation O(GS1(f)/ε)
(resp. O(GS2(f) ln(1/δ)/ε)), where GSp(f) is the global
sensitivity of f given by

GSp(f) = sup
X,X′∈Xm,X'X′

‖f(X)− f(X ′)‖p .

Calibrating noise to the global sensitivity is a worst-case
approach that requires taking the supremum over all pos-
sible pairs of neighbouring datasets, and in general does
not account for the fact that in some datasets privacy can
be achieved with substantially smaller perturbations. In
fact, for many applications (like the one we consider in
this paper) the global sensitivity is too large to provide use-
ful mechanisms. Ideally one would like to add perturba-
tions proportional to the potential changes around the input
dataset X , as measured, for example by the local sensi-
tivity LSp(f,X) = supX′'X ‖f(X) − f(X ′)‖p. Nissim
et al. (2007) showed that approaches based on LSp do not
lead to differentially private algorithms, and then proposed
an alternative framework for DP mechanisms with data-
dependent perturbations based on the idea of smoothed sen-
sitivity. This is the approach we use in this paper; see Sec-
tion 4 for further details.

2.2. Policy Evaluation

Policy evaluation is the problem of obtaining (an approxi-
mation to) the value function of a Markov reward process
defined by an MDP M and a policy π (Sutton & Barto,
1998; Szepesvári, 2010). In many cases of interest M is
unknown but we have access to trajectories containing state
transitions and immediate rewards sampled from π. When
the state space of M is relatively small, tabular methods
that represent the value of each state can be used individ-
ually. However, in problems with large (or even continu-
ous) state spaces, parametric representations for the value
function are typically needed in order to defeat the curse of
dimensionality and exploit the fact that similar states will
have similar values. In this paper we focus on policy evalu-
ation with linear function approximation in the batch case,
where we have access to a set of trajectories sampled from
the policy of interest.

Let M be an MDP over a finite state space S with N = |S|
states and π a policy on M . Given an initial state s0 ∈ S ,
the interaction of π with M is described by a sequence
x = ((st, at, rt))t≥0 of state–action–reward triplets. Sup-
pose 0 < γ < 1 is the discount factor of M . The value
function V π : S → R of π assigns to each state the ex-
pected discounted cumulative reward obtained by a trajec-
tory following policy π from that state:

V π(s) = EM,π

[∑
t≥0 γ

trt

∣∣∣ s0 = s
]
. (2)
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The value function can be considered a vector V π ∈ RS .
We make the usual assumption that any reward r generated
by M is bounded: 0 ≤ r ≤ Rmax, so 0 ≤ V π(s) ≤
Rmax/(1− γ) for all s ∈ S.

Let Φ ∈ RS×d be a feature representation that associates
each state s ∈ S to a d-dimensional feature vector φ>s =
Φ(s, :) ∈ Rd. The goal is to find a parameter vector θ ∈ Rd
such that V̂ π = Φθ is a good approximation to V π . To do
so, we assume that we have access to a collection X =
(x1, . . . , xm) of finite trajectories sampled from M by π,
where each xi is a sequence of states, actions and rewards.

We will use a Monte Carlo approach, in which the re-
turns of the trajectories in X are used as regression targets
to fit the parameters in V̂ π via a least squares approach
(Sutton & Barto, 1998). In particular, we consider first-
visit Monte Carlo estimates obtained as follows. Suppose
x = ((s1, a1, r1), . . . , (sT , aT , rT )) is a trajectory that vis-
its s and ix,s is the time of the first visit to s; that is,
six,s = s, and st 6= s for all t < ix,s. The return collected
from this first visit is given by

Fx,s =

T∑
t=ix,s

rtγ
t−ix,s =

T−ix,s∑
t=0

rt+ix,s
γt ,

and provides an unbiased estimate of V π(s). For conve-
nience, when state s is not visited by trajectory x we as-
sume Fx,s = 0.

