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Abstract

We prove that a time series satisfying a (lin-
ear) multivariate autoregressive moving average
(VARMA) model satisfies the same model as-
sumption in the reversed time direction, too, if
all innovations are normally distributed. This
reversibility breaks down if the innovations
are non-Gaussian. This means that under the
assumption of a VARMA process with non-
Gaussian noise, the arrow of time becomes de-
tectable. Our work thereby provides a theoretic
justification of an algorithm that has been used
for inferring the direction of video snippets. We
present a slightly modified practical algorithm
that estimates the time direction for a given sam-
ple and prove its consistency. We further inves-
tigate how the performance of the algorithm de-
pends on sample size, number of dimensions of
the time series and the order of the process. An
application to real world data from economics
shows that considering multivariate processes in-
stead of univariate processes can be beneficial
for estimating the time direction. Our result ex-
tends earlier work on univariate time series. It
relates to the concept of causal inference, where
recent methods exploit non-Gaussianity of the er-
ror terms for causal structure learning.

1. Introduction

The goal of this work is to infer the direction of a given
multivariate time series. Figure 1 shows an example of
a time series in forward and backward direction. The
task is to decide, which of both direction corresponds to
the correct time direction. This question is mainly aca-
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Figure 1. Quarterly growth rates in percentage of real gross do-
mestic products for the United Kingdom, Canada and USA (Tsay,
2014). While the correct time direction is on the left, the time se-
ries on the right is reversed. The goal of this work is to investigate
when the correct time direction becomes identifiable, without us-
ing any additional prior knowledge of the data domain.

demic but has received a lot of attention in literature, espe-
cially in physics, see Reichenbach (1956) or Price (1996).
Hernandez-Lobato et al. (2011), Morales-Mombiela et al.
(2013) and Hernandez-Lobato et al. (2014) discuss the
derivation and application of Gaussianity measures to de-
tect the direction of causal time series. However, their
approach is based on the empirical observation that the
residuals of a linear fit in the forward direction are less
Gaussian than the residuals in the backward direction. We
are not aware of any theoretical result that clarifies under
which assumption this heuristic holds. The main thrust of
the present paper is to provide such identifiability results.
Pickup et al. (2014) estimate the direction of a video snip-
pet that is played either forwards or backwards. Although
the authors use an algorithm that is similar to the one we
present in here, they do not provide a theoretical justifica-
tion for their approach and refer to the univariate version
of this problem (Peters et al., 2009). Our work provides
a post hoc justification of Pickup et al. (2014) by proving
identifiability statements. It further provides a consistency
result for a version of the algorithm first derived in Peters
et al. (2009); consistency was unknown both in the uni-
variate and the multivariate case. The question of time-
reversibility is furthermore interesting from a causal point
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of view. In causal discovery, we observe an i.i.d. sample
from a multivariate distribution and try to identify the un-
derlying causal structure. Because causes are widely ac-
cepted to precede their effects (if we have accurate and in-
stantaneous measurements), similar principles can be ap-
plied to the problem of time reversibility. More concretely,
our results are based on the Darmois-Skitovich theorem
(Ibragimov, 2014), the univariate version of which is at the
basis of the causal discovery method LINGAM (Shimizu
et al., 2006). Both approaches make use of non-Gaussian
residuals in linear models. While it is difficult to find data
sets with a known causal structure, we have access to the
correct time direction of almost all observed time series.
Shimizu et al. (2006) proposed to apply LINGAM to the
time direction problem, see Section 5 for details. Due to
possible confounding, caused by cutting the time series into
finite-length time windows (Shimizu et al., 2006, Figure 5),
their method lacks a precise theoretical justification. We
will see that it performs well only in low dimensions.

