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Abstract
Data aggregation is becoming an increasingly
common technique for sharing sensitive infor-
mation, and for reducing data size when storage
and/or communication costs are high. Aggre-
gate quantities such as group-average are a form
of semi-supervision as they do not directly pro-
vide information of individual values, but despite
their wide-spread use, prior literature on learning
individual-level models from aggregated data is
extremely limited. This paper investigates the
effect of data aggregation on parameter recov-
ery for a sparse linear model, when known re-
sults are no longer applicable. In particular, we
consider a scenario where the data are collected
into groups e.g. aggregated patient records, and
first-order empirical moments are available only
at the group level. Despite this obfuscation of in-
dividual data values, we can show that the true
parameter is recoverable with high probability
using these aggregates when the collection of
true group moments is an incoherent matrix, and
the empirical moment estimates have been com-
puted from a sufficiently large number of sam-
ples. To the best of our knowledge, ours are
the first results on structured parameter recov-
ery using only aggregated data. Experimental re-
sults on synthetic data are provided in support
of these theoretical claims. We also show that
parameter estimation from aggregated data ap-
proaches the accuracy of parameter estimation
obtainable from non-aggregated or “individual”
samples, when applied to two real world health-
care applications- predictive modeling of CMS
Medicare reimbursement claims, and modeling
of Texas State healthcare charges.
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1. Introduction
As the scale and scope of data collection continues to grow,
data aggregation has become increasingly popular in such
varied domains as healthcare and sensor networks. Ag-
gregation is a common technique for sharing of privacy-
sensitive healthcare data, where sensitive patient informa-
tion is subject to various Statistical Disclosure Limitation
(SDL) techniques [Armstrong et al. 1999] before public re-
lease. Similarly, large scale data collection programs like
the General Social Survey (GSS) report data in aggregated
form1. Data from IoTs and other distributed sensor net-
works are often collected in aggregated form to mitigate
communication costs, and improve robustness to noise and
malicious interference [Wagner 2004; Zhao et al. 2003].

Building individual-level models given aggregates in the
form of means, sample statistics, etc., constitutes a rela-
tively unexplored semi-supervision framework. We note
that even standard problems like regression and parameter
recovery become very challenging in the context of aggre-
gated data. Specifically, naı̈ve application of standard tech-
niques in the aggregated context is vulnerable to the eco-
logical fallacy [Robinson 2009; Goodman 1953], wherein
conclusions drawn from aggregated data can differ signifi-
cantly from inferences at individual level, and are mislead-
ing to researchers/policy makers using the data.

As a first work on parameter recovery from aggregated
data, we investigate the problem for regression in the case
of linear models, where the mapping between input fea-
tures and the output variable is defined by a vector param-
eter. We consider the scenario, very common in domains
like healthcare, sociological studies, etc., where data is col-
lected and aggregated within groups, e.g., patient records
aggregated at county or hospital level, and empirical esti-
mates of true group level moments for features and targets
are the only available information.

1The General Social Survey, NORC, http://www3.
norc.org/GSS+Website/

http://www3.norc.org/GSS+Website/
http://www3.norc.org/GSS+Website/
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While this problem is relatively easy to handle in the non-
aggregated setup, parameter recovery becomes highly chal-
lenging when only aggregated data is available and the re-
sulting linear systems are under-determined. Well known
works on compressed sensing [Donoho & Elad 2003; Can-
des & Tao 2005] have shown that recovery is still possible
from such systems when the parameter is sparse (common
in many applications of interest, e.g. in healthcare where
interpretability is part of the desiderata), but existing anal-
yses do not apply directly to the aggregated case.

Our work is motivated by the question: “Is it possible to
infer the individual-level parameter of a linear model given
aggregated data?” Surprisingly, we answer this question in
the affirmative, and to our knowledge, ours is the first such
work. We use techniques that exploit structural properties
of the data aggregation procedure and show that under stan-
dard incoherence conditions on the matrix of true group
level moments, the true parameter is recoverable with high
probability.

The key contributions of this paper are summarised below:

1. to our knowledge we are the first to investigate the
problem of recovery of the sparse population param-
eter of a linear model when both target variables as
well as features are aggregated as sample moments.
We provide a theoretical analysis showing that under
standard conditions, the parameter can be recovered
exactly with high probability.

