Speeding up £-means by approximating Euclidean distances via block vectors

Thomas Bottesch'2
Thomas Biihler!
Markus Kiichele?

! Avira Operations GmbH & Co. KG, Tettnang, Germany

THOMAS.BOTTESCH @ AVIRA.COM
THOMAS.BUEHLER @ AVIRA.COM
MARKUS.KAECHELE @ UNI-ULM.DE

Institute of Neural Information Processing, Ulm University, Ulm, Germany

Abstract

This paper introduces a new method to approx-
imate Euclidean distances between points using
block vectors in combination with the Holder in-
equality. By defining lower bounds based on the
proposed approximation, cluster algorithms can
be considerably accelerated without loss of qual-
ity. In extensive experiments, we show a consid-
erable reduction in terms of computational time
in comparison to standard methods and the re-
cently proposed Yinyang k-means. Additionally
we show that the memory consumption of the
presented clustering algorithm does not depend
on the number of clusters, which makes the ap-
proach suitable for large scale problems.

1. Introduction

The problem of finding meaningful clusters in large quan-
tities of data is an essential task with a wide range of appli-
cations in data analysis and machine learning. Intuitively,
the clustering problem can be described as finding groups
of points which are similar to each other but are different
from the members of other groups. One of the most pop-
ular clustering techniques is k-means clustering. The stan-
dard algorithm for the k-means problem (Lloyd, 1982) has
been applied to a wide range of applications including im-
age segmentation and compression (Kanungo et al., 2002),
information retrieval (Steinbach et al., 2000), and bioinfor-
matics (Yeung et al., 2001). Among the reasons for the
popularity of Lloyd’s algorithm is its simplicity, geometric
intuition as well as its experimentally proven ability to find
meaningful clusters.

At the heart of the k-means algorithm is the computation of
distances between the points and the cluster centers. How-

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ever, in a naive implementation of the algorithm, one would
need to compute the Euclidean distances between all points
and all cluster centers in the assignment step. For large
sample sizes, this becomes the main bottleneck and pre-
vents the algorithm from being scalable to large datasets
and high dimensions. Moreover, note that the standard ver-
sion of k-means is not adapted to large sparse datasets.

For this reason, recent research by several authors focused
on accelerating k-means. Their approaches can be divided
into two categories. The algorithms of the first category
try to find an approximate solution of the standard k-means
efficiently, see e.g. Philbin et al. (2007); Sculley (2010);
Wang et al. (2012). A second class of algorithms is exact
in the sense that it can be guaranteed that the same result
as standard k-means is achieved, given the same initial-
ization. Examples of this type of methods are techniques
based on more efficient data structures (Alsabti, 1998; Pel-
leg & Moore, 1999; Kanungo et al., 2002) or methods uti-
lizing the triangle inequality (Elkan, 2003; Hamerly, 2010;
Drake & Hamerly, 2012; Ding et al., 2015).

In this paper, we propose a set of exact optimization tech-
niques for k-means which decrease the computational time
while guaranteeing the same results as standard k-means.
Our techniques are based on efficiently obtained lower
bounds on the distances to the cluster centers, allowing
us to skip corresponding distance calculations. In recent
research (Ding et al., 2015) it was shown that an initial
grouping of the cluster centers can be used to obtain an
efficient filtering mechanism to avoid redundant distance
calculations. This approach is known as Yinyang k-means.
We show that a similar technique is possible by utilizing a
grouping of the input dimensions, which will be referred to
as blockification. Thus, our approach can be seen as com-
plementary to the one by Ding et al. (2015). Indeed, we will
see in the experiments that the best results are obtained by
combining the strengths of both methods.

The remainder of the paper is organized as follows: Section
2 contains an overview of the k-means algorithm and sev-

Speeding up k-means by approximating Euclidean distances via block vectors

eral approaches for its algorithmic improvement. Section
3 deals with lower bounds on the Euclidean distances be-
tween points and cluster centers. In particular, we discuss
how to use the bounds which originated from blockifica-
tion. These results are applied in Section 4 to obtain exact
optimizations of standard and Yinyang k-means. Finally, in
Section 5, a series of experiments is performed demonstrat-
ing the superiority of our method to previous approaches.