The main idea of our method follows the univariate proce-
dure of Peters et al. (2009). We consider vector-valued au-
toregressive moving average models (VARMA) with inno-
vations that are independent of preceding values of the time
series. We show that the time direction is reversible, i.e.,
the time series follows such a VARMA model in the re-
versed direction, only if the innovations are Gaussian. This
leads to the following simple practical procedure for the
determination of the arrow of time: after fitting a VARMA
model to the observed time series, we test whether the
residuals are independent of the preceding values in both
time directions. If the model assumption is correct and the
innovations are indeed non-Gaussian, we will find the in-
dependence only in one of the two possible directions.

In the remainder of Section 1, we introduce multivariate
autoregressive moving average (VARMA) processes and
formalize the problem. Section 2 contains identifiability
results about VARMA processes of order one that are gen-
eralized to higher order processes in Section 3. We present
a practical method in Section 4 and show results on simu-
lated and real data sets in Section 5.

1.1. Notation and first properties of VAR models

A K-dimensional time series X; is called a vector au-
toregressive moving average process VARMA (p, q) if it is
weakly stationary and if there is an i.i.d. white noise se-
quence Z; with zero mean such that

X —P1Xig— - — 0, Xy,
= Zt+®12t71 +-~'+®th,q. (1)
Here, X, being weakly stationary means that its mean is

constant in time and the covariance between X; and Xy
depends only on the time lag h € Z. In more compact form,

the above equation can be written as ®(B)X; = O(B)Z;,
where ®(2) =1 —-P12— - — P27, O(2) =1+ 012+
-+ + ©y2? and B is the backward shift operator. We call
this process a VAR process for ¢ = 0, and an M A process
for p = 0. A VARMA(p, q) process is further said to be
causal if there exists a sequence of matrices Wy, ¥y, ...
with absolutely summable components such that

X, :Z\I/jzt_j. )
j=0

The important condition here is that the index j starts at
zero, an expansion with j € Z usually exists (Brockwell &
Davis, 1991, Section 11.3). A way to check if a time series
is causal is given by the following sufficient criterion:

Lemma 1.1 (Causality criterion, Theorem 11.3.1 in
(Brockwell & Davis, 1991)). If det®(z) # 0 Vz €
C suchthat |z| < 1, then ®(B)X: = O(B)Z; with
Z,; being white noise, has exactly one stationary solution,
X = Z;io W;Z,_;, where the matrices {¥;};>o have
absolutely summable components and are uniquely deter-
mined by

(z)=) W2 =& '(2)0(2), |2 <1
j=0

We require yet another characterization of causal time se-
ries, see Section B.1 in the supplement for a proof.

Lemma 1.2. A VARMA process is causal if and only if
for all v < t the noise Z; is independent of the preceding
value of the time series X; (written as Z; 1 X;).

In this work, we investigate the time-reversibility of time
series that follow such a causal VARMA model. More pre-
cisely, we call a causal VARMA process time-reversible if
there is an i.i.d. noise sequence Z; and coefficient matrices
®,,...,P,and O4,...,0, such that

X, — @1 X1 — - — DXy
=Z+©1Zysy + -+ éqzt-i-q

where forall 7 > ¢, Z 1 X, see Lemma 1.2. In Sections 2
and 3, we try to find suitable criteria which allow us to
determine whether a process is time-reversible. There, the
independence between noise and values of the time series
will play a crucial role.

1.2. Relation to the univariate case

Some special cases of VARMA processes relate directly
to the univariate case. Some of these cases are degener-
ate and will be excluded from our analysis. In the case
of a VAR(1) process with diagonal coefficient matrix of
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full rank, each component can be considered as a separate
univariate time series and one can infer the true temporal
ordering by directly applying the methods of Peters et al.
(2009). For a two-dimensional VAR(1) process with co-

efficient matrix of the form ®; = one can again

a 0
0 0}
apply the univariate results for the first element. Since the
second time series component corresponds to i.i.d. noise,
it is clear that this component is time-reversible indepen-
dently of the noise distribution. In our analysis of the mul-
tivariate case, we will exclude the latter (degenerate) case,
e.g., by assuming full rank of the coefficient matrix.

