
Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

x1 x2 x3 x4

x1

x2

x3

x4

x1

x2

x3

x4

x1

x2

x3

x4

x1 x2 x3 x4

x1

x2

x3

x4

x2x3x1

=

x

⌦3
x⌦ x⌦ x

=
�1 + �2 + . . .

W 2 Sdm p

⌦3
1 p

⌦3
2

Figure 5. Illustration of symmetric rank-one tensor (left) and symmetric outer product decomposition (right).

Supplementary material
A. Symmetric tensors
A.1. Background

Let Rd1⇥···⇥dm be the set of d1⇥ · · ·⇥dm real m-order tensors. In this paper, we focus on cubical tensors, i.e., d1 = · · · =
dm = d. We denote the set of m-order cubical tensors by Rdm

. We denote the elements of M 2 Rdm

by Mj1,...,jm ,
where j1, . . . , jm 2 [d].

Let � = [�1, . . . ,�m] be a permutation of {1, . . . ,m}. Given M 2 Rdm

, we define M
�

2 Rdm

as the tensor such that

(M
�

)j1,...,jm := Mj�1 ,...,j�m
8j1, . . . , jm 2 [d].

In other words M
�

is a copy of M with its axes permuted. This generalizes the concept of transpose to tensors.

Let Pm be the set of all permutations of {1, . . . ,m}. We say that a tensor X 2 Rdm

is symmetric if and only if

X
�

= X 8� 2 Pm.

We denote the set of symmetric tensors by Sdm

.

Given M 2 Rdm

, we define the symmetrization of M by

S(M) =
1

m!

X

�2Pm

M
�

.

Note that when m = 2, then S(M) = 1
2 (M +M

T).

Given x 2 Rd, we define a symmetric rank-one tensor by x

⌦m := x⌦ · · ·⌦ x| {z }
m times

2 Sdm

, i.e., (x⌦m)j1,j2,...,jm =

xj1xj2 . . . xjm . We denote the symmetric outer product decomposition (Comon et al., 2008) of W 2 Sdm

by

W =
kX

s=1

�sp
⌦m
s ,

where k is called the symmetric rank of W . This generalizes the concept of eigendecomposition to tensors. These two
concepts are illustrated in Figure 5.

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

A.2. Proof of Lemma 6

Assume M 2 Rdm

and X 2 Sdm

. Then,

hS(M),X i = 1

m!

X

�2Pm

hM
�

,X i by definition of S(M) and by linearity

=
1

m!

X

�2Pm

h(M
�

)
�

�1 ,X
�

�1i since hA,Bi = hA
�

,B
�

i 8A,B 2 Rdm

, 8� 2 Pm

=
1

m!

X

�2Pm

hM,X
�

�1i by definition of inverse permutation

=
1

m!

X

�2Pm

hM,X i since X 2 Sd
m

= hM,X i.

B. Proofs related to ANOVA kernels
B.1. Proof of multi-linearity (Lemma 2)

For m = 1, we have

A1(p,x) =
dX

j=1

pjxj

=
X

k 6=j

pkxk + pjxj

= A1(p¬j ,x¬j) + pjxj A0(p¬j ,x¬j)

where we used A0(p,x) = 1.

For 1 < m d, first notice that we can rewrite (3) as

Am(p,x) =
X

jm>···>j1

pj1xj1 . . . pjmxjm jk 2 [d], k 2 [m]

=
d�m+1X

j1=1

d�m+2X

j2=j1+1

· · ·
dX

jm=jm�1+1

pj1xj1 . . . pjmxjm .

Then,

Am(p,x) =
d�m+1X

j1=1

d�m+2X

j2=j1+1

· · ·
dX

jm=jm�1+1

pj1xj1pj2xj2 . . . pjmxjm

=
d�m+2X

j2=j1+1

· · ·
dX

jm=jm�1+1

p1x1pj2xj2 . . . pjmxjm+

d�m+1X

j1=2

d�m+2X

j2=j1+1

· · ·
dX

jm=jm�1+1

pj1xj1pj2xj2 . . . pjmxjm

= p1x1Am�1(p¬1,x¬1) +Am(p¬1,x¬1).

We can always permute the elements of p and x without changing Am(p,x). It follows that

Am(p,x) = pjxjAm�1(p¬j ,x¬j) +Am(p¬j ,x¬j) 8j 2 [d].