2. k-means clustering

The k-means cost function is a widely-used clustering cri-
terion. The goal is to partition some given data x; ...z, €
R into k disjoint clusters C = {C1,...,Cy} such that
the within-cluster sum of squared distortions is minimized.
Given a set of k cluster centers C = {c1,...,cx}, the k-
means objective is defined as (see e.g. Hastie et al., 2001)

k
cost(C,C) =D Y d(wi, ;))

j=1z;€C;

where d(x,y) denotes the Euclidean distance between x
andy € R<, which we will formalize in the next section.

Geometrically, the above cost function means that our aim
is to find groups of points surrounding the cluster centers
c1,...,c,. Note that this is a challenging problem since
the cost function in (1) is non-convex. In fact, one can
show that the problem of finding the global minimum of
the k-means objective is an NP-hard problem (Dasgupta,
2007; Mahajan et al., 2009; Vattani, 2009). Thus, several
techniques have been proposed to find locally optimal so-
Iutions of (1). The most popular technique is Lloyd’s al-
gorithm (Lloyd, 1982), which is commonly just referred to
as the k-means algorithm. The main idea is to compute a
locally optimal solution of (1) by iterating between deter-
mining the assignment to the nearest clusters and finding
the centers of the current cluster assignment.

Algorithm 1 Lloyd’s algorithm for k-means

Input: data X = {x1...2,} CR% no.of clusters k € N
Initialization: random centers c; . .. ¢ € R?

repeat
Find closest cluster centers:
Ve e X : b(z) = argmin;_, ,{d(z,¢c;)}

Update cluster centers ¢ . . . c:
Vie{l...k}: ¢; =mean({z € X | b(z) = j})
until cluster centers stop changing
Output: cluster centers ci . . . ¢k

This process, shown in Alg. 1, is repeated until the clus-
ters do not change anymore. One can show that each of the
two steps of Alg. 1 reduces the objective in (1) and there-
fore one converges towards a local minimum of (1), see
e.g. Hastie et al. (2001). However, note that due to the non-
convexity of (1) the convergence to a global minimum is

not guaranteed. Hence, several authors proposed differ-
ent techniques to find good initializations of Lloyd’s al-
gorithm, see e.g. Arthur & Vassilvitskii (2007); Ostrovsky
et al. (2013); Bahmani et al. (2012).

Despite its lack of theoretical guarantees, the algorithm in
Alg. 1 is one of the most widely used clustering algorithms
(Wu et al., 2007). One reason for the popularity of Alg. 1
is its simplicity. However, note that in a naive implemen-
tation, in the assignment step, the Euclidean distances be-
tween all points and all cluster centers have to be computed,
which is of complexity O(nk). Since this is not feasible for
a large number of points or clusters, several authors con-
sidered more optimized variants of Alg. 1, which will be
discussed in the following.

2.1. Previous work on optimizing k-means

Several authors proposed different variants of k-means
with the goal of reducing the amount of required distance
computations. One approach is to organize the data in a k-d
tree, which is a binary tree constructed by recursively split-
ting the data so that each node represents the corresponding
subspace. Thus, the tree corresponds to a hierarchical par-
titioning which is used to find the closest points to a given
cluster center efficiently (Alsabti, 1998; Pelleg & Moore,
1999; Kanungo et al., 2002). However, these methods only
work well for small dimensions, as for large dimensions
traversing the tree can become prohibitively expensive.

A different approach is to effectively remove redundant dis-
tance calculations. Several authors observed that a simple
enhancement is possible by using the fact that some cluster
centers do not change in successive iterations: if during the
cluster update step, the assigned center moves closer to a
point z, all centers which did not move cannot be closer
to x, thus the corresponding distance calculations can be
skipped (Kaukoranta et al., 2000; Fahim et al., 2006).

In the method by Elkan (2003), a matrix of pairwise dis-
tances between cluster centers is maintained in each step.
Then, the triangle inequality is applied to obtain lower
bounds on the distances between points and centers, which
are then used to eliminate redundant distance calculations.
While this technique causes a significant speed-up com-
pared to standard k-means, maintaining the bounds implies
memory and runtime requirements of O(kn) and hence it
is unfeasible for large cluster sizes. Hamerly (2010) pro-
posed a modification using only one lower bound per point
to the distance to its second-closest center. In low dimen-
sions, this technique yields a better trade-off between the
time needed to maintain the bounds and the time saved by
skipping distance calculations. Drake & Hamerly (2012)
combined the strengths of the above methods by consider-
ing lower bounds to the b next-closest centers, where the
value of b is found by an adaptive tuning strategy.