2. we extend the analysis to capture approximation ef-
fects such as sample estimates of the population mo-
ment, additive noise, and histogram aggregated tar-
gets, showing that the population parameter is recov-
erable in these scenarios.

3. in the bigger picture, our work extends existing re-
sults in the compressed sensing literature by providing
guarantees for exact and approximate parameter re-
covery for the case when the noise in the sensing ma-
trix and measurement vector are linearly correlated,
which may be of independent interest.

Experimental results on synthetic data are provided in sup-
port of these theoretical claims. We also show that the
estimated parameter approaches the predictive accuracy of
parameter estimation from non-aggregated or “individual-
level” samples when applied to two real world healthcare
applications - predictive modeling of reimbursement on
CMS Medicare data, and estimation of healthcare charges
using Texas State hospital billing records.

2. Parameter Recovery from Exact Means
Let x ∈ Rd represent features and y ∈ R represent the tar-
get variables, drawn independently from a joint distribution

(x,y) ∼ P . We assume a linear model where each feature
is related to the target y via some parameter β0 ∈ Rd with
noise ε as

y = x>β0 + ε (1)

where ε represents observation noise assumed zero mean
E[ε] = 0 without loss of generality. In the standard re-
gression setting, data is observed at the individual level in
the form of n pairs of targets and their corresponding fea-
tures as D(x,y) = {(xi, yi) : i = 1, 2, . . . n}, so β0 may be
estimated using standard techniques. Instead, we assume
that the inputs Dx = {xi : i = 1, 2, · · ·n} and the targets
Dy = {yl : l = 1, 2, · · ·n} are subject to an aggregation
process (not controlled by the learner) that produces sum-
maries. In particular, we focus on an aggregation procedure
that produces means or first order moments of the data2.

We consider the case when this aggregation procedure is
applied separately to k subgroups of the population. This is
common in many domains, e.g., in healthcare, such groups
may refer to patient data aggregated by ward, or by hospi-
tals, or based on administrative units like HRR’s or HSA’s.
Similarly, the natural grouping could be demographic in-
formation for GSS data and topological clustering for sen-
sor networks.

We assume that the grouping is fixed, and data associated
with each group j ∈ {1, 2, · · · k} is drawn independently
from a possibly group-dependent distribution (x, y)j ∼ Pj
with their own corresponding group-dependent means for
covariates/features {µj = EPj [x], j = 1, · · · , k} and tar-
gets {νj = EPj [y], j = 1, · · · , k}.

We also assume that the model parameter of interest β0

is shared by the entire population. By the distributive
property of inner products and linearity of the expecta-
tion operator, any β0 consistent with the data satisfies the
set of equations µ>j β0 = νj ∀ j = 1, 2, · · · , k. Let
M = [µ1,µ2, · · ·µk]> ∈ Rk×d be the matrix of feature
means, and y = [ν1, ν2, · · · νk]> ∈ Rk is the vector of
target means, it follows from eq. (1) that β0 satisfies

Mβ0 = y. (2)

Clearly, if k ≥ d and the rank of M is greater than d, then
(2) is sufficient to characterize β0. The more interesting
case, and a more practical scenario, is when k � d, that
is, the dimensionality of the problem is much larger than
the number of subgroups. We defer to compressed sensing
approaches to estimate β0 from such systems.

2a discussion on higher order moments is presented in the sup-
plementary material
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2.1. Estimation from True Means using Compressed
Sensing

The compressed sensing literature includes several theoret-
ical and empirical results on the recovery of model parame-
ters in under-determined systems. A line of work including
[Candes & Tao 2006; Donoho 2006], among others, have
shown that subject to certain sparsity conditions on β0 and
restricted isometry constraints on the matrix M, the param-
eter β0 can be recovered.