Given the returns from all first visits corresponding to a
datasetX withm trajectories, we can find a parameter vec-
tor for the estimator V̂ π by solving the optimization prob-
lem argminθ JX(θ), where

JX(θ) =
1

m

m∑
i=1

∑
s∈Sxi

ρs(Fxi,s − φ>s θ)2 , (3)

and Sx is the set of states visited by trajectory x. The re-
gression weights 0 ≤ ρs ≤ 1 are given as an input to the
problem and capture the user’s believe that some states are
more relevant than others. It is obvious that JX(θ) is a
convex function of θ. However, in general it is not strongly
convex and therefore the optimum of argminθ JX(θ) is not
necessarily unique. On the other hand, it is known that
differential privacy is tightly related to certain notions of
stability (Thakurta & Smith, 2013), and optimization prob-
lems with non-unique solutions generally pose a problem
to stability. In order to avoid this problem, the private pol-
icy evaluation algorithms that we propose in Section 3 are
based on optimizing slightly modified versions of JX(θ)
which promote stability in their solutions. Note that the
notions of stability related to DP are for worst-case situa-
tions: that is, they need to hold for every possible pair of
neighbouring input datasetX ' X ′, regardless of any gen-
erative model assumed for the trajectories in those datasets.

In particular, these stability considerations are not directly
related to the variance of the estimates in V̂ π .

We end this section by introducing further notation that will
be used in the sequel. Given a dataset X with m trajecto-
ries let FX ∈ RS denote the vector containing the average
first visit returns from all trajectories in X that visit a par-
ticular state. In particular, if Xs represents the multiset of
trajectories from X that visit state s at some point, then we
have

FX(s) = FX,s =
1

|Xs|
∑
x∈Xs

Fx,s . (4)

If s is not visited by any trajectory in X we set FX,s = 0.
We also define a diagonal matrix ΓX ∈ RS×S with en-
tries given by the product of the regression weight on
each state and the fraction of trajectories in X visiting
that state: ΓX(s, s) = ρs|Xs|/m. Now, a typical cal-
culation solving for θ in ∇θJX(θ) = 0 shows that any
θX ∈ argminθ JX(θ) must also be an optimum of∑

s∈S

ρs|Xs|
m

(FX,s − φ>s θ)2 . (5)

Alternatively, we can say θX is an optimum of JX(θ) if and
only if it satisfies

Φ>ΓXΦθX = Φ>ΓXFX . (6)

Hence, JX(θ) has a unique global optimum if and only if
the matrix Φ>ΓXΦ is invertible. Since it is possible to
find neighbouring datasets X ' X ′ where at most one of
Φ>ΓXΦ and Φ>ΓX′Φ is invertible, using JX(θ) to define
the policy evaluation problem poses a problem to the de-
sign differentially private algorithms. Next we discuss two
ways to make this optimization more stable, leading to two
different DP policy evaluation algorithms.

3. Private First-Visit Monte Carlo Algorithms
In this section we give the details of two differentially pri-
vate policy evaluation algorithms based on first-visit Monte
Carlo estimates. A formal privacy analysis of these algo-
rithms is given in Section 4. Bounds showing how the pri-
vacy requirement affects the utility of the value estimates
are presented in Section 5.

3.1. Algorithm DP-LSW

One way to make the optimization argminθ JX(θ) more
stable to changes in the dataset X is to consider an alter-
native least-squares optimization leading to a closed form
solution similar to (4) but where the invertibility of the co-
efficient matrix does not change with X . Thus, we modify
the objective function (5) by introducing a new set of posi-
tive regression weights ws > 0 and letting Γ ∈ RS×S be a
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diagonal matrix with Γ(s, s) = ws. In this way we obtain
the objective function

JwX(θ) =
∑
s∈S

ws(FX,s − φ>s θ)2 = ‖FX − Φθ‖22,Γ , (7)

where ‖v‖22,Γ = ‖Γ1/2v‖22 = v>Γv is a weightedL2 norm.
Using the same argument as before we see that any θwX ∈
argminθ J

w
X(θ) must satisfy

Φ>ΓΦθwX = Φ>ΓFX . (8)