Speeding up k-means by approximating Euclidean distances via block vectors

A related problem from the signal processing community is
the task of vector quantization by finding a good codebook.
Based on similar lower bounds on the distance to a given
code vector, several authors derived sufficient conditions
which guarantee that the considered code vector cannot
be optimal. For instance, Mielikainen (2002) proposed a
lower bound based on cosine similarities. Torres & Huguet
(1994) presented a bound using the max-norm, and Wu &
Lin (2000) proposed a bound following from the Cauchy-
Schwarz inequality, both of which can be seen as special
cases of the bound we will discuss in Section 3. Further-
more, similar techniques were used for matrix compression
in the context of top-k search (Low & Zheng, 2012). We are
not aware of any work accelerating k-means using bounds
based on the blockification strategy proposed in this paper.

The above methods are exact in the sense that they can
guarantee to achieve the same result as Lloyd’s algorithm,
given the same initialization. In a different line of research,
several authors developed methods to compute approxi-
mate solutions of the k-means problem very efficiently. Ex-
amples include approaches based on random subsampling
(Sculley, 2010) and approximate nearest neighbour search
(Philbin et al., 2007; Wang et al., 2012). While these ap-
proximate techniques have been shown to lead to signifi-
cant speed-ups compared to standard k-means, they cannot
guarantee to obtain the same results as Lloyd’s algorithm.

2.2. Yinyang k-means

Recently, Ding et al. (2015) proposed an enhanced version
of k-means which we will discuss in the following. At
the heart of their algorithm is the idea of filtering unnec-
essary distance calculations by using continuously main-
tained lower bounds on the distances of each point to the
cluster centers, as well as an upper bound to the cluster
center it is currently assigned to.

The algorithm, which is shown in Alg. 2, utilizes a coarse
partitioning of the cluster centers into ¢ groups G =
{G:...G;}. Ding et al. (2015) proposed to obtain this
grouping by means of five iterations of standard k-means.
The groups are then used as follows: given a point z, a
group G, and a lower bound 1b(z, G) on the minimum dis-
tance of x to any cluster center ¢ € G, one observes that
if there is a different cluster center ¢, such that the condi-
tion Ib(z, G) > d(z, c) holds, no ¢ € G can be closer to
x than ¢;,. Therefore, all distance calculations to elements
of G can be avoided. If the above condition holds for all
G; € G, all centers are at least as far away as c,. Finally,
if the stronger condition 1b(x, G;) > ub(x) holds, even
the calculation of d(z, ¢p) is unnecessary. Here, ub(x) is
an upper bound on the distance between x and its closest
cluster center. Thus, checking the above conditions in re-
verse order, as done in the global and group filtering stages

Algorithm 2 Yinyang k-means

Input: data X = {z1...2,} C R? number of clusters k €
N, number of groups ¢ < L%J
Initialize centers/groups: random centers c; . .. ¢, € R with
indexes split into ¢ groups G1 ... Gy C {1...k}
Initialize bounds: after one k-means iteration: Vr € X:
b(z) = argmin;_, {d(z,c;)}. ub(z) = d(,cs(s)) and
Vi€ {1...t}: Ib(z,Gi) =min{d(z,c;)|j € Gi—b(z)}
repeat
Update cluster centers and center/group drifts:
forj=1...kdo
¢; =c¢;; ¢; =mean({z € X | b(z) = j})
5(e;) = d(cs, c})
Set §(G;) = maxjeq, d(cj) fori =1...¢
forx =z:...2, do
Use shift to update bounds:
ub(z) = ub(x) + d(cp(z))
Ib(z, Gi)ota = Ib(z,Gi) fori =1...¢
Ib(z, Gi) = 1b(z,G;) — 6(Gy) fori =1...¢
b(2)o1a = b(x)
Global filtering:
If min‘_; Ib(z, G;) > ub(z): continue
Tighten bound: ub(z) = d(z, cy())
If mint_; Ib(z, G;) > ub(x): continue
Group filtering:
LetG ={ie{l...t}|Ib(z,G;) < ub(z)}

Set Ib(z, G;) = oo, Vi € G
Local filtering:
Perform local filtering according to Alg. 3
until cluster centers stop changing

Output: cluster centers ¢ . . . Cx

in Alg. 2, yields an efficient way to reduce the number of
needed distance calculations.