Definition 2.1. For a k × d matrix M and a set T ⊆
{1, 2, · · · , d}, suppose MT is the k × |T | matrix consist-
ing of the columns of M corresponding to T . Then, the
s-restricted isometry constant δs of the matrix M is defined
as the smallest quantity δs such that the matrix MT obeys

(1− δs)‖c‖22 ≤ ‖MT c‖22 ≤ (1 + δs)‖c‖22

for every subset T ⊂ {1, 2, · · · , d} of size |T | < s and all
real c ∈ R|T |

Restricted isometry is a common and standard assumption
in the sparse parameter recovery literature. Intuitively, this
property means that when M satisfies Definition 2.1 with a
small δs, every sub-matrix of small enough size constructed
out of the columns of the matrix behaves approximately
like an orthonormal system. In fact, a number of random
matrices satisfy this property including the Gaussian en-
semble and the Bernoulli ensemble [Donoho 2006; Candès
et al. 2006].

For the rest of the paper we assume that the matrix of true
means M satisfies the restricted isometry property. This is
quite general as it is a direct corollary for many kinds of
common and standard assumptions on the true mean ma-
trix, for example the assumption that the true mean ma-
trix is generated from a Gaussian distribution. Evidence
from health care literature [Armstrong et al. 1999; Robin-
son 2009] suggests that indeed, there is a significant geo-
graphical variation in demographics and health outcomes
(due to variations in demographic make-up, average eco-
nomic status, prevalent industries, etc.) which is often used
as a predictive feature for healthcare models [Park & Ghosh
2014; Bhowmik et al. 2015]. All of this, together with our
experiments on real datasets, suggest that there is sufficient
inhomogeneity in mean healthcare attributes across groups
to justify the matrix incoherence assumption for M.

Suppose we had access to the true mean matrices (M,y).
First, we consider the case when observations are noise-
free, i.e. ε = 0. Suppose β0 is known to be κ0-sparse
and M satisfies the restricted isometry hypothesis, then the
following result applies:

Theorem 2.1 (Exact Recovery [Foucart 2010]). Let Θ0 =
3

4+
√

6
≈ 0.465. If there exists an s0 such that δ2s0 < Θ0

for M, then as long as κ0 < s0, the constraint Mβ0 = y

is sufficient to uniquely recover any κ0-sparse β0 exactly
as the solution of the following optimization problem:

min
β
‖β‖1 s.t. Mβ = y. (3)

A similar result for approximate recovery holds for the case
when the observations are corrupted with noise ε, i.e., in-
stead of y = Mβ0, we are given yε = Mβ0 + ε.

Theorem 2.2 (Approximate Recovery [Candes 2008]). Let
Θ1 =

√
2 − 1 ≈ 0.414. If there exists an s0 for M such

that δ2s0 < Θ1, then as long as κ0 < s0 and the noise ε
in observations yε = Mβ0 + ε is bounded as ‖ε‖2 < ξ,
any κ0-sparse β0 can be recovered within an `2 distance
of Cs0ξ from the true parameter β0 using the noisy mea-
surements (M,yε). That is, the solution β̂ to the following
optimization problem:

min
β0

‖β‖1 s.t. ‖Mβ − yε‖2 < ξ (4)

satisfies ‖β̂ − β0‖2 < Cs0ξ where the constant Cs0 de-
pends only on δ2s0 and is well-behaved (for example when
δ2s0 = 0.2, the constant is less than 8.5).

2.2. Empirical Mean Estimates and Aggregation Error

Clearly, if the matrix of true means M satisfies the re-
stricted isometry hypothesis, and β0 is sufficiently sparse,
Theorems 2.1 and 2.2 apply. Therefore, given the true pop-
ulation means M and y, the parameter β0 can be recovered
exactly from noiseless data y by solving (3) and approxi-
mately from noisy observations by solving (4).

Unfortunately, in many practical scenarios we do not have
access to the true M or y, but only to group level empir-
ical estimates computed from a finite number of samples.
Assume n samples for each group to simplify the analy-
sis. Denote the corresponding empirically estimated means
for the jth group by µ̂j,n and ν̂j,n for each j = 1, · · · k.
The corresponding sample mean matrices are given by
M̂n = [µ̂1,n, · · · µ̂k,n]> and υ̂n = [ν̂1,n, · · · ν̂k,n]>.

The empirical mean estimation procedure introduces ag-
gregation errors En and sn to the setup. That is instead
of the true group means (M,y), the data available for es-
timating β0 are restricted to empirical estimates (M̂n, υ̂n)

where M̂n = M + En and υ̂n = y + sn, and the results
from section 2.1 no longer apply directly. For the rest of
the manuscript, we investigate parameter recovery for this
scenario.