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

B.2. Efficient computation when m 2 {2, 3}
Using the multinomial theorem, we can expand the homogeneous polynomial kernel as

Hm(p,x) = hp,xim =
X

k1+···+kd=m

✓
m

k1, . . . , kd

◆ dY

j=1

(pjxj)
kj (16)

where ✓
m

k1, . . . , kd

◆
:=

m!

k1! . . . kd!

is the multinomial coefficient and kj 2 {0, 1, . . . ,m}. Intuitively,
� m
k1,...,kd

�
is the weight of the monomial

(p1x1)k1 . . . (pdxd)kd in the expansion. For instance, if p,x 2 R3, then the weight of p1x1p
2
3x

2
3 is

� 3
1,0,2

�
= 3. The

main observation is that monomials where all k1, . . . , kd are in {0, 1} correspond to monomials of (3). If we can compute
all other monomials efficiently, then we just need to subtract them from the homogeneous kernel in order to obtain (3).

To simplify notation, we define the shorthands

⇢j := pjxj , Dm(p,x) :=
dX

j=1

⇢mj and Dm,n(p,x) := Dm(p,x)Dn(p,x).

Case m = 2

For m = 2, the possible monomials are of the form ⇢2j for all j and ⇢i⇢j for j > i. Applying (16), we obtain

H2(p,x) =
dX

j=1

⇢2j + 2
X

j>i

⇢i⇢j

= D2(p,x) + 2A2(p,x)

and therefore
A2(p,x) =

1

2

⇥H2(p,x)�D2(p,x)
⇤
.

This formula was already mentioned in (Stitson et al., 1997). It was also rediscovered in (Rendle, 2010; 2012), although
the connection with the ANOVA kernel was not identified.

Case m = 3

For m = 3, the possible monomials are of the form ⇢3j for all j, ⇢i⇢2j for i 6= j and ⇢i⇢j⇢k for k > j > i. Applying (16),
we obtain

H3(p,x) =
dX

j=1

⇢3j + 3
X

i 6=j

⇢i⇢
2
j + 6

X

k>i>i

⇢i⇢j⇢k

= D3(p,x) + 3
X

i 6=j

⇢i⇢
2
j + 6A3(p,x).

We can compute the second term efficiently by using

X

i 6=j

⇢i⇢
2
j =

dX

i,j=1

⇢i⇢
2
j �

dX

j=1

⇢3j

= D2,1(p,x)�D3(p,x).

We therefore obtain
A3(p,x) =

1

6

⇥H3(p,x)�D3(p,x)� 3
�D2,1(p,x)�D3(p,x)

�⇤

=
1

6

⇥H3(p,x)� 3D2,1(p,x) + 2D3(p,x)
⇤
.

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

B.3. Proof of multi-convexity (Theorem 1)

Let us denote the rows of P by p̄1, . . . , p̄d 2 Rk. Using Lemma 2, we know that there exists constants as and bs such that
for all j 2 [d]

ŷAm(x;�,P) =
kX

s=1

�sAm(ps,x)

=
kX

s=1

�s(pjsxjas + bs)

=
kX

s=1

pjs�sxjas + const

= hp̄j , µ̄ji+ const where µ̄j := [�1xja1, . . . ,�kxjak]
T.

Hence ŷAm(x;�,P) is an affine function of p̄1, . . . , p̄d. The composition of a convex loss function and an affine function
is convex. Therefore, (4) is convex in p̄j 8j 2 [d]. Convexity w.r.t. � is obvious.

C. Proof of equivalence between regularized problems (Theorem 2)
First, we are going to prove that the optimal solution of the nuclear norm penalized problem is a symmetric matrix. For
that, we need the following lemma.

Lemma 7 Upper-bound on nuclear norm of symmetrized matrix

kS(M)k⇤ kMk⇤ 8M 2 Rd2

Proof.

kS(M)k⇤ = k1
2
(M +M

T)k⇤

=
1

2
(kM +M

Tk⇤)

 1

2
(kMk⇤ + kMTk⇤)

= kMk⇤,
with equality in the third line holding if and only if M = M

T. The second and third lines use absolute homogeneity and
subadditivity, two properties that matrix norms satisfy. The last line uses the fact that kMk⇤ = kMTk⇤. ⇤

Lemma 8 Symmetry of optimal solution of nuclear norm penalized problem

argmin
M2Rd2

L̄K(M) := LK(S(M)) + �kMk⇤ 2 Sd
2

Proof. From any (possibly asymmetric) square matrix A 2 Rd2

, we can construct M = S(A). We obviously have
LK(S(A)) = LK(S(M)). Combining this with Lemma 7, we have that L̄K(M) L̄K(A). Therefore we can always
achieve the smallest objective value by choosing a symmetric matrix. ⇤
Next, we recall the variational formulation of the nuclear norm based on the SVD.