2. Time reversibility of VAR processes of
order one

In the following subsection we only consider VAR(1)
processes X; = ®X;_; + Z; and assume that 'y :=
cov(Xy, X;¢) has full rank, see Section 1.2. This section
contains the key theoretical argument of this work. The-
orem 3.2 extends this argument to VARMA processes of
any arbitrary but finite order. We first show that we can-
not infer the time direction of linear Gaussian time series.
The proof is based on matrix algebra and the Yule-Walker
equations and can be found in the supplementary material.

Proposition 2.1 (Gaussian errors lead to time-reversibil-
ity). Assume that the errors of a causal VAR(1) process
X, = ®X;_ 1 + Z; are normally distributed and that
Ty := cov(Xy, Xy) is of full rank. Then, the process is
time-reversible: there is a matrix ® and a noise sequence
Zt such that X; = <I>Xt+1 + Zt, where for all © > t, Zy is
independent of X;.

The following result is positive in the sense that non-
Gaussian innovations introduce an asymmetry in the time
direction.

Theorem 2.2 (Non-Gaussian errors lead to time-iden-
tifiability). Consider a causal VAR(1) process X; =
®X;_1+7Z; and assume that the process is time-reversible,
i.e., there is a matrix & and a noise sequence Z such that
X; can be written as:

X, = ®Xyp1 + Zy,

where for all i > t, Zt is independent of X;.

(i) If the coefficient matrix ® is invertible, then all ele-
ments of the noise sequence vectors are normally dis-
tributed.

(ii) If the coefficient matrix ® is not nilpotent, then some
elements of the noise sequence vectors are normally
distributed.

Our identifiability results come close to necessary and
sufficient conditions. The case when ® is singular and

not nilpotent and some but not all innovations are non-
Gaussian is not covered.

Proof of Theorem 2.2. We first prove the second part of the
theorem, that is we assume that the K x K coefficient ma-
trix ® is not nilpotent. By Lemma 1.1 it follows that

&zi%aﬁi?%i 3)

and

Zi 1 =X, 1 — PX,

= i ‘I’iztflfi - i) i ‘I’iztfi
i=0 i=0

= 3 <\I!7;_1 - ‘i"I’y) Z;, “4)
i=0

where ¥_; := 0, since for a VAR(1) process ¥; = ®”.
Defining A; == ¥, ; — ®¥, = (1 — &) ! and
B, = ¥, = & = "' we can unfortunately not
directly apply the vectorized Darmois-Skitovich theorem
(see Theorem 4 of Ibragimov (2014) or our Lemma A.1)
since the matrices A; and B; are not invertible. By as-
sumption the eigenvalues of the matrix ® of a causal pro-
cess are smaller than one in absolute value (see Lemma 1.1)
and thus by Gelfand’s formula (1 — ®®) is of full rank
K. Using the assumption that ® is not nilpotent it fol-
lows that for a large enough index ¢ > ¢y and some number
s, we have rank(®') = rank(®'~') = s. Applying the
rank inequality of Sylvester, (rank(Q) + rank(P) — K <
rank(QP) < min(rank(Q), rank(P)) with Q and P ma-
trices of size K x K), we get that rank(A;) = s and
rank(B;) = s for ¢ > 4.

A singular value decomposition yields ® ! = UXV*
with a unitary matrix U and a K x K diagonal matrix 32,
whose first s diagonal elements are non-zero, while its last
K — s columns contain only zeros. We define a new noise
vector €;_; := V*Z;_; and rewrite (3) and (4) as

oo
Xi =) 9,7 ;=
=0

and

o0 (o]
Z dUEV*Z,_, = Z dUXe,_;
1=0 =0

Zy q = (11 ¢n1>) USV*Z,

M 1

Il
=)

