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Abstract
We propose a scalable multiple-output general-
ization of unscented and extended Gaussian pro-
cesses. These algorithms have been designed
to handle general likelihood models by lineariz-
ing them using a Taylor series or the Unscented
Transform in a variational inference framework.
We build upon random feature approximations of
Gaussian process covariance functions and show
that, on small-scale single-task problems, our
methods can attain similar performance as the
original algorithms while having less computa-
tional cost. We also evaluate our methods at a
larger scale on MNIST and on a seismic inversion
which is inherently a multi-task problem.

1. Introduction
Gaussian process (GP) models can be used as nonparamet-
ric probabilistic approaches to standard machine learning
settings such as regression and classification (Rasmussen
& Williams, 2006), where the latent functions modeled by
the GP are only important as a means to an end, that of pro-
viding greater flexibility than their parametric counterparts.
In other application areas such as inversion problems, the
latent functions are quantities of interest themselves, and
they are passed through a domain-specific forward model
in order to generate the observations.

Standard machine learning tasks and inversion problems
present three key challenges when having Gaussian pro-
cess (GP) priors. The first challenge is scalability, as GPs
are notorious for their poor scalability as a function of the
number of training points. The second challenge is multi-
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output and multi-task task learning, as required by prob-
lems such as multi-output regression, multi-class classifi-
cation or inversions over a multi-layer geological structure
(where each layer is a task). Finally, the third challenge
is that of dealing with nonlinear non-Gaussian likelihoods,
for example in classification, regression with non-Gaussian
noise, and seismic inversion, as the posterior over the latent
functions is analytically intractable.

In order to address the latter challenge, dealing with nonlin-
ear non-Gaussian likelihoods, Steinberg & Bonilla (2014)
have shown recently that it is possible to obtain good pos-
terior estimates in GP models using approximations of the
nonlinear likelihood via a Taylor series expansion or via the
Unscented Transform (Julier & Uhlmann, 2004). They re-
fer to their methods as the extended Gaussian process (EGP)
and the unscented Gaussian process (UGP). One of the fun-
damental reasons why such linearizations are effective is
because of their locality and adaptivity, as they are con-
structed around the current posterior estimate, which is it-
eratively updated within a variational inference procedure.
While such methods are an effective way to tackle nonlin-
earities in the likelihood, their approach does not deal with
the other two challenges mentioned above, namely multi-
task learning and scalability. Indeed their method is spe-
cific to single-output problems and inherits the cubic scal-
ability of standard GPs on the number of training points.

In this paper we propose a scalable multiple-output gener-
alization of the method of Steinberg & Bonilla (2014). We
deal with multiple-output problems by using affine trans-
formations of the latent functions and achieve scalability
by introducing random feature approximations of the co-
variance function of the Gaussian processes, in the style
of Rahimi & Recht (2008). Inference of all parameters and
hyperparameters is carried out using a variational inference
framework, and so the kernel learning methods introduced
by Yang et al. (2015) can be applied to our methods. Since
Rahimi & Recht (2008) refer to their approach as Random
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Kitchen Sinks, we will refer to our methods as extended
and unscented kitchen sinks (EKS, UKS), when using the
Taylor series approximation or the Unscented Transform
approximation in the conditional likelihood respectively.

Our approach naturally avoids the cubic scalability of the
original EGP and UGP methods (Steinberg & Bonilla, 2014)
as a function of the number of training points. Our algo-
rithms’ complexity is dominated by the inverse of the fea-
ture covariance of size D, which has a time complexity of
O
(
D3
)
, where typically D � N .

Our experiments on small-scale synthetic nonlinear inver-
sion tasks and on a classification task on the USPS dataset
show that random feature approximations to the EGP and
the UGP can attain similar performance to the original
methods. This applies even when using a small number of
features, hence reducing the complexity of inference sig-
nificantly. Furthermore, experiments at a larger scale on
MNIST show that our algorithms are competitive with re-
cently developed approaches for inference in GP models,
while the application of the EGP and UGP to this task is
simply infeasible. Finally, on a multi-task (joint) nonlinear
seismic inversion problem we show that our algorithms can
recover accurate representations of the underlying geologi-
cal structure and rock properties (seismic velocities).