Algorithm 3 Local filtering in Yinyang k-means

fori € G do
for j € G; do
If b(x)o1a = j: continue
If Ib(z, Gi) < Ib(z, Gi)ota — 0(c;): continue
If d(z, ¢;) < ub(z):
Findl € {1...t}s.t. b(z) € Gy
Ib(z, G;) = ub(z)
ub() = d(z,¢;); b(x) = §
else if d(z, ¢;) < Ib(z, G;):
Ib(z, G;) = d(z, ¢;)

In the local filtering stage (Alg. 3), one now considers ev-
ery cluster center c in the remaining groups G;. Here, sim-
ilarly to before one checks whether for a different cluster
center ¢y, the condition d(z, ;) < lb(x,G;) — d(c,) is
valid, where ¢’ is the location of the cluster center at the
previous iteration. In this case, ¢ cannot be optimal, which
again follows from the triangle inequality (Ding et al.,
2015). The resulting steps can be seen in Alg. 3. While
the global and local filtering steps introduced by Ding et al.
(2015) typically yield a significant speed-up compared to
standard k-means, note that in the beginning the algorithm

Speeding up k-means by approximating Euclidean distances via block vectors

still needs to compute one full iteration of k-means, which
requires the computation of all distances to the centers.

One recurring theme in the optimizations of k-means dis-
cussed above is that they rely on the computation of lower
bounds on the distances to the cluster centers which are
then used to eliminate the actual computation of the dis-
tance. The efficiency of the resulting method hinges on the
tightness of the bounds as well as the efficiency in which
the bounds can be computed. For this reason, in the follow-
ing section, we will further investigate the question how to
obtain lower bounds on the Euclidean distance.

3. Lower bounds on the Euclidean distance

One of the main building blocks of the k-means algorithm
is the computation of Euclidean distances between points
x € R% and cluster centers ¢ € R%. In standard k-means,
the distances of all n points to k cluster centers need to be
computed in every iteration. Thus, if d is large, the compu-
tation of the Euclidean distances becomes the main bottle-
neck of the k-means algorithm.

For this reason, it is crucial for the performance of the al-
gorithm to limit the number of computed distance calcula-
tions. The main idea is the following: assume that, for a
given point 2 € R, one has already computed the distance
d(z, c) to a given cluster center ¢ € R%. Assume now that
for a different cluster center ¢ € R? one has obtained a
lower bound 1b(z, ¢’) on the distance d(x,¢’). If it holds
that Ib(z,¢’) > d(z,c), then clearly also d(z,c’) has to
be larger than d(x, c). Thus we can conclude that ¢’ can-
not be the closest cluster center and the computation of the
distance to d(z, ¢’) can be skipped.

In order for this technique to work efficiently, the lower
bound lb(z, ¢') ideally needs to fulfill two conditions: on
one hand, it needs to be as tight as possible, in order to
maximize the probability that indeed Ib(z, ") > d(z,c).
On the other hand, one needs to be able to compute it effi-
ciently, in order to achieve the desired overall improvement
in runtime and memory requirement. In practice, one usu-
ally observes a certain trade-off between a bound which is
easy to compute but quite loose, and a very tight bound
which leads to many skipped distance calculations but is
more costly. We will now discuss several different tech-
niques to compute lower bounds on the Euclidean distance.

In the following, let ||z, denote the /P-norm of z € RY,

defined for p > 1 as |z, == (3°;., |z:[")"/?. More-
over, we use the usual definition ||z ||, := lim, o ||z[|, =
max; |x;| (Horn & Johnson, 1990). For p = 2, one obtains
the standard Euclidean norm. Moreover, for points z,y €
RY, the Euclidean distance is given as d(, y) :== ||z —y/,.
Our goal is to find lower bounds on d(x,).

3.1. Bounds based on Holder’s inequality

We start by giving a simple bound on the Euclidean dis-
tance which is based on Holder’s inequality.

Proposition 3.1. Let z,y € R% Forany 1 < p,q < oo
with % + % = 1, a lower bound on d(x,y) is given by

2 2
b2 (2,) := y/max {0, [l2]3 + Iy — 2]zl lyll, }-

Proof. Writing the squared Euclidean distance as ||z —
2 2 2 I
yllz = llzlly + [lyll; — 2(z,y), one can apply Holder’s
inequality (z,y) < |[[z||,[ly[l,, which directly yields

2 2
d(z,y)* = |zl + llyll; = 2lz],llyl,- Clearly also
d(z,y)? > 0. The result then follows by taking the square
root and using that d(z, y) > 0 since d is a norm. O

One now immediately obtains the following lower bound
(which is the analogous result based on the Cauchy-
Schwarz inequality) as special case.