3. Parameter Recovery from Approximate
Means

As mentioned earlier, the aggregation procedure for the es-
timation of true means introduces additive error terms En
and sn to the matrices M and y. Note that for the models
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we study in this work, these two noise terms are not inde-
pendent but are linearly correlated. Existing compressed
sensing literature is restricted to the analysis of models
where the additive error terms En and sn are indepen-
dent. Furthermore, any such existing analysis that deals
with additive error terms are severely limited in the sense
that they can only provide guarantees for approximate re-
covery rather than exact recovery (e.g. see [Zhao & Yu
2006; Rosenbaum et al. 2013; Rudelson & Zhou 2015]).

Remarkably, as we show in the subsequent sections the true
parameter is still exactly recoverable with high probabil-
ity, even in the presence of linearly correlated aggregation
error. This is because the aggregation procedure applied
to linear models generates additional structure, which can
then be exploited by the estimation procedure to get exact
parameter recovery even from empirical estimates of the
data means from a finite number of samples.

We first analyse the case where the aggregation procedure
has been applied to noise-free samples and then extend the
analysis to the noisy case, and to the special case of data
collected as histogram aggregates.

Throughout this manuscript we shall make the standard as-
sumption [Georgiou & Kyriakakis 2006; Hsu et al. 2012]
that the marginal distribution of each coordinate of the co-
variates is sub-Gaussian with parameter σ2. Thus, for each
covariate x(i)

j ∈ xj = [x
(1)
j , x

(2)
j · · ·x

(d)
j ] and each group

j ∈ {1, 2, · · · k}, and for every t ∈ R, the logarithm of the
moment generating function is quadratically bounded

lnE[et(x
(i)
j −µ

(i)
j )] <

t2σ2

2
.

Similarly, we assume that the marginal distribution for each
noise term is zero-mean and sub-Gaussian with parameter
ρ. Note that the assumptions on the covariates and the noise
terms are only on the marginal distributions. In particular,
we do not require either independence or identical distri-
bution across groups or even across individual coordinates.
As discussed in section 5.1, the analysis for alternative dis-
tributional assumptions follows along very similar lines by
using other standard concentration inequalities. Proofs for
all subsequent results are presented in the supplement.

3.1. Noise-Free Observations

First we consider empirical means computed from noise-
less observations. As mentioned earlier, the true parameter
β0 can still be recovered exactly from empirical estimates
of group means (M̂n, υ̂n) despite the presence of linearly
correlated aggregation error (En, sn).

Key observation: For a linear model, the relationship
satisfied by the true group means E[y] = E[x]>β0 is
also exactly satisfied by the empirically estimated means

∑
y
n =

(∑
x
n

)>
β0. Therefore, for aggregated noise-free

observations, the equation

M̂nβ0 = υ̂n (5)

still holds exactly. As long as the empirical moment matrix
M̂n satisfies the restricted isometry constraints, we may
still guarantee exact recovery by solving the optimization
problem:

min
β

‖β‖1

s.t. M̂nβ = υ̂n.
(6)

Our first main result is to show that this is indeed the case,
and the true parameter β0 can be recovered with high prob-
ability if the number of samples n used to compute empiri-
cal moment estimates in each subgroup is sufficiently large.

Theorem 3.1 (Main result 1). Let Θ0 = 3
4+
√

6
≈ 0.465.

Suppose there exists an s0 such that the isometry constant
δ2s0 for the true mean matrix M satisfies δ2s0 < Θ0. Also
suppose that the marginal distribution of the coordinates
of each feature is sub-Gaussian with parameter σ2. Then,
given (M̂n, υ̂n) any κ0-sparse β0 with κ0 < s0 can be
recovered exactly with probability at least 1 − e−C0n by
solving (6). Here, the constant C0 in the expression is such
that C0 ∼ O

(
(Θ0−δ2s0 )2

kdσ2(1+δ2s0 )

)
.