2. Gaussian Process Models
We are given N input data points {xn} ∈ Rd and their
corresponding targets {yn} ∈ RP , which will we de-
scribe compactly with {X,Y}, where X ∈ RN×d and
Y ∈ RN×P . Our goal is to learn a probabilistic mapping
from inputs to outputs, which can be achieved through Q
latent functions {fq} and a given non-linear forward model
g : RQ → RP . Additionally, we are interested in es-
timating the posterior over the latent functions given the
observed data. While the former problem is the standard
multi-task supervised learning setting, we refer to the latter
as a probabilistic joint inversion problem, as we are given a
forward mapping from latent functions to noiseless outputs
but not the reverse.

A flexible modeling approach places independent zero-
mean Gaussian process (GP) priors over the latent func-
tions {fq} with covariance functions kq(·, ·) and assumes
i.i.d observations given these latent functions. When these
function are realized at the training data, we obtain the fol-
lowing prior and likelihood models:

p(F) =

Q∏
q=1

N (f·q; 0,Kq) (1)

p(Y|F) =

N∏
n=1

p(yn|g(fn·)), (2)

where Kq is the covariance matrix induced by evaluating
the covariance function kq at all input data X; f·q are the
values of latent function q at all training inputs; and fn· are
the values of all latent functions at input xn.

Having a nonlinear function g(fn·) in the conditional like-
lihood terms gives us the flexibility to go beyond stan-
dard regression with linear Gaussian noise, even when each
p(yn|g(fn·)) is a Gaussian. For example, we can address
problems such as classification, where g is e.g. a softmax
function, and nonlinear inversion problems such as seismic
inversion, where g maps depths and seismic velocities of
geological layers to sound reflexion times.

From a probabilistic inference perspective, solving the
inversion problem (and the subsequent prediction prob-
lem), boils down to computing the posterior distribution
p(f |X,Y). Unfortunately, this posterior distribution is, in
general, intractable due to the non-linearities in g, so one
must resort to approximations.

2.1. Variational Inference in Linearized GP Models

Steinberg & Bonilla (2014) have recently proposed a vari-
ational algorithm that addresses the above problem for
single-output observations (Q = 1). Their algorithm re-
lies upon the linearization of the forward model around
the posterior mean, allowing for an analytic approximation
of the variational objective and enabling parameter learn-
ing within a simple but effective optimization procedure.
To build such linearizations they use a Taylor series ap-
proximation and the unscented transform and refer to their
methods as the Extended Gaussian Process (EGP) and the
Unscented Gaussian Process (UGP). The main advantage
of their algorithms is that their approximation is local and
adaptive, as it is constructed around the posterior mean for
a single data point n, and it gets updated at every iteration
of the algorithm as a function of the variational parameters.

However, such algorithms have the fundamental problem
of poor scalability, as they inherit the computational cost
of traditional GP models, which is O

(
N3
)
. This problem

is, of course, exacerbated when having multi-task learning
settings or multiple outputs, which renders their approach
impractical for large datasets.

3. Random Features Approximations
Our starting point to scale up linearized GP models builds
upon the work of Rahimi & Recht (2008; 2009), who used
Bochner’s theorem regarding the relationship between a
kernel and the Fourier transform of a non-negative mea-
sure. In particular, when such a non-negative measure ex-
ists, one obtains Wiener-Khintchine’s theorem, which es-
tablishes the Fourier duality of the covariance function of a
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stationary process and its spectral density:

k(τ ) =

∫
S(s)e2πis

T τds, (3)

S(s) =

∫
k(τ )e−2πis

T τdτ . (4)

Rahimi & Recht’s main insight (2008) is that we can ap-
proximate the above kernel by explicitly constructing “suit-
able” random features and (Monte Carlo) averaging over
samples from S(s):

k(x− x′) = k(τ ) ≈ 1

D

D∑
i=1

φi(x)φi(x
′) , (5)

where φ(x) : Rd → RD is a feature map and φi(x) corre-
sponds to the ith component of that map. An example of a
feature vector construction in the above approximation is:

[φi(x) , φD+i(x)] =
1√
D

[cos(2πsTi x), sin(2πsTi x)],

with si ∼ N
(
si
∣∣0, σ2

φId
)

, (6)

for i = 1, . . . , D, which in fact is a mapping into a 2D-
dimensional feature space. Rahimi & Recht (2008) used
the above feature map to approximate the commonly used
(isotropic) squared exponential kernel, and showed that
such an approximation converges in expectation to the true
kernel. They refer to algorithms that use such randomized
feature expansions as random kitchen sinks (RKS). If we
use RKS bases such that k(xi,xj) = E[φ(xi)

>
φ(xj)], we

can approximate GP models that involve nonlinear likeli-
hoods with simple linear-in-the-parameters models. For
our purposes, we are interested in using such random fea-
ture approximations within a variational inference frame-
work in order to estimate the posterior distributions of mod-
els of the form given in Equations (1) and (2).