Thus, the new optimization problem is well-posed when-
ever Φ>ΓΦ is invertible, which henceforth will be our
working assumption. Note that this is a mild assumption,
since it is satisfied by choosing a feature matrix Φ with full
column rank. Under this assumption we have:

θwX =
(
Φ>ΓΦ

)−1
Φ>ΓFX =

(
Γ1/2Φ

)†
Γ1/2FX , (9)

where M† denotes the Moore–Penrose pseudo-inverse.
The difference between optimizing JX(θ) or JwX(θ) is re-
flected in the differences between (6) and (8). In particular,
if the trajectories in X are i.i.d. and ps denotes the proba-
bility that state s is visited by a trajectory in X , then tak-
ing ws = EX [ρs|Xs|/m] = ρsps yields a loss function
JwX(θ) that captures the effect of each state s in JX(θ) in
the asymptotic regime m → ∞. However, we note that
knowledge of these visit probabilities is not required for
running our algorithm or for its analysis.

Our first DP algorithm for policy evaluation applies a care-
fully calibrated output perturbation mechanism to the solu-
tion θwX of argminθ J

w
X(θ). This algorithm is called DP-

LSW and its full pseudo-code is given in Algorithm 1.
It receives as input the dataset X , the regression weights
w, the feature representation Φ, and the MDP parameters
Rmax and γ. Additionally, the algorithm is parametrized
by the privacy parameters ε and δ. Its output is the re-
sult of adding a random vector η drawn from a multivariate
Gaussian distribution N (0, σ2

XI) to the parameter vector
θwX . In order to compute the variance of η the algorithm
needs to solve the discrete optimization problem ψwX =
max0≤k≤KX

e−kβϕwX(k), where KX = maxs∈S |Xs|, β
is a parameter computed in the algorithm, and ϕwX(k) is
given by the following expression:

ϕwX(k) =
∑
s∈S

ws
max{|Xs| − k, 1}2

. (10)

Note that ψwX can be computed in time O(KXN).

The variance of the noise in DP-LSW is proportional to the
upper bound Rmax/(1 − γ) on the return from any state.
This bound might be excessively pessimistic in some ap-
plications, leading to unnecessary large perturbation of the

Algorithm 1: DP-LSW
Input: X , Φ, γ, Rmax, w, ε, δ
Output: θ̂wX
Compute θwX ; // cf. (9)

Let α← 5
√

2 ln(2/δ)

ε and β ← ε
4(d+ln(2/δ)) ;

Let ψwX ← max0≤k≤KX
e−kβϕwX(k) ; // cf.

(10)

Let σX ← αRmax‖(Γ1/2Φ)†‖
1−γ

√
ψwX ;

Sample a d-dimensional vector η ∼ N (0, σ2
XI);

Return θ̂wX = θwX + η;

solution θwX . Fortunately, it is possible to replace the term
Rmax/(1 − γ) with any smaller upper bound Fmax on the
returns generated by the target MDP on any state. In prac-
tice this leads to more useful algorithms, but it is important
to keep in mind that for the privacy guarantees to remain
unaffected, one needs to assume that Fmax is a publicly
known quantity (i.e. it is not based on an estimate made
from private data). These same considerations apply to the
algorithm in the next section.

3.2. Algorithm DP-LSL

The second DP algorithm for policy evaluation we propose
is also an output perturbation mechanism. It differs from
DP-LSW in they way stability of the unperturbed solutions
is promoted. In this case, we choose to optimize a regular-
ized version of JX(θ). In particular, we consider the objec-
tive function JλX(θ) obtained by adding a ridge penalty to
the least-squares loss from (3):

JλX(θ) = JX(θ) +
λ

2m
‖θ‖22 , (11)

where λ > 0 is a regularization parameter. The intro-
duction of the ridge penalty makes the objective function
JλX(θ) strongly convex, and thus ensures the existence of
a unique solution θλX = argminθ J

λ
X(θ), which can be ob-

tained in closed-form as:

θλX =

(
Φ>ΓXΦ +

λ

2m
I

)−1

Φ>ΓXFX . (12)

Here ΓX is defined as in Section 2.2.