We can unpack the result with respect to the constant C0

which depends on the isometry parameter δ2s0 , the size
of the mean matrix (k, d) and the sub-Gaussian parame-
ter of the feature terms σ. The robustness of the isometry
property of M̂n depends on the strength of the isometry
property in the true moment matrix M. Fewer samples
are required for estimating M̂n if M satisfies the isome-
try hypothesis more robustly (that is, δ2s0 small) and con-

sequently, a larger value of (Θ0−δ2s0 )2

1+δ2s0
. Similarly, if the

feature distributions have a thinner tail i.e. a smaller value
of the sub-Gaussian parameter σ2, empirically estimated
means are more accurate with fewer samples.

3.2. Observations with Noise

We now consider the case when the observations are noisy
and the equation (5) no longer holds exactly. In partic-
ular, we assume that the data used to compute the sam-
ple moments is observed with zero mean additive noise as
yεi,j = x>i,jβ0 + εi,j for each datapoint i ∈ {1, · · · , n} in
population subgroup j ∈ {1, · · · , k}. This leads to an error
in the empirical target means over and above the aggrega-
tion error.

Let υ̂n,ε = υ̂n + εn where υ̂n,ε (henceforth denoted υ̂ε)
is the empirical target mean estimated from noisy samples
and εn is the cumulative estimation error due to noise in
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n samples. With the feature sample mean M̂n, eq. (5)
becomes

M̂nβ = υ̂n = υ̂ε − εn. (7)

Similar to the results of Theorem 2.2, it can be expected
that if the sample mean matrix M̂n satisfies the isometry
hypothesis for noisy measurements, and if the error term
εn is bounded as ‖εn‖2 < ξ for some ξ > 0, then β0 can
be recovered to within an `2 distance of O(ξ) by solving
the following optimization problem

min
β

‖β‖1

s.t. ‖M̂nβ − υ̂ε‖2 < ξ.
(8)

In fact, in our case we can show that the aggregation pro-
cedure smooths out the destabilising effects of noise in ob-
servations to allow arbitrarily accurate parameter recovery
within any small degree ξ of `2 estimation error.

Theorem 3.2 (Main Result 2). Let Θ1 =
√

2− 1 ≈ 0.414.
Suppose there exists an s0 such that the isometry constant
δ2s0 for the true mean matrix M satisfies δ2s0 < Θ1. Also
suppose that the marginal distribution of the coordinates of
each feature is sub-Gaussian with parameter σ2, and noise
in each observation is zero-mean and sub-Gaussian with
parameter ρ2. Let ξ > 0 be any small positive real value.
Then, any κ0-sparse β0 with κ0 < s0 can be recovered
within an `2 distance of O(ξ) with probability at least 1 −
e−C1n − e−C2n by solving (8). Here, the constant C1 is
such that C1 ∼ O

(
(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
and the constant C2 is

such that C2 ∼ O
(
ξ2

ρ2k

)
.

The constant term in O(ξ) is the same as that in Theo-
rem 2.2 and it depends only on δ2s0 and is well-behaved
for small values of δ2s0 . Note the similarity of the con-
stant C1 in the noisy case and the constant C0 in the exact
case. As for exact recovery, the probability of recovery de-
pends on the tail properties of the feature distribution as
well as the robustness of the isometry property for the true
mean matrix M. The constant ξ2

ρ2k in the additional term
accounts for observational noise. As expected, more sam-
ples are required if the noise has heavy tails ρ2 or if the de-
gree of approximation ξ is small. In addition, the constant
for O(ξ) in the approximation factor may depend only δ2s0
in a manner similar to Theorem 2.2.

3.3. Extension to Histogram Aggregation

For the preceding analysis, we have assumed that errors in
the target moments is a result of the empirical aggregation
or observational noise. It is worth noting that this analy-
sis can be extended to cover any additional source of error
which can be bounded deterministically or with high prob-
ability. An example of this is when the targets are available

as histogram aggregates with bin size ∆ and the mean is
estimated from the histogram. Suppose h∆ is the error in
estimation of target mean from the histogram such that the
estimated sample mean υ̂∆ is related to the true sample
mean for the targets as υ̂∆ = υ̂n + h∆.

Then, we can use the exact same procedure as for noisy
observations to bound the `2 error in estimation of β0 to
O(ξ∆) by solving the optimisation problem

min
β

‖β‖1

s.t. ‖M̂nβ − υ̂∆‖2 < ξ∆

(9)

for some positive ξ∆ > 0.