4. Multi-task GP Models
Our next step is to approximate our prior over latent func-
tions in Equation (1) using the random feature approxima-
tion described above, and to specify our multi-output like-
lihood in Equation (2):

p(W) =

Q∏
q=1

N
(
wq

∣∣0, ω2
qID

)
, (7)

p(Y|W) =

N∏
n=1

N (yn|g(Wφn) ,Σ) , (8)

where, φn
def
= φ(xn) is the D-dimensional vector of fea-

tures corresponding to datapoint n; wq ∈ RD; W ∈
RQ×D; ω2

q is the prior variance over the weights; and

Σ = diag
([
σ2
1 , . . . , σ

2
P

])
is the noise variance. Addi-

tionally, we note that we are effectively approximating our
prior over latent functions as fq = Φwq , with Φ

def
= φ(X)

being the N × D matrix of features evaluated at all the
training data.

Having RKS-based approximations allows us to circumvent
the inherent scalability problem in GP models. However,
we note that the likelihood model in Equation (8), still in-
volves a non linear transformation of the corresponding la-
tent functions, which yields, as before, intractable posteri-
ors. In order to address this problem, we will build upon the
work of Steinberg & Bonilla (2014), and develop a varia-
tional inference procedure that exploits linearization meth-
ods around the posterior mean.

4.1. Posterior Approximation

Let us now make the simplifying assumption that the pos-
terior factorizes over latent functions and has the form,

q̃(W) =

Q∏
q=1

N (wq|mq,Cq) . (9)

We can use variational inference to learn this posterior ap-
proximation, and thereby allowing us to infer the posterior
latent tasks,

q̃(F) =

Q∏
q=1

N
(
f·q

∣∣∣Φmq,ΦCqΦ
T
)

. (10)

4.2. Evidence Lower Bound

With the prior specified in Equation (7); the likelihood
specified in Equation (8); and the approximate posterior de-
fined in Equation (9), we are now ready to write down the
variational lower bound that we aim to maximize in order to
learn the parameters of our model. Defining q̃W

def
= q̃(W),

the variational log-evidence lower bound is,

L = 〈log p(Y|W,X)〉̃qW − KL[q̃(W)‖p(W)] . (11)

Here we can straight-forwardly arrive at the KL term,

KL[q̃(W)‖p(W)] =
1

2

Q∑
q=1

[
1

ω2
q

tr(Cq) +
1

ω2
q

m>qmq

− log |Cq|+D logω2
q −D

]
. (12)

The expected log-likelihood term is less straight forward,

〈log p(Y|W,X)〉̃qW = −N
2

[log 2π + log |Σ|]

−1

2

N∑
n=1

〈
(yn − g(Wφn))

>
Σ-1 (yn − g(Wφn))

〉
q̃W

,

(13)
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since this expectation cannot be easily evaluated. We make
another approximation,

g(Wnφn) ≈ AnWφn + bn, (14)

where An ∈ RP×Q is some linearization matrix that we
will define later, and bn ∈ RP is an intercept term that we
will also define later. Now we can evaluate the expectation
in (13) as approximately,

〈log p(Y|W,X)〉̃qW ≈ −
N

2
[P log 2π + log |Σ|]

− 1

2

N∑
n=1

[
ε>nΣ-1εn +

Q∑
q=1

φ>nCqφna>nqΣ
-1anq

]
. (15)

Where we have defined εn
def
= yn − (AnMφn + bn);

used AnW =
∑
q anqw

>
q defining anq ∈ RP and An =

[an1, . . . ,anQ]. Here we can see that this objective easily
factorizes over the data, and so it should be straightforward
to apply parallel or stochastic gradient descent algorithms
to learn the posterior parameters.