(]1 q><1>) USe, ;.
Since rank(®"1) = s, (11 - i@) US and ®U are of
the form (M, ]0) and (M>|0) for K x s matrices M; with
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rank(M;) = s, j € {1,2}. Let us select s independent
rows of M, and call them B}. Let us call A the corre-
sponding elements in M. This leads to a new, reduced
system of equations

El
2

(LU

Z;, | = iA:‘ and X; = iBf ) ,
i=0 1=0

®
»

s
€ t—1i t—1

where AY and B} are of dimension s x s with full rank,
and Z;_; and X are independent. Darmois-Skitovich
(Lemma A.l1 in the supplement) implies normality of
€r,...,€; and the normality of some elements of the orig-
inal noise vector Z; follows by Cramer’s theorem.

For the first part of the theorem let us now assume that the
coefficient matrix ® and thus A; and B, are invertible (by
the rank inequality of Sylvester). Since

ABl=(1-88)d" (&)}
=1-22)2'=2"'- &
and
BA;' = (AB ) '=(@ ' -®)!

do not depend on 7, both {AiBi_l}izl and {BiAi_l}izl
are bounded w.r.t. some norm. The Darmois-Skitovich the-
orem (Lemma A.1 in the supplement) then implies the nor-
mality of Z;. O

3. Time reversibility of VARMA processes of
higher order

3.1. Definitions and parametrization

To ensure a unique solution to (1) in the univariate case, one
requires that ®(z) and O(z) of the univariate ARMA (p, q)
process ®(B)X; = O(B)e; have no common zeros (Bell-
mann, 1987). In order to guarantee a unique solution in
the multivariate case, the conditions become slightly more

complex. As an example, consider a two-dimensional

VARMA(1,1) process Xy = ®1X;_ 1 + ©1Z; 1 + Z;
. 0 a+m |0 —m

with ®; = 0 0 and ®; = 0 0 ], where

a # 0 and m € R. The same model can be writ-
ten as a pure moving average process with ®; = 0 and

0, = 8 (g . Since m in the VARMA(1,1) presenta-
tion is arbitrary, the model parameters are not identifiable.
This non-identifiability problem introduces one more dif-
ficulty to the problem of time-reversibility. In the univari-
ate setting (Peters et al., 2009), one of the key ideas is to
represent a VAR process as a MA (o) process. For multi-
variate time series, however, the order of the corresponding

MA process may be finite. For a VAR(1) process with

0 0.5
®i=1p o
for 7 > 1 and thus X; can be written as X; = Z; +®Z;_1,
which is a pure MA process of finite order. These examples
are taken from (Liitkepohl, 2010, Section 12.1.1). Here, we
solve this problem by assuming that €, is not nilpotent.
Alternatively, one can require that the VARMA process is
in the so called final equations or echelon form (Liitkepohl,
2010, Section 12.1.2).

, for example, we find that ¥; = & =0

3.2. Representing a VARMA process as a VAR process
of order one

It is well known (e.g. Liitkepohl, 2010, Section
11.3.2) that a K-dimensional VARMA(p, q) process as
in (1) can be written as a K(p + ¢)-dimensional
VAR(1) process X; = YX;_; + U, with X,
new noise innovations U; and coefficients Y given

- T
by Xy = [Xi - Xypr1Zio-Zigi1] . Uy =

[Zt0~--0Zt0"'0]T, each of dimension K (p + ¢) x 1,
and T — [ Y Yio

Oxgxrp Yoo
is given in Section C in the supplementary material.
The important property is that the first rows of Y equal
(@1 ®,0;---O,]. With this and Lemma 1.1 we
therefore have

Lemma 3.1. The VARMA (p, q) process is causal if and
only if its corresponding VAR(1) representation is causal.

} The precise form of Y

Thus the case of a VARMA(p, q) process reduces to a
VAR(1) process and we have the following theorem.