The value of ξ∆ and theoretical guarantees arising there-
from will depend on the manner in which the target mean
in estimated from the histogram. Here, we analyse one such
standard moment estimation approach.

Consider a single population subgroup. Suppose the range
of the targets is bounded by someR, that is, ymax−ymin <
R. We have a set of bins B = {Bτ = (bτ , bτ+1) : τ =
1, 2, · · · , bR∆c} such that bτ+1 − bτ = ∆ for each bin. We
also have for each bin an integer nτ which is the number
of targets for that subgroup that fall in that particular bin.
Suppose b̄τ = (bτ+bτ+1)

2 is the mid point of each bin. Then,
the target mean for that group is estimated as

ν̂∆ =

∑
τ nτ b̄τ∑
τ nτ

=

∑
τ nτ b̄τ
n

.

For this mean imputation procedure, we get a very simi-
lar result to Theorem 3.2 for aggregated data that bounds
the probability of recovery in terms of the isometry con-
stants of the true mean matrix and the granularity of the
histogram.
Theorem 3.3 (Main Result 3). Let Θ1 =

√
2− 1 ≈ 0.414.

Suppose there exists an s0 such that the isometry constant
δ2s0 for the true mean matrix M satisfies δ2s0 < Θ1.Also
suppose that each covariate has a sub-Gaussian distribu-
tion with parameter σ2. Let the targets for each group be
available as histogram aggregates with bin size bounded
below by ∆. Then, any κ0-sparse β0 with κ0 < s0 can
be recovered within an `2 distance of O(

√
k∆) with prob-

ability at least 1 − e−C1n by solving (9) with ξ∆ =
√
k∆

2 .

Here, the constantC1 is such thatC1 ∼ O
(

(Θ1−δ2s0 )2

kdσ2(1+δ2s0 )

)
.

Note that the constants on O(
√
k∆) are the same as in the

case of noisy observations. Also, in the case of exact es-
timation, bin size ∆ → 0, therefore β0 can be recovered
exactly. Furthermore, the bin size does not have any effect
on the sample complexity of recovery probability, only on
the accuracy of estimation.

In particular, the recovery error is small for a histogram
of fine enough granularity. In most cases of binned data,
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the bin size used for reporting the histogram decreases as
a function of n. In fact for many real world scenarios
(see [Scott 1979]) the bin size decreases at least as fast as
∆ = O( 1

nc ) for some 0 < c < 1. In any case, the worst
case error in parameter estimation is limited solely by the
bin size, and tighter bounds can be obtained by making rea-
sonable assumptions on the target distribution. Note that if
instead of supplying a coarse histogram the data is released
in full (without specifying the relationship between x and y
in each group), the effective bin size is 0 and the parameter
can be estimated exactly by Theorem 3.3.

Related Work

While there is a rich literature on sparse parameter recov-
ery and predictive modeling in general, the aggregated data
case is much more limited. To our knowledge, ours is the
first analysis of sparse parameter recovery for aggregated
data of any kind, and our main results have not been shown
in more than 60 years of ecological data analysis dating
at least to Goodman [Goodman 1953], with parallel work
in the compressed sensing literature, and renewed interest
in machine learning [Park & Ghosh 2014; Bhowmik et al.
2015]. We now briefly outline the relevant literature.

Data aggregation was studied in the context of privacy
preservation by [Park & Ghosh 2014] which used clus-
tering and low rank models for data reconstruction from
averaged targets. In the classification literature, learning
from label proportions (LLP) [Quadrianto et al. 2009; Pa-
trini et al. 2014] involves estimation of classifiers given the
proportion of discrete valued labels in groups or bags of la-
beled targets. Regression involving histogram aggregated
targets was introduced by [Bhowmik et al. 2015] which
introduced an estimation algorithm and evaluated it empir-
ically, but did not provide a theoretical analysis.