4.3. Learning the Variational Parameters

As in Steinberg & Bonilla (2014), we can use Newton’s
method to learn the approximate posterior parameters for
each task,

m(k+1)
q = m(k)

q − αk
(
∇mq

∇mq
L
)-1∇mq

L
∣∣∣
mq=m

(k)
q

.

(16)
Here αk ∈ (0, 1] is a step length, and the gradients of the
variational lower bound with respect to the posterior mean
are:

∇mq
L =

N∑
n=1

φna>nqΣ
-1 (yn − anqm

>
qφn − bn

)
− 1

ω2
q

mq .

(17)
Similarly, the Hessian of the variational objective is:

∇mq
∇mq

L = − 1

ω2
q

ID −
N∑
n=1

φna>nqΣ
-1anqφ

>
n. (18)

When (16) has converged to m+
q we can calculate the ap-

proximate posterior covariance,

Cq =

[
1

ω2
q

ID +

N∑
n=1

φna>nqΣ
-1anqφ

>
n

]-1

. (19)

4.4. Hyperparameter Learning

Once we have found the optimum M and Cq’s, we can
optimise the linearized L (which becomes an approxima-
tion to the lower bound) with respect to the parameters

Σ, {ω2
q} and θ, assuming the features are parameterized

φn = φ(xn,θ). Once we have found the optimum Σ,
{ω2

q}, θ, we then re-optimize for the posterior parameters
in a generalized variational-EM like procedure.

When we have determined the optimum posterior param-
eters, the trace term in Equation (12) cancels out with
the only term in Equation (15) involving Cq , i.e. QD −∑
q tr(Cq) /ω

2
q =

∑
n

∑
q φ
>
nCqφna>nqΣ

-1anq , to give,

L ≈ −N
2

[P log 2π + log |Σ|]−1

2

N∑
n=1

[
(εn)

>
Σ-1 (εn)

]
− 1

2

Q∑
q=1

[
1

ω2
q

m>qmq − log |Cq|+D logω2
q

]
. (20)

Unfortunately, the optimum mean (M+) is an implicit
function of both Σ and θ, and so in the case of the EGP, we
would require second and higher derivatives of g in order
to calculate partial derivatives of (20) with respect to these
parameters. However, if we assume O(10) tasks, P , and
a lightly parameterized feature function, φ(·), then we can
use numerical methods for local derivative-free optimiza-
tion such as COBYLA (Powell, 1994; 1998) or BOBYQA
(Powell, 2009).

5. Linearization Methods
So far we have assumed that we are given the lineariza-
tion parameters {An,bn} that allow us to approximate lo-
cally the nonlinear forward model given in Equation (14).
As g(·) is a function of our latent functions approxima-
tion Wφn, it makes sense to linearize around our current
posterior estimates of these latent functions, f̂n· = Mφn.
In this section we describe two methods for linearizing
the forward model around these posterior estimates. The
first method uses a Taylor series approximation and the
second method uses a statistical linearization (Geist &
Pietquin, 2010) based on the unscented transform (Julier &
Uhlmann, 2004). Because of the relation of our algorithms
to the Extended Gaussian Process (EGP) and the Unscented
Gaussian Process (UGP), we refer to the proposed inference
methods as the Extended Kitchen Sinks (EKS) and the Un-
scented Kitchen Sinks (UKS), respectively.

5.1. Taylor Series Linearization

We can use a first order Taylor series to linearize g(·) at
each iteration of (16),

g(Wφn) ≈ g(Mφn) + Jn (W −M)φn, (21)

where

Jn =
∂g(fn·)

∂fn·

∣∣∣
fn·=Mφn

. (22)
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Equating coefficients with (14) we have that

An = Jn and bn = g(Mφn)− JnMφn. (23)

We will refer to the method that uses this Taylor series
linearization within the variational framework described in
section 4 as Extended Kitchen Sinks (EKS).

5.2. Statistical Linearization

In order to have a statistical approach to estimating the lin-
earization parameters in Equation (14), we can use, for ex-
ample, weighted least squares. The main question is what
“training” data can we use to fit the linear model? Although
we can sample from F using Equation (10) to generate
these data, the unscented transform (UT; Julier & Uhlmann,
2004) provides a deterministic and more elegant solution.