Lemma 9 Variational formulation of nuclear norm based on SVD

kMk⇤ = min
U ,V

M=UV

T

1

2
(kUk2F + kV k2F) 8M 2 Rd2

(17)

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

Table 1. Examples of convex loss functions. We defined ⌧ =

1
1+e�yŷ .

Loss Domain of y `(y, ŷ) `

0
(y, ŷ) `

00
(y, ŷ) µ

Squared R 1
2 (ŷ � y)

2
ŷ � y 1 1

Squared hinge {�1, 1} max(1� yŷ, 0)

2 �2ymax(1� yŷ, 0) 2�[ŷy<1] 2

Logistic {�1, 1} log(⌧

�1
) y(⌧ � 1) ⌧(1� ⌧)

1
4

The minimum above is attained at kMk⇤ = 1
2 (kUk2F + kV k2F), where U 2 Rd⇥r and V 2 Rd⇥r, r = rank(M), are

formed from the reduced SVD of M , i.e., U = A diag(�)
1
2 and V = B diag(�)

1
2 where M = A diag(�)BT.

For a proof, see for instance (Mazumder et al., 2010, Section A.5).

Now, we give a specialization of the above for symmetric matrices, based on the eigendecomposition instead of SVD.

Lemma 10 Variational formulation of nuclear norm based on eigendecomposition

kMk⇤ = min
�,P

M=P diag(�)PT

kX

s=1

|�s| kpsk2 8M 2 Sd
2

, (18)

where k = rank(M). The minimum above is attained by the reduced eigendecomposition M = P diag(�)PT and
kMk⇤ = k�k1.

Proof. Let A diag(�)BT and P diag(�)PT be the reduced SVD and eigendecomposition of M 2 Sd2

, respectively. The
relation between the SVD and the eigendecomposition is given by

�s = |�s|
as = sign(�s)ps

bs = ps.

From Lemma 9, we therefore obtain

us =
p
�sas =

p
|�s| sign(�s)ps

vs =
p
�sbs =

p
|�s|ps.

Now, computing 1
2 (
P

s kusk2 + kvsk2) gives
Pk

s=1 |�s| kpsk2. The minimum value kMk⇤ = k�k1 follows from the
fact that P is orthonormal and hence kpsk2 = 1 8s 2 [k]. ⇤
We now have all the tools to prove our result. The equivalence between (12) and (14) when r = rank(M⇤) is a special
case of (Mazumder et al., 2010, Theorem 3). From Lemma 8, we know that the optimal solution of (14) is symmetric.
This allows us to substitute (17) with (18), and therefore, (13) is equivalent to (14) with k = rank(M⇤). As discussed in
(Mazumder et al., 2010), the result also holds when r = k is larger than rank(M⇤).

D. Efficient coordinate descent algorithms
D.1. Direct approach, K = Am for m 2 {2, 3}
As stated in Theorem 1, the direct optimization objective is multi-convex when K = Am. This allows us to easily minimize
the objective by solving a succession of coordinate-wise convex problems. In this section, we develop an efficient algorithm
for minimizing (13) with m 2 {2, 3}. It is easy to see that minimization w.r.t. � can be reduced to a standard `1-regularized
convex objective via a simple change of variable. We therefore focus our attention to minimization w.r.t. P .

As a reminder, we want to minimize

f :=
nX

i=1

`(yi, ŷi) + �

kX

s=1

|�s|kpsk2

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

where

ŷi :=
kX

s=1

�sAm(ps,xi).

After routine calculation, we obtain

@A2(ps,xi)

@pjs
= hps,xiixji � pjsx

2
ji = (hps,xii � pjsxji)xji

@A3(ps,xi)

@pjs
=

1

2
hps,xii2xji � pjsx

2
jihps,xii � 1

2
xjiD2(ps,xi) + p2jsx

3
ji

= A2(ps,xi)xji � pjsx
2
jihps,xii+ p2jsx

3
ji

@Am(ps,xi)

@p2js
= 0 8m 2 N

@ŷi
@pjs

= �s
@Am(ps,xi)

@pjs
@ŷi
@p2js

= 0 8j 2 [d], s 2 [k].