Corollary 3.2. Let z,y € R% A lower bound on the Eu-
clidean distance d(x,y) is given by

2 2
b (z,y) == \/”xHQ + llyllz = 2l llyll,-

Proof. This follows from Prop. 3.1 for p = ¢ = 2, using
2 2 2
that ||z [y +{lyll; =2l llyllylly = (2l = [lyll)™ = 0. O

Thus, for p = ¢ = 2, an approximation of the inner product
is given by ||z||,||y||,. Moreover, one also observes from
Prop. 3.1 that in the limit cases p — 1 and ¢ — 1 the in-
ner product becomes approximated by ||z||,; max; |y;| and
max; |x;| ||y||,, respectively. Thus, the general result in
Prop. 3.1 includes the bounds utilized by Torres & Huguet
(1994) and Wu & Lin (2000) in the context of vector quan-
tization as special cases.

Prop. 3.1 means that z has a distance of at least lbf (x,y)
to y. Suppose z is a point and c is a cluster center. With the
reasoning given at the beginning of this section, all ¢’ € C
with lbf (z,c') > d(z, c) cannot be closer to z than ¢ and
can be skipped in the distance calculation step.

Assume that the values of ||z||, and |||, are precomputed,
then for any choice of p and ¢ the bound in Prop. 3.1 can
be obtained very efficiently. However, while it can al-
ready lead to some avoided computations it is too loose
to be effective in general. To see this, consider the follow-
ing example for the case p = 2: Suppose z € R? is a
point with 1 = 1 and zero else, and y € R? is a second
point only consisting of ones. Then the dot product (x, y)
between these two points is equal to 1. The approxima-
tion |||, |y||, however is v/d, which can be considerably
higher, thus leading to a loose lower bound.

Speeding up k-means by approximating Euclidean distances via block vectors

3.2. Using block vectors to tighten the lower bounds

We will first describe the blockification process which
will be used to obtain tighter lower bounds. A point
x € RY can be subdivided into b blocks T(1) .- Tp) of
sizes > 1 by splitting along its dimensions, i.e. one has
x(l) = (Il . ..Ill), 1’(2) = (Il1+1 . ..I’IQ) and so on,
where 0 = [p < ... < [, = d is an increasing sequence
of indexes. Then a vector =g, € R? with b < d which is
referred to as block vector is constructed by calculating the

p-norm of every block and setting (2gy); == ||z () |,,-
Z1
T1
2 i/],
T = — = Tpp 2)
Td—1 T,
Zq
i/ wll,

Note that above for simplicity we used the notation ¢ := [
and j := lg_1+1. The blockification process is equal to the
compression technique of Low & Zheng (2012) applied to
a one-dimensional matrix when replacing the used norm.
The above block vector can now be used to obtain a tighter
lower bound than the one in Prop. 3.1.

Lemma 3.3. (Tightened Holder’s Inequality). Let x,y €
RY and let TBp, YBq € R® be block vectors as defined
above, where 1 < p,q < oo with % + % = 1. Then

(,y) < (zBp, ymg) < llzll,llYll,-

Proof. The inner product can be decomposed into blocks
as (z,y) Zfﬂ(x(i),y(i)). By Holder’s inequal-
ity, one has for each of the blocks, (z(;,¥y())

¢ <
)1, 9oyl and hence (z, y) < 520 [l M, 1y ll, =
(Bp, Yg)- On the other hand, again due to Holder one
has (2mp, yrg) < [lz8pll,lUByll,- By construction of wp,

. b b
it holds that [|zs,|” = Y, |zg, P = X0 [z I” =

b I d ,)
Dt gty |7lP = 25 |w5l” = [|=][} and analo-
g0u81y fOr yBQ' It fOllOWS that HxBPHpHquHq = ||me||y||q’
which concludes the proof.