The main point to notice here is that we are interested in lin-
earizing g as a function of fn·, where fn· is aQ-dimensional
random variable corresponding to theQ latent function val-
ues at datapoint n. Interestingly, our choice of variational
distribution in Equation (14) assumes that the joint pos-
terior factorizes across latent functions, and so does the
marginal:

q̃(fn·) = N (fn·|µn,En) , with µn = Mφn, and (24)

[En]qq′ = φ>nCqφn for q = q′ and 0 otherwise. (25)

This greatly simplifies the computation of the UT, which
involves the definition of 2Q+ 1 so-called sigma-points:

F0,n = µn (26)

Fi,n = µn + [
√

(Q+ κ)En]·,i 1 ≤ i ≤ Q (27)

Fi,n = µn − [
√

(Q+ κ)En]·,i−Q Q < i ≤ 2Q (28)

where [A]·,i denotes the ith column of matrix A and κ is
a free parameter. The corresponding forward model evalu-
ations Yi,n, and weights ui,n:

Yi,n = g(Fi,n) for 0 ≤ i ≤ 2Q (29)

u0 =
κ

Q+ κ
, ui =

1

2(Q+ κ)
for 0 < i ≤ 2Q, (30)

where we note that κ = 1/2 corresponds to uniform
weights ui = 1/(2Q+ 1).

Solving the weighted linear least squares problems with in-
puts, outputs, and weights {Fi,n,Yi,n, ui} yields the solu-
tion:

bn = ȳn −AnMφn, (31)

An = ΓnE-1
n , (32)

where En is the diagonal matrix given in Equation (25),

and ȳn and Γn are the sufficient statistics:

ȳn =

2Q∑
i=0

uiYi,n, (33)

Γn =

2Q∑
i=0

ui(Yi,n − ȳn)(Fi,n −Mφn)>. (34)

We will refer to the method that uses this statistical lin-
earization within the variational framework described in
section 4 as Unscented Kitchen Sinks (UKS). One of the
key advantages of the UKS over the EKS is that the UKS, like
the original UGP, is a ‘black-box’ method in that it requires
no gradient information of the nonlinearity in the likelihood
function in order to learn the parameters/hyperparameters
and carry out posterior approximation and predictions.

6. Prediction
The predictive distribution over the latent function values
f∗· can be computed similarly to Equation (24):

p(f∗·|x∗) = N (f∗·|µ∗ ,E∗) with µ∗ = Mφ∗ and (35)

[E∗ ]qq′ = φ>∗ Cqφ∗ for q = q′ and 0 otherwise, (36)

where φ∗ is the Q-dimensional vector of test features re-
sulting from evaluating φ(x∗). We can also predict the
noiseless observations by evaluating the integral:

ḡ∗ =

∫
g(f∗·)p(f∗·|x∗) df∗·, (37)

which we can estimate using Monte Carlo averaging.

7. Experiments
In this section we describe the experiments carried out in
order to assess the performance and the behavior of our
extended kitchen sinks (EKS) and unscented kitchen sinks
(UKS) methods. we first look at experiments on small-
scale synthetic inversion problems and a binary classifica-
tion task on the USPS dataset. As these experiments were
also carried out by Steinberg & Bonilla (2014) to evaluate
the EGP and the UGP, our first goal is to investigate how
well random kitchen sinks bases can approximate the orig-
inal EGP and UGP. Additionally, we are interested in de-
termining whether the complexity of the algorithms can be
reduced significantly by having a number of basis functions
smaller than the number of training points.

7.1. Synthetic Inversion Problem

In this experiment we generate latent function values (f )
from a GP with isotropic squared exponential covariance
function (having a signal variance σ2

s = 0.82 and a length-
scale ` = 0.6) at 1000 input points, x ∈ R, which are
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Table 1. Performance of the EKS and UKS methods compared to
their GP counterparts (EGP and UGP) on a range of synthetic
benchmarks when using D = 200 features. The mean for each
measure is shown and the standard deviation in brackets.