The fact that the second derivative is null is a consequence of the multi-linearity of Am.

Using the chain rule, we then obtain

@f

@pjs
=

nX

i=1

`0(yi, ŷi)
@ŷi
@pjs

+ 2�|�s|pjs

@f

@p2js
=

nX

i=1

"
`00(yi, ŷi)

✓
@ŷi
@pjs

◆2

+ `0(ŷi, yi)
@ŷi
@p2js

#
+ 2�|�s|

=
nX

i=1

`00(yi, ŷi)
✓

@ŷi
@pjs

◆2

+ 2�|�s|.

Assuming that ` is µ-smooth, its second derivative is upper-bounded by µ and therefore we have

@f

@p2js
 ⌘js where ⌘js := µ

nX

i=1

✓
@ŷi
@pjs

◆2

+ 2�|�s|.

Then the update

pjs pjs � ⌘�1
js

@f

@pjs

guarantees that the objective value is monotonically decreasing except at the coordinate-wise minimum. Note that in the
case of the squared loss `(y, ŷ) = 1

2 (y � ŷ)2, the above update is equivalent to a Newton step and is the exact minimizer
of the coordinate-wise objective. An epoch consists in updating all variables once, for instance in cyclic order.

For an efficient implementation, we need to maintain ŷi 8i 2 [n] and statistics that depend on ps. For the former, we
need O(n) memory. For the latter, we need O(kmn) memory for an implementation with full cache. However, this
requirement is not realistic for a large training set. In practice, the memory requirement can be reduced to O(mn) if we
recompute the quantities then sweep through p1s, . . . , pds for s fixed. Overall the cost of one epoch is O(knz(X)). A
similar implementation technique is described for factorization machines with m = 2 in (Rendle, 2012).

D.2. Lifted approach, K = Hm

We present an efficient coordinate descent solver for the lifted approach with K = Hm, for arbitrary integer m � 2. Recall
that our goal is to learn W = S(M) 2 Sdm

by factorizing M 2 Rdm

using m matrices of size d ⇥ r. Let us call these

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

Algorithm 1 CD algorithm for direct obj. with K = A{2,3}

Input: �, initial P , µ-smooth loss function `, regularization
parameter �, number of bases k, degree m, tolerance ✏

Pre-compute ŷi := ŷAm
(xi;�,P) 8i 2 [n]

Set � 0

for s

:

= 1, . . . , k do
Pre-compute hps,xii and A2

(ps,xi) 8i 2 [n]

for j

:

= 1, . . . , d do
Compute inv. step size ⌘

:

= µ

Pn
i=1

⇣
@ŷi
@pjs

⌘2
+ 2�|�s|

Compute �

:

= ⌘

�1
hPn

i=1 `
0
(yi, ŷi)

@ŷi
@pjs

+ 2�|�s|pjs
i

Update pjs pjs � �; Set � �+ |�|
Synchronize ŷi, hps,xii and A2

(ps,xi) 8i s.t. xji 6= 0

end for
end for
If � ✏ stop, otherwise repeat
Output: P

Algorithm 2 CD algorithm for lifted objective with K = Hm

Input: initial {U t}mt=1, µ-smooth loss function `, regulariza-
tion parameter �, rank r, degree m, tolerance ✏

Pre-compute ŷi :=
Pr

s=1

Qm
t=1hut

s,xii 8i 2 [n]

Set � 0

for t

:

= 1, . . . ,m and s

:

= 1, . . . , r do
Pre-compute ⇠i :=

Q
t0 6=thut0

s ,xii 8i 2 [n]

for j

:

= 1, . . . , d do
Compute inv. step size ⌘

:

= µ

Pn
i=1 ⇠

2
i x

2
ji + �

Compute �

:

= ⌘

�1
⇥Pn

i=1 `
0
(yi, ŷi)⇠ixji + �u

t
js

⇤

Update u

t
js u

t
js � �; Set � �+ |�|

Synchronize ŷi 8i s.t. xji 6= 0

end for
end for
If � ✏ stop, otherwise repeat
Output: {U t}mt=1

matrices U1, . . . ,Um and their columns ut
s = [ut

1s, . . . , u
t
ds]

T with t 2 [m] and s 2 [r]. The decomposition of M can be
expressed as a sum of rank-one tensors

M =
rX

s=1

u

1
s ⌦ · · ·⌦ u

m
s .