We call DP-LSL the algorithm obtained by applying an
output perturbation mechanism to the minimizer of JλX(θ);
the full pseudo-code is given in Algorithm 2. It receives
as input the privacy parameters ε and δ, a dataset of tra-
jectories X , the regression weights ρ, the feature repre-
sentation Φ, a regularization parameter λ > ‖Φ‖2‖ρ‖∞,
and the MDP parameters Rmax and γ. After computing
the solution θλX to argminθ J

λ
X(θ), the algorithm outputs
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θ̂λX = θλX + η, where η is a d-dimensional noise vector
drawn from N (0, σ2

XI). The variance of η is obtained by
solving a discrete optimization problem (different from the
one in DP-LSW). Let cλ = ‖Φ‖‖ρ‖∞/

√
2λ and for k ≥ 0,

define ϕλX(k) as:cλ√∑
s

ρs min{|Xs|+ k,m}+ ‖ρ‖2

2

. (13)

Then DP-LSL computes ψλX = max0≤k≤m e
−kβϕλX(k),

which can be done in time O(mN).

Algorithm 2: DP-LSL
Input: X , Φ, γ, Rmax, ρ, λ, ε, δ
Output: θ̂λX
Compute θλX ; // cf. (12)

Let α← 5
√

2 ln(2/δ)

ε and β ← ε
4(d+ln(2/δ)) ;

Let ψλX ← max0≤k≤m e
−kβϕλX(k) ; // cf. (13)

Let σX ← 2αRmax‖Φ‖
(1−γ)(λ−‖Φ‖2‖ρ‖∞)

√
ψλX ;

Sample a d-dimensional vector η ∼ N (0, σ2
XI);

Return θ̂λX = θλX + η;

4. Privacy Analysis
This section provides a formal privacy analysis for DP-
LSW and DP-LSL and shows that both algorithms are
(ε, δ)-differentially private. We use the smooth sensitivity
framework of (Nissim et al., 2007; 2011), which provides
tools for the design of DP mechanisms with data-dependent
output perturbations. We rely on the following lemma,
which provides sufficient conditions for calibrating Gaus-
sian output perturbation mechanisms with variance propor-
tional to smooth upper bounds of the local sensitivity.

Lemma 1 (Nissim et al. (2011)). Let A be an algorithm
that on input X computes a vector µX ∈ Rd determinis-
tically and then outputs ZX ∼ N (µX , σ

2
XI), where σ2

X

is a variance that depends on X . Let α = α(ε, δ) =
5
√

2 ln(2/δ)/ε and β = β(ε, δ, d) = ε/(4d + 4 ln(2/δ)).
Suppose ε and δ are such that the following are satisfied
for every pair of neighbouring datasets X ' X ′: (a)
σX ≥ α‖µX − µX′‖2, and (b) | ln(σ2

X) − ln(σ2
X′)| ≤ β.

Then A is (ε, δ)-differentially private.

Condition (a) says we need variance at least proportional
to the local sensitivity LS2(f,X). Condition (b) asks that
the variance does not change too fast between neighbouring
datasets by imposing the constraint σ2

X/σ
2
X′ ≤ eβ . This is

precisely the spirit of the smoothed sensitivity principle:
calibrate the noise to a smooth upper bound of the local
sensitivity. We acknowledge Lemma 1 is only available in

pre-print form, and thus provide an elementary proof in the
Supplementary Material for completeness. The remaining
proofs from this section are also presented there.

4.1. Privacy Analysis of DP-LSW

We start by providing an upper bound on the norm ‖θwX −
θwX′‖2 for any two neighbouring datasets X ' X ′. Using
(9) it is immediate that:

‖θwX − θwX′‖2 ≤ ‖(Γ1/2Φ)†‖‖FX − FX′‖2,Γ . (14)

Next we provide an upper bound to ‖FX − FX′‖2,Γ.
Lemma 2. Let X ' X ′ be two neighbouring datasets of
m trajectories with X = (x1, . . . , xm−1, x) and X ′ =
(x1, . . . , xm−1, x

′). Let X◦ = (x1, . . . , xm−1). Let Sx
(resp. Sx′ ) denote the set of states visited by x (resp. x′).
Then we have

‖FX − FX′‖2,Γ ≤
Rmax

1− γ

√ ∑
s∈Sx∪Sx′

ws
(|X◦s |+ 1)2

.