g(f) Method SMSE-f* NLPD-f* SMSE-g*

linear EKS 0.03 (0.01) -0.99 (0.23) 0.03 (0.01)
UKS 0.04 (0.00) -0.97 (0.11) 0.04 (0.00)
EGP 0.03 (0.01) -1.01 (0.30) 0.03 (0.01)
UGP 0.03 (0.02) -0.94 (0.43) 0.03 (0.02)

poly3 EKS 0.02 (0.01) -1.39 (0.20) 0.01 (0.00)
UKS 0.06 (0.04) 0.41 (1.69) 0.02 (0.01)
EGP 0.07 (0.02) -0.36 (0.68) 0.02 (0.01)
UGP 0.06 (0.04) -0.35 (0.62) 0.01 (0.01)

exp EKS 0.03 (0.01) -1.29 (0.20) 0.01 (0.00)
UKS 0.02 (0.01) -1.26 (0.24) 0.01 (0.00)
EGP 0.08 (0.04) 0.25 (1.52) 0.04 (0.02)
UGP 0.03 (0.02) -1.02 (0.58) 0.02 (0.01)

sin EKS 0.03 (0.02) -1.05 (0.19) 0.03 (0.01)
UKS 0.03 (0.01) -1.13 (0.10) 0.03 (0.01)
EGP 0.04 (0.02) -0.94 (0.25) 0.04 (0.02)
UGP 0.06 (0.02) -0.80 (0.22) 0.05 (0.03)

tanh EKS 0.05 (0.03) -1.14 (0.24) 0.02 (0.00)
UKS 0.04 (0.03) -0.85 (1.00) 0.03 (0.02)
EGP 0.09 (0.06) -0.85 (0.24) 0.04 (0.02)
UGP 0.05 (0.03) -0.87 (0.22) 0.03 (0.01)

uniformly spaced between [−2π, 2π]. We test our algo-
rithms and the baselines (UGP, EGP) with five simple for-
ward models; an identity function (linear), a 3rd order poly-
nomial with no cross terms (poly3), an exponential func-
tion, a sinusoid, and a tangent function. We present the
results of 5-fold cross validation (200 training, 800 testing)
in Table 1, and also show the behavior of our algorithms as
a function of the number of features in Figure 1. We use
standardized mean square error (SMSE) and negative log
probability density (NLPD) as the performance metrics.

We see in Table 1 that, in general, the EKS and UKS per-
form similarly to the EGP and UGP algorithms, and some-
times better. For example, the EGP with exponential for-
ward model has larger mean SMSE and mean NLPD with
associated high standard deviations, suggesting the algo-
rithm converged sub-optimally in one or more of the folds.
More importantly, this comparable or superior performance
by the proposed algorithms is attained with significantly
less computational cost since D < N . Finally, as seen in
Figure 1, apart from the UKS with 50 basis functions, both
algorithms appear to be relatively robust to using smaller
numbers of features, which translates into less computa-
tional cost while maintaining similar performance levels.
Analogous results are observed for the NLPD as a function
of the number of features, see the supplementary material
for details.
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Figure 1. The performance of the EKS (left) and UKS (right) on
the synthetic inversion problems as a function of the number of
features.
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Figure 2. The performance of the EKS and UKS on the binary clas-
sification problem for the USPS dataset as a function of the number
of bases used. EGP and UGP are the original (full) GP models.

7.2. Binary Handwritten Digit Classification

This is a binary classification task to distinguish between
images of the handwritten digits ‘3’ and ‘5’ in the USPS
digits datasets (Rasmussen & Williams, 2006). There are
767 images in the training set, and 773 images in the test
set. We use a logistic sigmoid as a forward model in this
task and the same settings as in the original experiments for
covariance functions and observation variance. The main
aim of this experiment is to benchmark the performance of
the EKS and UKS against the EGP and UGP for varying num-
bers of basis functions, as shown in Figure 2. It is impor-
tant to emphasize that Steinberg & Bonilla (2014) showed
that the EGP and UGP outperform or perform similarly to
hard-coded inference methods based on variational infer-
ence and expectation propagation. We observe that there
is a detriment in performance with a small number of fea-
tures (D = 200), which is to be expected since the number
of training points is N = 767, and so the exact covariance
would be harder to represent with a low number of ran-
dom basis functions. However, the performance of the EKS
and UKS approaches that of the UGP and EGP with 400 ba-
sis functions, which indicates that our random-feature ap-
proaches are reasonable approximations to the original GP
model. More importantly, for problems with a large num-
ber of training points, the EGP and the UGP are simply un-
feasible, and this is the subject of discussion in the next
section.
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Table 2. The performance of the models on the MNIST dataset for
the task of classifying the even digits vs the odd digits.