There are several differences between our work and the
works described above. First and most importantly, all
three of the aforementioned lines of work assumed aggre-
gation only in targets and studied a setup where features
are known unaggregated at individual level. In our work,
both targets and features are aggregated. Unlike our work,
[Park & Ghosh 2014] was focused on data reconstruction
rather than predictive modeling. Next, the LLP literature
looks at classification given discrete-values targets, while
we look at regression where targets can take arbitrary val-
ues. Furthermore, unlike [Bhowmik et al. 2015], our work
provides a rigorous theoretical analysis with recovery guar-
antees. Finally, all existing lines of work are concerned
with accurate prediction, and to our knowledge there have
been no studies of sparse parameter recovery.

The techniques used in our work follows a long line of re-
search on compressed sensing as discussed in Section 2.1,
where related analyses fall mainly under three categories:

1. error in the design matrix M̂ = M + E, without any
error or noise in observation vector y

2. noise in observations υ̂ = y + s, with a fixed design
matrix M without error

3. design matrix error E and observation noise s, where
E and s are independent

Prior work, eg.[Herman & Strohmer 2010; Zhao & Yu
2006; Rudelson & Zhou 2015], deals only with case 1, or
with cases 2 and 3 in a way to only provide approximate
parameter recovery guarantees. We focus our investigation
on the aggregated data case 4: where E and s are linearly
correlated. Even ignoring the linear correlation in the noise
model, the best existing analyses are still limited to using
a naive error bounding technique to analyse the stability of
the LASSO resulting in weak guarantees for only approxi-
mate parameter recovery.

In contrast, we propose non-trivial modifications to the
analysis, and are able to exploit the additional structure
generated by the data aggregation procedure to recover the
sparse parameter exactly even with aggregation error, as in
Theorem 3.1, and upto arbitrarily accurate degree of esti-
mation from noisy data as we see in Theorems 3.2 and 3.3.

4. Experiments
We corroborate our theoretical results with experiments on
synthetic data to show that probability of exact parameter
recovery follows a pattern just as predicted by our main re-
sults. We also demonstrate the efficacy of our technique
in two real world applications by applying it to predic-
tive modeling of outpatient reimbursement claims in CMS
Medicare data (DE-SynPUF), and to modeling healthcare
costs using Texas Inpatient Discharge dataset (TxID) from
the Texas Department of State Health Services.

4.1. Synthetic Data

We first generate the true covariate mean matrix M using
a Gaussian and a Bernoulli ensemble, and compute the re-
spective true target means using a sparse β0. We then gen-
erate random covariates centred around the true mean ma-
trix and compute the corresponding empirical mean matrix
M̂n from the covariates. The targets are then generated us-
ing the parameter β0. We consider two cases separately-
noiseless targets y and targets yε to which noise has been
added. The corresponding empirical target means υ̂n and
υ̂ε are computed for both sets of targets and used together
with the sample covariate means M̂n to estimate β0.

This entire procedure is repeated multiple times and the
proportion of instances in which the true parameter β0 is
recovered exactly, both in magnitude and support, is plot-
ted against the number of datapoints used to compute the
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(a) Probability of recovering exact parameter (b) Probability of recovering exact parameter

Figure 1: Probably of exact parameter recovery (both magnitude and signed support) on Gaussian (fig 1a) and Bernoulli
(fig 1b) models for noise-free (black) and noisy (blue) observations with increasing number of datapoints in each group

empirical sample means. Figures 1a and 1b show the re-
sults for Gaussian and Bernoulli ensembles respectively.
As can be seen in the figures, the probability of recovering
the exact parameter increases as the number of data points
used to compute the empirical sample means increases, in
a manner exactly as predicted by our theoretical results.

4.2. Real datasets - DE-SynPUF and TxID

We now apply our methods to two real datasets. Since
ours is the first work on sparse recovery from aggregated
data, we do not know of any competing algorithmic base-
lines. We evaluate our methods by comparing the parame-
ter estimated from aggregated data to the performance up-
per bound of the “true” parameter that is estimated from the
full non-aggregated dataset.

Our first dataset is the CMS Beneficiary Summary (DE-
SynPUF) dataset [DESynPUF 2008] which is a public use
dataset created by the Centers for Medicare and Medi-
caid Services and is often used for testing different data
mining or statistical inferential methods before getting ac-
cess to full Medicare data. We use a subset of the DE-
SynPUF dataset for Louisiana state from the year 2008 and
model outpatient institutional annual primary payer reim-
bursement (PPPYMT-OP) with all the available predictor
variables that include age, race, sex, duration of coverage,
presence/absence of a variety of chronic conditions, etc.