Since the condition in Lemma 1 needs to hold for any
dataset X ′ neighbouring X , we take the supremum of the
bound above over all neighbours, which yields the follow-
ing corollary.
Corollary 3. If X is a dataset of trajectories, then the fol-
lowing holds for every neighbouring dataset X ′ ' X:

‖FX − FX′‖2,Γ ≤
Rmax

1− γ

√∑
s∈S

ws
max{|Xs|, 1}2

.

Using this result we see that in order to satisfy item (a) of
Lemma 1 we can choose a noise variance satisfying:

σX ≥
αRmax‖(Γ1/2Φ)†‖

1− γ

√∑
s∈S

ws
max{|Xs|, 1}2

, (15)

where only the last multiplicative term depends on the
dataset X , and the rest can be regarded as a constant
that depends on parameters of the problem which are ei-
ther public or chosen by the user, and will not change
for a neighbouring dataset X ′. Thus, we are left with a
lower bound expressible as σX ≥ C

√
ϕwX , where ϕwX =∑

s(ws/max{|Xs|, 1}2) only depends on the dataset X
through its signature 〈X〉 ∈ NS given by the number of
times each state appears in the trajectories of X: 〈X〉(s) =
|Xs|. Accordingly, we write ϕwX = ϕw(〈X〉), where
ϕw : NS → R is the function

ϕw(v) =
∑
s

ws
max{vs, 1}2

. (16)

The signatures of two neighbouring datasets X ' X ′ sat-
isfy ‖〈X〉 − 〈X ′〉‖∞ ≤ 1 because replacing a single tra-
jectory can only change by one the number of first vis-
its to any particular state. Thus, assuming we have a
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function ψ : NS → R satisfying ψw(v) ≥ ϕw(v) and
| ln(ψw(v)) − ln(ψw(v′))| ≤ β for all v, v′ ∈ NS with
‖v − v′‖∞ ≤ 1, we can take σX = C

√
ψw(〈X〉). This

variance clearly satisfies the conditions of Lemma 1 since

| ln(σ2
X)−ln(σ2

X′)| = | ln(ψw(〈X〉))−ln(ψw(〈X ′〉))| ≤ β .

The function ψw is known as a β-smooth upper bound of
ϕw, and the following result provides a tool for construct-
ing such functions.

Lemma 4 (Nissim et al. (2007)). Let ϕ : NS → R. For any
k ≥ 0 let ϕk(v) = max‖v−v′‖∞≤k ϕ(v′). Given β > 0,
the smallest β-smooth upper bound of ϕ is the function

ψ(v) = sup
k≥0

(
e−kβϕk(v)

)
. (17)

For some functions ϕ, the upper bound ψ can be hard to
compute or even approximate (Nissim et al., 2007). For-
tunately, in our case a simple inspection of (16) reveals
that ϕwk (v) is easy to compute. In particular, the follow-
ing lemma implies that ψw(v) can be obtained in time
O(N‖v‖∞).

Lemma 5. The following holds for every v ∈ NS :

ϕwk (v) =
∑
s∈S

ws
max{vs − k, 1}2

.

Furthermore, for every k ≥ ‖v‖∞ − 1 we have ϕwk (v) =∑
s ws.

Combining the last two lemmas, we see that the quantity
ψwX computed in DP-LSW is in fact a β-smooth upper
bound to ϕwX . Because the variance σX used in DP-LSW
can be obtained by plugging this upper bound into (15), the
two conditions of Lemma 1 are satisfied. This completes
the proof of the main result of this section:

Theorem 6. Algorithm DP-LSW is (ε, δ)-differentially pri-
vate.