NLP Error Rate
D = 1000 D = 2000 D = 1000 D = 2000

EKS 0.129 0.088 0.043 0.026
UKS 0.129 0.088 0.043 0.026
HMG 0.069 0.022

DB 0.068 0.022

7.3. Large Scale Classification

Here we present results on a larger application on the
MNIST dataset, which contains examples of handwritten
digits, 50,000 for training, 10,000 for validation and 10,000
for testing. In our experiments, we always train on 60,000
examples that include the training and the validation set and
tune the parameters of our models via optimization of the
variational bound. This is probably a disadvantage when
compared to other approaches that use cross-validation but
our goal is only to show that our models can achieve com-
petitive performance at this scale.

Odd digits vs even digits. We first consider the binary
classification problem of distinguishing the odd digits from
the even digits, a task that has also been investigated by
Hensman et al. (2015a). The results are shown in Table
2, when using a logistic sigmoid function as the forward
model in our methods (EKS and UKS) and the methods by
Hensman et al. (2015a) and Dezfouli & Bonilla (2015). We
refer to these methods as HMG and DB respectively. As
before, we report the mean negative log probability and
the error rate on the test set for different number of fea-
tures. We see that our methods achieve similar performance
to HMG and DB when using 2000 features. While DB is
an inducing-point approach that uses 2000 inducing points
fixed via clustering, HMG uses 200 inducing points with the
extra overhead of learning their locations. Overall, we con-
clude that random feature approximations in our extended
and unscented models are competitive with the state-of-the-
art approaches to sparse GPs.

Multi-class classification: One of the contributions of our
approach with respect to the original EGP and UGP mod-
els is its scalability to a large number of observations when
having multiple outputs. In this experiment we applied our
algorithm to the task of classifying all digits on MNIST us-
ing a softmax forward model. Our methods (EKS and UKS)
achieved similar performance. For example, the EKS ob-
tained an error rate of 4.75% and an NLP of−0.1887, when
using D = 1000 features. When we increased the number
of features to D = 2000, it attained an error rate of 3.81%
and an NLP of −0.1304. These error rates are lower than
that reported by Gal et al. (2014) of 5.95%, while Dezfouli

& Bonilla (2015) reported an error rate of 2.51%. As a ref-
erence, linear classifiers achieve around 12% error rate on
this task while the state of the art is less than 1%.

7.4. Seismic Inversion

In this experiment we perform an inversion of a seismic
survey line using a one-dimensional seismic sensor forward
model. The goal is to infer both the geometry of the inter-
faces between subsurface geological layers and the seismic
propagation velocity within each layer from noisy surface
observations of the sound reflection times, Y. Our dataset
is part of a real seismic survey of the Otway basin region
in Victoria, Australia. The survey is interpreted, specifying
reflection time estimates rather than raw amplitudes. Our
transect contains 113 sites with four interface reflections
(layers) per site.

The inputs, X, are the surface positions (meters) of ground
seismic sensors, and we use the following forward model,

gtime
p =


2

(
f depth
p −f depth

p−1

f vel
p

)
+ gtime

p−1, if p > 0

2
(

f depth
0

f vel
0

)
, if p = 0

(38)

where there are P output tasks – gtime
p , the reflection times

from each layer. These outputs depend on two latent in-
put tasks; f depth

p (X), the geological depth of layer p corre-
sponding to each surface location, and f vel

p (X), the veloc-
ity of layer p below each surface input location. The layer
depths are also clipped to be at least as deep as the previous,
f depth
p = max{f depth

p , f depth
p−1 } ∀p, to enforce a geologically

valid depth structure.

We wish to infer the latent depths and velocities of each of
the four layers. Consequently, Q = 2P , and the problem
is under-constrained since there is an infinite set of layer
depths and velocities that could result in the observed re-
flection times. Thus, we cannot evaluate the quality of our
inference by its ability to predict a single truth, but instead
must assess its ability to correctly condition our prior on
these constraining observations. For this experiment, we
define flat priors for each latent function centered on aver-
age depths and velocities of each layer. A baseline infer-
ence using MCMC has been applied to sample the posterior
distribution. See the supplementary material for more de-
tails.