Theorem 3.2. Consider a VARMA (p, q) process with not-
nilpotent coefficient matrix Y. If the error vectors are nor-
mally distributed, the process is time-reversible and if the
process is time-reversible, then at least some of the ele-
ments of the noise vectors are normally distributed. (Note
that X is not nilpotent if and only if ®1 in the representa-
tion (1) is not nilpotent.)

4. Algorithm

We now present a practical method for finite time series
data and provide a consistency result for a version of this
algorithm. For practical purposes, we restrict ourselves to
VAR(p) processes; see Liitkepohl (2010) for the techni-
cal difficulties with fitting VAR(p, ¢) processes. To esti-
mate the correct direction of multivariate time series we
follow Peters et al. (2009). The general idea is that under
the discussed assumptions Gaussian causal VARMA pro-
cesses are time-reversible but for any other error distribu-
tion we are able to identify the true temporal ordering, see
Theorems 2.2 and 3.2. The main idea now is to fit VAR
models in both directions and check in which direction we
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Algorithm 1 Detecting the direction of multivariate time
series
Input: f = (z1,...,2,),0 = (zn, ..., 21), sigl, sig2
(a) fct := —HSIC, (b) fct := p value HSIC
modely = VAR.fit(f); resy = residuals.modely;
fw = fet(f, resy)
model, = VARfit(b); res, = residuals.modely;
bw = fet(b, resy)
if max(fw, bw) > sigl && min(fw,bw) < sig2 then
decision = argmax( fw, bw)
else
decision = “I do not know.”
end if
Return: decision

find that the residuals are independent of preceding values.
The independence test is based on the Hilbert-Schmidt In-
dependence Criterion (HSIC) (Gretton et al., 2007). In or-
der to check whether the residual time series Z; is indepen-
dent of the past of X, we simply check for independence
between Z; and X;_; (although higher lags may be con-
sidered). The method decides correctly if the hypothesis of
independence is rejected in the backward direction, while it
is not rejected in the forward direction. In the case of Gaus-
sian innovations, for example, we expect to accept the null
hypotheses in both directions and the method remains un-
decided. For practical purposes, we introduce a small gap
between the significance levels and include the option to
work with the statistics itself rather with the p-value. The
precise procedure is presented in Algorithm 1. For sim-
ulating (function vgxproc) and fitting (function vgxvarx)
VAR(p) processes we used the “Econometrics Toolbox”
within Matlab, which in turn uses maximum likelihood to
estimate the parameters. The correct order of the process is
estimated using AIC. The code is available as supplemen-
tary material. In practice, we might find that the model as-
sumptions are violated due to the existence of hidden con-
founders or nonlinear relationships. Then we expect that
the independence will be rejected in both directions and
the method remains undecided. This is different from the
non-decision in the Gaussian case, where we expect both
directions to lead to a good model fit (see also Peters et al.,
2009).

It can be shown that Algorithm 1 is consistent in the sense
of Theorem 4.1 below. This result is not immediately
straightforward since the independence measure is based
on estimated residuals rather than “true” innovations (see
also Mooij et al., 2016).

Theorem 4.1. Let (X;),., be a VAR process of order
one with noise variables (Zy),.,. Let the (ZJ?)
te

residuals in forward and (Z?W)/ the residuals in back-
ward direction (corresponding to the best VAR fit) and as-

be the
Z

sume that X; ) Z€11 (see Theorem 2.2(i) and Remark 1
below). Assume that all processes are strictly stationary
and uniformly mixing with a(m) < m=3, as defined in (5).
Then Algorithm 1 consistently estimates the arrow of time
using an empirical HSIC score with a Gaussian kernel.

Remark 1. e For simplicity we assume that X; U
Zlgﬁl. One can use multiple testing to correct for a
dependence at a different time lag.

e Under some technical assumptions Markov Chains
(and thus ARMA processes) are uniformly mixing (e.g
Doukhan, 1994; Mokkadem, 1988).

o The uniformly mixing assumption can be replaced
by assuming that the process is absolutely regular
(Chwialkowski & Gretton, 2014, Lemma 2).