Before proceeding to the next privacy analysis, note that
Corollary 3 is the reason why a mechanism with output per-
turbations proportional to the global sensitivity is not suffi-
cient in this case. The bound there says that if in the worst
case we can find datasets of an arbitrary sizemwhere some
states are visited few (or zero) times, then the global sensi-
tivity will not vanish as m→∞. Hence, the utility of such
algorithm would not improve with the size of the dataset.
The smoothed sensitivity approach works around this prob-
lem by adding large noise to these datasets, but adding
much less noise to datasets where each state appears a suf-
ficient number of times. Corollary 3 also provides the basis
for efficiently computing smooth upper bounds to the local
sensitivity. In principle, condition (b) in Lemma 1 refers to
any dataset neighbouring X , of which there are uncount-
ably many because we consider real rewards. Bounding

the local sensitivity in terms of the signature reduces this to
finitely many “classes” of neighbours, and the form of the
bound in Corollary 3 makes it possible to apply Lemma 4
efficiently.

4.2. Privacy Analysis of DP-LSL

The proof that DP-LSL is differentially private follows the
same strategy as for DP-LSW. We start with a lemma that
bounds the local sensitivity of θλX for pairs of neighbouring
datasetsX ' X ′. We use the notation Is∈x for an indicator
variable that is equal to one when state s is visited within
trajectory x.
Lemma 7. Let X ' X ′ be two neighbouring datasets of
m trajectories with X = (x1, . . . , xm−1, x) and X ′ =
(x1, . . . , xm−1, x

′). Let Fx ∈ RS (resp. Fx′ ∈ RS ) be
the vector given by Fx(s) = Fx,s (resp. Fx′(s) = Fx′,s).
Define diagonal matrices Γρ,∆x,x′ ∈ RS×S given by
Γρ(s, s) = ρs and ∆x,x′(s, s) = Is∈x − Is∈x′ . If the regu-
larization parameter satisfies λ > ‖Φ>∆x,x′ΓρΦ‖, then:

‖θλX − θλX′‖2
2

≤

∥∥∥(∆x,x′ΦθλX − Fx + Fx′
)>

ΓρΦ
∥∥∥

2

λ− ‖Φ>∆x,x′ΓρΦ‖
.

As before, we need to consider the supremum of the bound
over all possible neighbours X ′ of X . In particular, we
would like to get a bound whose only dependence on the
dataset X is through the signature 〈X〉. This is the purpose
of the following corollary:
Corollary 8. Let X be a dataset of trajectories and sup-
pose λ > ‖Φ‖2‖ρ‖∞. Then the following holds for every
neighbouring dataset X ′ ' X:

‖θλX − θλX′‖2 ≤
2Rmax‖Φ‖

(1− γ)(λ− ‖Φ‖2‖ρ‖∞)

√
ϕλX ,

where

ϕλX =

‖Φ‖‖ρ‖∞√
2λ

√∑
s∈S

ρs|Xs|+ ‖ρ‖2

2

.

By the same reasoning of Section 4.1, as long as the reg-
ularization parameter is larger than ‖Φ‖2‖ρ‖∞, a differen-
tially private algorithm can be obtained by adding to θλX a
Gaussian perturbation with a variance satisfying

σX ≥
2αRmax‖Φ‖

(1− γ)(λ− ‖Φ‖2‖ρ‖∞)

√
ϕλX

and the second condition of Lemma 1. This second re-
quirement can be achieved by computing a β-smooth upper
bound of the function ϕλ : NS → R given by

ϕλ(v) =

‖Φ‖‖ρ‖∞√
2λ

√∑
s∈S

ρs max{vs,m}+ ‖ρ‖2

2

.
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When going from ϕλX to ϕλ(v) we substituted |Xs| by
max{vs,m} to reflect the fact that any state cannot be vis-
ited by more than m trajectories in a dataset X of size
m. It turns out that in this case the function ϕλk(v) =
max‖v−v′‖∞≤k ϕ

λ(v′) arising in Lemma 4 is also easy to
compute.

Lemma 9. For every v ∈ NS , ϕλk(v) is equal to:‖Φ‖‖ρ‖∞√
2λ

√∑
s∈S

ρs max{vs + k,m}+ ‖ρ‖2

2

.