The results of both the EKS and UKS methods were very
similar. Figure 3 shows the results from the EKS method
inferring the distribution over layer boundary depths (left)
and seismic transmission velocities (right). The MCMC so-
lution is overlaid. Clearly the MCMC solution is in agree-
ment with the structure of the layer velocities and depths.
However, we do note that the MCMC draws are smoother.
This may be because the limited number of radial basis
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Figure 3. Results of the EKS on the seismic inversion problem.
The inferred layer boundaries (left) and seismic velocities (right)
are shown in blue, indicating the predictive means and standard
deviation envelopes. Draws from the MCMC inversion are overlaid
in dotted black.

functions used in the MCMC has restricted its ability to infer
high frequency details. Additional evaluation of the results
can be found in the supplementary material.

8. Related work
Most previous work in the GP community has focused
on addressing the scalability, multi-task learning or non-
linear likelihood challenges in isolation. For example,
with regards to scalability, the seminal work of Quiñonero-
Candela & Rasmussen (2005) allowed the community to
understand most sparse approximations in GP models from
a probabilistic perspective, and the framework of Titsias
(2009) has become the underpinning machinery of most
modern scalable approaches to GP regression and classi-
fication. Nevertheless, the scalability problem in GP mod-
els continues to be an intensive area of research, with the
recently developed distributed inference framework of Gal
et al. (2014), and the variational inference frameworks for
scalable GP regression and classification by Hensman et al.
(2013) and Hensman et al. (2015a), respectively. With re-
gards to multi-output and multi-task learning, one of the
most notable approaches has been developed by Álvarez
& Lawrence (2009) using the convolution formalism, al-
though their later work also focuses on developing effi-
cient inference algorithms for such models (Álvarez &
Lawrence, 2011). Finally, concerning non-linear likeli-
hoods, Opper & Archambeau (2009) presented the seem-
ingly surprising (but powerful) result of estimating a full
Gaussian posterior for models with GP priors and general
i.i.d likelihoods efficiently using variational inference.

Although the work by Rahimi & Recht (2008; 2009) has
been highly influential in the area of deterministic kernel
machines, it is surprising that their random kitchen sinks
(RKS) approximations had not been investigated more thor-
oughly in probabilistic kernel frameworks such as Gaussian
process models. For example, Dai et al. (2014) have used
random features for kernel machines, although their main
focus is on non-probabilistic approaches that are under-

pinned by convex optimization. Only very recently, Yang
et al. (2015) have investigated the problem of developing
scalable and flexible probabilistic kernel approaches for re-
gression using fast approximations to the original RKS (Le
et al., 2013).

Contemporary to our work, Hensman et al. (2015b) and
Dezfouli & Bonilla (2015) have proposed scalable ap-
proaches to inference in GP models with general likeli-
hoods. We see our extended and unscented kitchen sinks
methods as alternative approaches to their work that builds
upon the inducing-point formalism of Titsias (2009). A
thorough comparison and evaluation of both approaches is
an interesting area for immediate future work.

9. Conclusion & Discussion
We have presented the EKS and the UKS methods for pos-
terior inference in GP models with nonlinear likelihoods.
These methods are multi-task and scalable generalizations
of the EGP and UGP algorithms of Steinberg & Bonilla
(2014). The UKS, like the UGP, is a ‘black-box’ method
in that it requires no gradients of the nonlinearity in the
likelihood.

We have shown in our experiments that, by using RKS
approximations, we can achieve similar prediction perfor-
mance to the original algorithms, while drastically reducing
their computational complexity and increasing their scal-
ability. Furthermore, we have demonstrated the EKS and
UKS successfully performing a multi-task Bayesian seismic
inversion — which is an ideal use case for these algorithms
as a fast and scalable alternative to MCMC. Because our lin-
earization algorithms are local and adaptive, the EKS (and
the original EGP) can be seen as refined (iterated) versions
of the Laplace approximation, where the linearization gets
updated at every iteration as a function of the variational
parameters. The UKS (and the original UGP) can provide
us with more elaborate and effective ways to propagate the
first and second moments through nonlinearities.

Since the approximating model in Equations (7) and (8)
is no longer a GP model, other inference methods such as
MCMC can be used in practice. In fact, as mentioned in
§7.4, we implemented MCMC algorithms for these prob-
lems but found them too slow to be applied to large
datasets. Nevertheless, further study and improvement
of sampling algorithms such as MCMC is indeed a very
promising research direction. On an alternative vein, we
would also like to use a stochastic gradient optimizer for
learning all model (hyper)parameters, and extend the pos-
terior representation to a mixture of Gaussians, in a similar
fashion as Nguyen & Bonilla (2014) and Gershman et al.
(2012).
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