Proof of Theorem 4.1. Our proof follows the main argu-
ment of Theorem 20 in Mooij et al. (2016) and omits some
of the details. We first report a consistency results for HSIC
for time dependent data (Chwialkowski & Gretton, 2014).

Given a stationary process (Wy)icz = (X¢, Z¢)ien, let
(W{)tez be a sequence of independent copies of Wy. Let
Wyp = (Wy,...,Wr) for a sample of size T. We show
that the empirical HSIC (with a predefined, data indepen-
dent bandwidth) between estimated residuals and the time
series converges to its true value under some mixing condi-
tion. A process is uniformly mixing with c(m) if
a(m):=sup sup sup |P(B|A)— P(B)|—0, (5

n A€AY BEAT, .,

where A = o (Wy, Wiyr,...,W,) is a sigma field
spanned by Wy, Wy 1, ..., W, (Chwialkowski & Gretton,
2014).

Forw; := (x;,2;),j € {a,b, ¢, d} and k and £ being Gaus-
sian kernels, define

h(waa wba wc, wd) = k(ajm xb)[g(zaa Zb) + é(zcv Zd)
— 20(zp, 2¢)].
‘We further define
v := HSICx,,z, = E[R(W7, W5, W3, W;)].

Since Gaussian kernels are characteristic, it is known that
X is independent of Z if and only if v = 0 (Gretton et al.,
2007). We therefore have for any ¢t € {1,...,T},

Xy L Zy <= Xg 1L Zg
< E[R(W{, W3, W5, Wj)] = 0.

An empirical estimate H/SI\C(WZ) of y based on the sam-
ple W can be calculated through the V-statistic

HSIC(Wr) := Vip(h, W)

1
s>

1<ty,t2,t3,ta<T

h(th ) Wtzv Wt37 Wt4)'
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Note that unlike in the i.i.d. case, here the WW/; are not in-
dependent for different values of ¢t. However, we still have
the following consistency result (requiring the uniformly
mixing assumption in this step): For T" — oo we have for
independent X; and Z;

Vi (h, W) 50 6)
and for X; and Z; being dependent:

Vi (h, Wp) 56> 0. 7)
This follows from Theorems 1 and 2 in Chwialkowski &
Gretton (2014) using that for any random variable S with

. . D . . L?
finite variance 7' - X7 — S implies that X7 — 0 and
P
therefore X — 0 for T' — oo.
Let now ifzw = (25‘”, cel 2%‘3’, zf%”’ﬂ) be the residuals in
forward and Z%¥ := (Z§¥,Z8, ..., Z}Y ) the residuals in
backward direction. (In order to ease notation, we assume

that we are given two extra values X and Xr4;.) We will
show that for Xp = (Xq,...,X7)

HSIC (X, Z5) 5 0 and FISIC (X, Z") 55> 0.
()
By (a slightly modified version of) Lemma 16 in Mooij
et al. (2016) it follows that

— ~ — 2
‘HSIC(XZ, Zr) — HSIC(Xr, zz)‘

(&) -l o
>~ \/T T T F>
for some constant C' € R and Frobenius norm || - || .

Given the “correct” VAR(1) representation X, =
®X,;_1 + Z; and the model fit X; = ®X;_; + Z;, we
have

1 ~
- > oIeX, - <I>Xt_12]
t

= 1
LR S
t

Since the variance of Z; and thus X;_; is assumed to be fi-
nite and parameter estimation in VAR processes is consis-
tent (Tsay, 2014, Chapter 3.14, p. 168), the above expres-
sion goes to zero for " — co. Since the right hand side in
(9) vanishes asymptotically in expectation, it follows that

1 ~
B| 72 - Zelt| =&

<E

T— o0

— ~ — 2
lim B UHSIC(XT, Zy) - BSIC(Xz, Z1) } — 0.

Since convergence in Lo implies convergence in probabil-
ity it follows that

HSIC(Xy, Zr) — HSIC(Xy, Zr) 5 0.