Furthermore, for every k ≥ m−mins vs we have ϕλk(v) =(
‖Φ‖‖ρ‖∞

√
m√

2λ

√∑
s∈S ρs + ‖ρ‖2

)2

.

Finally, in view of Lemma 4, Corollary 8, and Lemma 9,
the variance of the noise perturbation in DP-LSL satisfies
the conditions of Lemma 1, so we have proved the follow-
ing.

Theorem 10. Algorithm DP-LSL is (ε, δ)-differentially
private.

5. Utility Analysis
Because the promise of differential privacy has to hold for
any possible pair of neighbouring datasets X ' X ′, the
analysis in previous section does not assume any genera-
tive model for the input dataset X . However, in practical
applications we expect X = (x1, . . . , xm) to contain mul-
tiple trajectories sampled from the same policy on the same
MDP. The purpose of this section is to show that when the
trajectories xi are i.i.d. the utility of our differentially pri-
vate algorithms increases asm→∞. In other words, when
the input dataset grows, the amount of noise added by our
algorithms decreases, thus leading to more accurate esti-
mates of the value function. This matches the intuition that
using data from more users to estimate a fixed number f
parameters leads to a smaller individual contributions from
each user, and makes the privacy constraint easier to satisfy.

To measure the utility of our DP algorithms we shall bound
the difference in empirical risk between the private and
non-private parameters learned from a given dataset. That
is, we want to show that the quantity EX,η[J•X(θ̂•X) −
J•X(θ•X)] vanishes as |X| = m → ∞, for both • = w
and • = λ. Due to space reasons, here we only state the
main corollaries of our analysis and defer full statements
and proofs to the Supplementary Material.

In the case of DP-LSW, we give bounds on the excess em-
pirical risk that decrease quadratically with m under the
assumption that either all states are visited with non-zero
probability or the user sets the regression weights so that
such states do not contribute to θwX .

Corollary 11. Let S0 = {s ∈ S|ps = 0}. If ws = 0 for all
s ∈ S0, then EX,η[JwX(θ̂wX)− JwX(θwX)] = O(1/m2).

Our main statement for DP-LSL has a similar form, but
in this case the rate of convergence depends on the choice
of regularization parameter λ. In particular, we assume in
the following statement that λ grows with m, and see what
tensions arise int he selection of an adequate regularization
schedule.

Corollary 12. Suppose λ = ω(1) with respect to m. Then
we have EX,η[JλX(θ̂λX) − JλX(θλX)] = O(1/λm + 1/λ2 +
m/λ3).

Note that taking λ = Θ(m) we get a bound on the ex-
cess risk of order O(1/m2). However, if we want the reg-
ularization term in JλX(θ) to vanish as m → ∞ we need
λ = o(m). We shall see importance of this trade-off in our
experiments.

6. Experiments
In this section we illustrate the behaviour of the proposed
algorithms on synthetic examples. The domain we use con-
sists of a chain of N states, where in each state the agent
has some probability p of staying and probability (1 − p)
of advancing to its right. There is a reward of 1 when the
agent reaches the final, absorbing state, and 0 for all other
states. While this is a toy example, it illustrates the typical
case of policy evaluation in the medical domain, where pa-
tients tend to progress through stages of recovery at differ-
ent speeds, and past states are not typically revisited (partly
because in the medical domain, states contain historic in-
formation about past treatments). Trajectories are drawn by
starting in an initial state distribution and generating state-
action-reward transitions according to the described proba-
bilities until the absorbing state is reached. Trajectories are
harvested in a batch, and the same batches are processed by
all algorithms.

We experiment with both a tabular representation of the
value function, as well as with function approximation. In
the latter case, we simply aggregate pairs of adjacent states,
which are hence forced to take the same value. We com-
pared the proposed private algorithms DP-LSW and DP-
LSL with their non-private equivalents LSW and LSL. The
performance measure used is average root mean squared
error over the state space. The error is obtained by compar-
ing the state values estimated by the learning algorithms
against the exact values obtained by exact, tabular dynamic
programming. Standard errors computed over 20 indepen-
dent runs are included.