Our second dataset is the Texas Inpatient Discharge dataset
(TxID) from the Texas Department of State Health Services
([TxID 2014], see also [Park & Ghosh 2014]). We model
healthcare charges using hospital billing records from the
fourth quarter of 2006 in the TxID dataset, and use all the
available individual level predictor variables, which include
demographic information like race, and real valued vari-

ables like length of hospital stay for each datapoint.

In both these datasets, we first use a LASSO estimator
(with parameter chosen via cross-validation) on the full
dataset to obtain a sparse regression parameter βfull. We
use a k-means algorithm to cluster the datapoints into
groups and compute the sample means for each group with
increasing number of datapoints. We then use only these
empirical sample means to obtain an estimate βagg for the
parameter, and compare βagg to the parameter βfull ob-
tained from full non-aggregated dataset. Results averaged
across multiple clusterings are shown in figures 2 and 3.

Figures 2a and 3a show the `2 norm of the distance be-
tween the parameter estimated from the full dataset βfull
and the parameter estimated from the aggregated version
βagg , for the DE-SynPUF dataset and TxID dataset respec-
tively, plotted against the number of datapoints used to esti-
mate the means. Figure 2b and 3b show the number of con-
flicts or discrepancies between the support (non-zero coor-
dinates) of βagg estimated from aggregated data and sup-
port of βfull estimated from the non-aggregated dataset,
for the DE-SynPUF dataset and TxID dataset respectively.
As the number of datapoints used to compute the sample
means increases, the parameter recovered using aggregated
data exactly identifies the support of the “true” parameter
estimated from the full dataset, and also closely matches it
in magnitude.

5. Discussion
5.1. Extensions

The techniques presented in this work can be applied to
the parameter recovery problem in a much wider class of
cases of interest by building on and extending existing re-
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(a) Avg. Error in Parameter Recovery ‖βfull − βagg‖ (b) Avg. Error in Support Recovery

Figure 2: Performance on DESynPUF dataset with increasing number of datapoints in each group

(a) Avg. Error in Parameter Recovery ‖βfull − βagg‖ (b) Avg. Error in Support Recovery

Figure 3: Performance on TxID dataset with increasing number of datapoints in each group

sults in the compressed sensing literature (see [Candes et al.
2006; Candes & Tao 2007; Cai et al. 2010, 2009], etc). In
particular, we note that various alternative frameworks like
non-sparse β0, alternative estimators to LASSO, beyond
sub-gaussian assumptions on different marginals, etc. can
be analysed in an identical manner, and our main results on
parameter recovery would still continue to hold, albeit with
slightly different sample complexity.

5.2. Higher Order Moments

The results in this paper focused on estimation from first
order moments. It may seem like including higher order
moments might make estimation in this framework easier
but it turns out that this is not the case in general. We in-
clude a discussion in the supplement on the difficulties of
using higher order moments for estimation. In particular,
we prove a surprising and counter-intuitive negative result
which shows that even with second order moments, in the
general case the estimation cannot be guaranteed to be eas-
ier or more accurate than when we use only first order mo-
ments. Similar results may also hold for other higher order
moments.

6. Conclusion and Future Work
In this paper we study the problem of parameter recovery
for sparse linear models from data which has been aggre-
gated in the form of empirical means computed from dif-
ferent subgroups of the population. We show that when
the collection of true group moments is an incoherent ma-
trix, the parameter can be recovered with high probability
from the empirical moments alone provided the empirical
moments are computed from a sufficiently large number
of samples. We extend the framework to the case of mo-
ments computed from noisy or histogram aggregated data
and show that the parameter can still be recovered within
an arbitrarily small degree of error. We corroborate our
theoretical results with experiments on synthetic data and
also show results on two real world healthcare applications-
predictive modeling of reimbursement claims from CMS
Medicare data, and modeling healthcare charges using hos-
pital billing records from the Texas Department of State
Health Services. For future work, we plan to extend the
framework to more general models including GLM’s and
non-linear models, and to design techniques to incorporate
higher order moments in the procedure.
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