Together with

HSIC(Xy, Z7) & HSIC(Xo, Zo)
this implies

HSIC(Xy, Zr) 5 HSIC(Xo, Zo)

Since X; )L th’il our statement (8) follows by combining
the above convergence result with (6) and (7). O]

5. Experiments

We compare our method with a LINGAM-based approach
proposed by (Shimizu et al., 2006), which constructs a
causal graph given i.i.d. samples of a random vector. If the
generated graph is time consistent in the sense that all links
go from lower to higher labeled variables (or the opposite),
LiNGAM proposes this direction as the correct one.

5.1. Simulated data

We simulate VAR, processes of different order and dimen-
sionality and test the performance of both approaches. We
use version (b) of our Algorithm 1 in order to better inter-
pret our results. For all experiments, we use significance
levels of sigl = 0.1 and sig2 = 0.05. This is a conserva-
tive but interpretable choice that could be changed in order
to increase the performance in the simulations.

Simulation parameters For a fixed parameter A = 2.5,
the i-th coefficient matrix of the simulated VAR process of
dimension k is generated by ®; = A\"*R—(2)\) ~‘Q, where
R consists of uniformly drawn numbers between zero and
one and QQ is a matrix containing only ones.

Deviation from Gaussian noise for different lags and di-
mensions For r ranging between zero to two we sampled

each component of the noise vector as Z; Y sgn(2)-Z]|",
where Z is Gaussian distributed. Only the case » = 1 re-
sults in a normal distribution and we should only then be
unable to detect the true direction of the time series. This is
verified for different lag orders p and dimensions k of the
VAR process in Figure 2.

Varying number of Gaussian error dimensions Theo-
rem 2.2 shows that one can detect the true direction of the
time series if all error dimensions have a non-Gaussian dis-
tribution, while we can not infer the arrow if time when all
errors are normally distributed. We therefore increased the
number of Gaussian errors from 20% to 100%. Figure 3
supports our theoretical results and shows that our algo-
rithm does not make a decision when all errors are Gaus-
sian distributed. In addition, it suggests that with only one
component not normally distributed we can still infer the
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Figure 2. Correctly and incorrectly classified univariate time series for varying lag values, sample sizes and dimensions. For each value
of r we generated and tested our algorithm on 100 time series. Only » = 1 corresponds to Gaussian noise, for which the process
is reversible. For these values our method remains undecided since both directions lead to a good model fit. It is interesting to note
that the increased dimensionality (k = 3) introduces more model parameters but does not lead to worse performance with respect to
identification of the time direction. If we compare situations, in which we have the same number of data points for each AR coefficient
(namely 100, see second row (d) and (f)), the performance is significantly better for k = 3.

true direction. This indicates that an even stronger version
of Theorem 2.2 might hold.
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Figure 3. Dependence of our algorithm on the number of Gaus-
sian error dimensions. A five dimensional VAR process is tested
with increasing number of Gaussian errors. The remaining error
element(s) follow a non-Gaussian noise distribution with » = 0.5
(cf. Section 5.1). In each case, the performance of the algorithm
is tested on 100 time series with 1000 time points each. As ex-
pected, our method fails once the noise vector is completely nor-
mally distributed. As long as at least one element in the noise
vector is non-Gaussian distributed, our method performs well.

Comparison to LINGAM Figure 4 shows results of
some of the settings shown in Figure 2. In general, the per-
formance is comparable but the LINGAM performance de-
creases for increasing dimension. Interestingly, LINGAM

makes no mistakes for £ = 3 and p = 3 and Gaussian data.
This might be due to the existence of v-structures in the
graph (no instantaneous effects), see Figure 4(b). This is
not the case for k = 1.