Different values of b lead to different intuitive solutions. If
b = n then xg, = x and (x,y) = (Tgp, Yrq) and hence the
left inequality in Lemma 3.3 is tight. On the other hand, if
b = 1then (zpp, yrq) = [|z|, [yl and we obtain Holder’s
inequality. With the option to choose b the quality of the
dot product approximation can be controlled. Note that in
the case where x(;y = 0 for some block ¢ (or analogously
Yy = 0), we have 0 = (z(iy, yi)) < lzwll,llvell, =0,
which means that in this case, the corresponding part of the

inner product (z,y) gets approximated exactly. Note that
in this case the corresponding part y ;) # 0 (or analogously
z(;y # 0) would still contribute to [|z|,[|y[|, while it has
no influence on [|z(;)[[,,|[y(; |, For large sparse datasets,
typically this case occurs very frequently.

Corollary 3.4. (Tightened Cauchy-Schwarz Inequality).

Let z,y € R? and let T2, Y2 € R® be block vectors
as defined above. Then it holds that

(@,y) < (m2,m2) <[22]l

The above tightened versions of Holder and Cauchy-
Schwarz inequality can now be used to obtain the following
tightened lower bounds on the Euclidean distance.

Proposition 3.5. Let z,y € R?, and let TRy, Yrg be block
vectors as defined above, where 1 < p,q < oo with %—i—% =
1. Then a lower bound on d(x,y) is given by

b2 () := /max {0,]2 + [yll2 — 2(wsp: yea) }-

. 2 2

Proof. Writing [lz — y[12 = Je1]3 + lyll3 — 2(z, y) and ap-
plying Lemma 3.3, one obtains d(z,y)? > Hx||§ + ||y||§ —
2(zmp, Ysq). The result follows since d(x,y) > 0. O

Corollary 3.6. Let v,y € R% and let wp,,ys, be block
vectors as defined above, where 1 < p,q < oo with %—i—% =
1. Then a lower bound on d(x,y) is given by

b (2, y) = /Il 2 + Iyl - 2(ws2, ysa).

Proof. This follows from Prop. 3.5 by setting p = ¢ = 2
and using that (zg2, ys2) < ||z|5||y||,, which implies that

2 2 2
lzlly + lyllz = 2{z82, ys2) > (zll; - [lyll;)” = 0. O

With the block vectors precomputed, the evaluation of the
lower bound in Prop. 3.5 is very efficient. However, for
a too high value of b the precomputation and storing of
the block vectors becomes the main bottleneck and hence
obtaining the lower bound can get very expensive. On
the other hand, while for the choice of b = 1, the lower
bound in Prop. 3.5 coincides with the one in Prop. 3.1, in
the case of a high value of b one obtains a better approxi-
mation of the Euclidean distance. To see this, let us again
consider our example from the end of the previous section
where the dot product of the vectors = and y was 1. Sup-
pose the dimensions of x and y are split into b blocks of
equal sizes. The approximation with block vectors then
is (zp2, yp2) = \/c% which can be considerably closer
to 1 in this ideal example. We will further investigate the
trade-off between achieving a good approximation of the
Euclidean distance and fast computation of the bounds for
different choices of b in the experimental section.

Speeding up k-means by approximating Euclidean distances via block vectors

4. Exact optimizations for ~-means and
Yinyang £-means

In the following we show how the proposed techniques are
used to derive optimized variants of standard k-means as
well as yinyang k-means. For simplicity of notation, we
restrict ourselves to the case p = 2 and omit the subscripts
for p in the notation for the block vectors, norms, etc. How-
ever, all results also carry over to the general case.

4.1. k-means lower bound optimized

In general yinyang and Elkans’s k-means save a lot of dis-
tance calculations. However, with increasing & the memory
consumption and computational cost required to maintain
the necessary data structures grow linearly for yinyang and
quadratically for Elkans’s k-means, making them slow for
large numbers of clusters. In Alg. 4 we mitigate this prob-
lem by using the lower bounds from Section 3, which yield
almost no maintenance costs with increasing k compared
to the previously mentioned algorithms.