Using (11) we obtain

ŷi := hW ,x⌦m
i i = hM,x⌦m

i i =
rX

s=1

mY

t=1

hut
s,xii.

The first and second coordinate-wise derivatives are given by

@ŷi
@ut

js

=
Y

t0 6=t

hut0

s ,xiixji and
@ŷi

@(ut
js)

2
= 0.

We consider the following regularized objective function

f :=
nX

i=1

`(yi, ŷi) +
�

2

mX

t=1

rX

s=1

kut
sk2.

Using the chain rule, we obtain

@f

@ut
js

=
nX

i=1

`0(yi, ŷi)
@ŷi
@ut

js

+ �ut
js and

@f

@(ut
js)

2
=

nX

i=1

`00(yi, ŷi)

@ŷi
@ut

js

!2

+ �.

Assuming that ` is µ-smooth, its second derivative is upper-bounded by µ and therefore we have

@f

@(ut
js)

2
 ⌘tjs where ⌘tjs := µ

nX

i=1

@ŷi
@ut

js

!2

+ �.

Then the update

ut
js ut

js � (⌘tjs)
�1 @f

@ut
js

guarantees that the objective value is monotonically decreasing, except at the coordinate-wise minimum. Note that in the
case of the squared loss `(y, ŷ) = 1

2 (y � ŷ)2, the above update is equivalent to a Newton step and is the exact minimizer
of the coordinate-wise objective. An epoch consists in updating all variables once, for instance in cyclic order.

Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms

For an efficient implementation, the two quantities we need to maintain are ŷi 8i 2 [n] and
Q

t0 6=thut0
s ,xii 8i 2 [n], s 2

[r], t 2 [m]. For the former, we need O(n) memory. For the latter, we need O(rmn) memory for an implementation with
full cache. However, this requirement is not realistic for a large training set. In practice, the memory requirement can be
reduced to O(mn) if we recompute the quantity then sweep through ut

1s, . . . , u
t
ds for t and s fixed. Overall the cost of one

epoch is O(mrnz(X)).

D.3. Lifted approach, K = A2

For h·, ·i>, efficient computations are more involved since we need to ignore irrelevant monomials. Nevertheless, we can
also compute the predictions directly without explicitly symmetrizing the model. For m = 2, it suffices to subtract the
effect of squared features. It is easy to verify that we then obtain

hS(UV

T
),x

⌦2i> =

1

2

"
hUT

x,V

T
xi �

rX

s=1

hus � x,vs � xi
#
,

where � indicates element-wise product. The coordinate-wise derivatives are given by

@yi
@ujs

=
1

2

⇥hvs,xixji � vjsx
2
ji

⇤
and

@yi
@vjs

=
1

2

⇥hus,xixji � ujsx
2
ji

⇤
.

Generalizing this to arbitrary m is a future work.

E. Datasets
For regression experiments, we used the following public datasets.

Dataset n (train) n (test) d Description
abalone 3,132 1,045 8 Predict the age of abalones from physical measurements
cadata 15,480 5,160 8 Predict housing prices from economic covariates

cpusmall 6,144 2,048 12 Predict a computer system activity from system performance measures
diabetes 331 111 10 Predict disease progression from baseline measurements

E2006-tfidf 16,087 3,308 150,360 Predict volatility of stock returns from company financial reports

The diabetes dataset is available in scikit-learn (Pedregosa et al., 2011). Other datasets are available from http://www.

csie.ntu.edu.tw/

˜

cjlin/libsvmtools/datasets/.

For recommender system experiments, we used the following two public datasets.

Dataset n d
Movielens 1M 1,000,209 (ratings) 9,940 = 6,040 (users) + 3,900 (movies)

Last.fm 108,437 (tag counts) 24,078 = 12,133 (artists) + 11,945 (tags)

For Movielens 1M, the task is to predict ratings between 1 and 5 given by users to movies, i.e., y 2 {1, . . . , 5}. For Last.fm,
the task is to predict the number of times a tag was assigned to an artist, i.e., y 2 N.

The design matrix X was constructed following (Rendle, 2010; 2012). Namely, for each rating yi, the corresponding xi

is set to the concatenation of the one-hot encodings of the user and item indices. Hence the number of samples n is the
number of ratings and the number of features is equal to the sum of the number of users and items. Each sample contains
exactly two non-zero features. It is known that factorization machines are equivalent to matrix factorization when using
this representation (Rendle, 2010; 2012).

We split samples uniformly at random between 75% for training and 25% for testing.