The main results are summarized in Fig. 1, for an environ-
ment with N = 40 states, p = 0.5, discount γ = 0.99, and
for the DP algorithms, ε = 0.1 and δ = 0.1. In general,
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Figure 1. Empirical comparison of differentially private and non-private algorithms

these constants should be chosen depending on the privacy
constraints of the domain. Our theoretical results explain
the expected effect of these choices on the privacy-utility
trade-off so we do not provide extensive experiments with
different values.

The left plot in Fig. 1 compares the non-private LSL and
LSW versions of Monte Carlo evaluation, in the tabular
and function approximation case. As can be seen, both al-
gorithms are very stable and converge to the same solution,
but LSW converges faster. The second plot compares the
performance of all algorithms in the tabular case, over a
range of regularization parameters, for two different batch
sizes. The third plot compares the expected RMSE of the
algorithms when run with state aggregation, as a function
of batch size. As can be seen, the DP algorithms converge
to the same solutions as the non-private corresponding ver-
sions for large enough batch sizes. Interestingly, the two
proposed approaches serve different needs. The LSL algo-
rithms work better with small batches of data, whereas the
LSW approach is preferable with large batches. From an
empirical point of view, the trade-off between accuracy and
privacy in the DP-LSL algorithm should be done by setting
a regularization schedule proportional to

√
m. While the

theory suggests it is not the best schedule in terms of ex-
cess empirical risk, it achieves the best overall accuracy.

Finally, the last plot shows excess risk as a function of the
batch size. Interestingly, more aggressive function approx-
imation helps both differentially private algorithms con-
verge faster. This is intuitive, since using the same data
to estimate fewer parameters means the effect of each in-
dividual trajectory is already obscured by the function ap-
proximation. Decreasing the number of parameters d of the
function approximator increases β and lowers the smooth
sensitivity bounds. In medical applications, one expects to
have many attributes measured about patients, and to need
aggressive function approximation in order to provide gen-
eralization. This result tells us that differentially private
algorithms should be favoured in this case as well.

Overall, the empirical results are very promising, showing
that especially as batch size increases, the noise introduced

by the DP mechanism decreases rapidly, and these algo-
rithms provide the same performance but with the addi-
tional privacy guarantees.

7. Conclusion
We present the first differentially private algorithms for pol-
icy evaluation in the full MDP setting. Our algorithms are
built on top of established Monte Carlo methods, and come
with utility guarantees showing that the cost of privacy
diminishes as training batches get larger. The smoothed
sensitivity framework is a key component of our analyses,
which differ from previous works on DP mechanisms for
ERM and bandits problems in two substantial ways. The
first, we consider optimizations with non-Lipschitz loss
functions, which prevents us from using most of the estab-
lished techniques for analyzing privacy and utility in ERM
algorithms and complicates some parts of our analysis.
In particular, we cannot leverage the tight utility analysis
of (Jain & Thakurta, 2014) to get dimension independent
bounds. Second, and more importantly, the natural model
of neighbouring datasets for policy evaluation involves re-
placing a whole trajectory. This implies that neighbouring
datasets can differ in multiple regression targets, which is
quite different from the usual supervised learning approach
where neighbouring datasets can only change a single re-
gression target. Our approach is also different from the
on-line learning and bandits setting, where there is a sin-
gle stream of experience and neighbouring datasets differ
in one element of the stream. Note that this setting cannot
be used naturally in the full MDP setup, because successive
observations in a single stream are inherently correlated.

In future work we plan to extend our techniques in two di-
rections. First, we would like to design DP policy evalu-
ation methods based on temporal-difference learning (Sut-
ton, 1988). Secondly, we will tackle the control case, where
policy evaluation is often used as a sub-routine, e.g. as in
actor-critic methods. We also plan to evaluate the current
algorithms on patient data from an ongoing clinical study
(in which case, errors cannot be estimated precisely, be-
cause the right answer is not known).
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