5.2. Real data: GDP growth for United Kingdom,
Canada and United States

In a dataset containing the quarterly growth rates of real
gross domestic product (GDP) of UK, Canada and USA
from 1980 to 2011 (Tsay, 2014), we tested our approach
for different time lags, see Figure 1. In Figure 5 the p-
values of the independence test for forward and backward
direction are plotted for time lags between one and ten. The
optimal order chosen by AIC is four. If we treat the three
time series individually, the method remains undecided in
all cases. Only if we treat the process as a multivariate time
series, the method outputs the correct result. The results
do not change, when using version (a) of our Algorithm 1.
LiNGAM does neither decide for the one-dimensional nor
the three-dimensional case. Here, we took a first order dif-
ference which is often done in order to ensure stationarity.

5.3. Real data: video snippets (Pickup et al., 2014)

In a computer vision application, Pickup et al. (2014) aim
to determine if videos are shown in forward or backward
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Figure 4. Correctly and wrongly classified time series with LING AM. While the performance seems to be slightly better in the univariate
case, the performance decreases significantly with the dimension k and lag order p of the time series, compare with Figure 2.
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Figure 5. Left: log p-value for the independence test of residuals
and time series values in forward and backward direction for the
multivariate VAR process and the three univariate processes. For
illustration purposes, dashed blue lines are shown at the values
log(0.05) and log(0.1). Our method decides only if the p-values
of both directions lie on different sides of this gap. While in the
univariate case the algorithm does not take a decision, it is able
to decides for the true temporal ordering in the multivariate case.
The optimal orders are 4 for the multivariate process and 3, 5,9
in both directions for UK, Canada and USA. Right: the log p-
values of the independence test for the multivariate process are
shown for different orders. The performance of our algorithm is
relatively robust to deviations from the optimal order.

direction. Apart from two other approaches (discrimina-
tive approach with training data and a heuristic claiming it
is unlikely that multiple motions collapse into one motion)
the authors apply an algorithm similar to the one presented
by Peters et al. (2009) and our Algorithm 1(b). The au-
thors model the velocities of moving points with a VAR(2)
model and as outlined above, perform an independence test
between velocities and model residuals (assuming that the
univariate results of Peters et al. (2009) apply in higher di-
mensions). In correspondence to our results, the authors
find that the approach works well if the assumptions like
linear dynamics and non-Gaussian errors are satisfied.

5.4. Real data: daily NASDAQ-stock values

In addition, we tested a set of 50 time series consisting of
daily returns of NASDAQ stocks from the 1st October 2004
to 30th September 2007 (Yah, 2015). We grouped the time

series into subsets of dimensions & = 3,5, 10 and 50. For
k =3,k = 5and k = 10 we chose not all but 100 ran-
domly selected subsets. With sigl = 0.1 and sig2 = 0.05
the method remained undecided in all cases. Apparently,
the VAR model does not provide a good fit for these stock
market data. This may be the case for other data sets, too,
and we regard it as a positive feature that in those cases
of model misspecification our method remains undecided
rather than giving wrong answers.

6. Discussion and future work

We have derived a framework for the identification of the
direction of multivariate time series. By assuming that the
data generating process exhibits linear dynamics and non-
Gaussian noise we were able to extend the results of Pe-
ters et al. (2009) to multiple dimensions. In addition, we
provide a consistency result for our algorithm that covers
those of Peters et al. (2009) and Pickup et al. (2014) as
special cases. The approach works well on simulated and
some financial data. The empirical results for simulated
data sets indicate that the detection of the temporal order-
ing of a time sequence might be possible as long as one
element of the noise vector is normally distributed, which
would be slightly stronger than the theoretical guarantee
we provide. In general, the performance for determining
the direction of real world time series (e.g., video snippets,
see (Pickup et al., 2014)) depends on the validity of our as-
sumptions; in particular, this includes linear dynamics and
non-Gaussian additive noise. We found that in the case of
model misspecification, our approach usually remains un-
decided rather than giving incorrect answers. An extension
of our framework to non-linear dynamics could reduce the
number of non-decisions.
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