Algorithm 4 kmeans_optimized

Input: data X = {x1 ...2,} CR% no.of clusters k € N
Initialization: random centers ¢ . .. ¢, C R?
Precalculate Vo € X: ||z||, zg and initialize b(z) with any
centerindex ¢ =1...k
SetY =0,Z=10
repeat
Precalculate ||c;|| and ¢;p for j =1...k
forx =z:...2, do
forj=1...kdo
Ifz € Z and ¢; € Y: continue
If 1b% (2, ¢;) > d(, cy()): continue
If 1b® (2, ¢;) > d(, cy()): continue
If d(z, c;) < d(z, cpzy): b(x) = j

Y =0,7Z=0
forj=1...kdo
¢; =c¢;; ¢j =mean({z € X | b(z) = j})

If (d(cj, ¢5) =0): Y =Y U {c;}
Z=7ZU{z e X|bx)=jANd=c;) <d(z,c;)}
until cluster centers stop changing

Output: centers ¢ . . . cx

The key features of Alg. 4 are the two precalculation steps.
Initially all data required to compute the lower bounds are
computed for all points x. At the start of every iteration
the same is done for all cluster centers ¢y ...ci. While
iterating through the centers for every x the lower bounds
in the order cheapest first are evaluated. Only if no lower
bound condition was met d(z, ¢) has to be calculated and
c eventually becomes the new closest center pointed to by
b(x). After updating b(z) for all z, the clusters are shifted
analogously to standard k-means.

A consequence of the proposed technique is the need to
calculate the lower bounds between every point and cen-
ter in every iteration. In the initial phase this is hardly an

issue but near convergence, when few clusters are shifting,
the additional cost of calculating the lower bounds becomes
severe. We avoid this by using the following additional op-
timization, see e.g. (Kaukoranta et al., 2000; Fahim et al.,
2006): Let ¢’ be the closest cluster center to x before shift-
ing, and c the center after shifting. If d(z,¢) < d(z,c),
then all cluster centers c; . .. c, which did not shift in the
last iteration cannot be closer to x than c. Thus, in Alg. 4
we maintain two sets Y and Z: the set Y contains all clus-
ter centers which did not shift in the last iteration, while the
set Z contains all points = with d(z, ¢) < d(z,).

One main disadvantage of yinyang is that in order to save
any computations, in a preprocessing iteration a regular k-
means step of complexity of O(nk) has to be performed.
Often more than 50% of the running time of yinyang is
spent in this step. The design of Alg. 4 avoids this issue
and even with an initial random choice of ¢, it saves a
considerable amount of calculations in the first iteration,
giving it an advantage in the initial phase of k-means.

4.2. Yinyang k-means lower bound optimized

In yinyang at every step 1b(x, G;) contains an exact dis-
tance to a cluster in the local filtering stage. In order to
achieve a faster algorithm we propose to store lower bounds
in Ib(z, G;) instead of exact distances. This is achieved
by three lines of code (marked grey) added to the local
filtering step of yinyang (see Alg. 5). If the lower bound
1b®(x,¢;) is larger than ub(z) then d(z,¢;) cannot be-
come the new upper bound. However it can still become
the new 1b(x, G;). The normal procedure would be to cal-
culate d(x, ¢;) and check if it is smaller than 1b(z, G;). If
it is smaller, Ib(x, G;) would be set to d(z,c;). Instead
Alg. 5 only checks if Ib”(z, ¢;) is smaller than Ib(z, G;).
If it is smaller, Ib(z, G;) gets set to Ib? (z, ¢;).

Algorithm 5 Local filtering in fast_yinyang

fori € G do
for j € G; do

If b(x)o1q = j: continue

If Ib(z, G;) < Ib(x, Gi)ota — 6(c;): continue

If 1bZ(z, ¢;) > ub(x):
If 1b% (z, ¢;) < Ib(z, G;): Ib(z, G;) =1b5 (z, ¢;)
continue

If d(z, ¢;) < ub(z):
Find[€ {1 L t} S.t. Cp(a) € G
Ib(z, Gi) = ub(z)
ub(z) = d(z,c;); b(z) =3

else if d(z, ¢;) < Ib(z, Gs):
Ib(z, G;) = d(z, cj)

The proposed method influences all levels of filtering di-
rectly, since 1b(x, G;) is used in global-, group- and local
filtering. Using lower bounds as lb(z, G;) can be very ef-
ficient in the first iterations, but when converging, using

Speeding up k-means by approximating Euclidean distances via block vectors

20

time /s

10 |- 5
— sector
— usps

| | | T
0 0.2 0.4 0.6 0.8 1
relative block vector size

Figure 1. Observing the speed of kmeans_optimized for k = 1000
while varying the relative block vector size, computed as the av-
erage number of non-zero values of the block vectors relative to
the average number of non-zero values of X.

exact distances for Ib(x, G;) is more efficient. Thus a good
strategy is to switch to the standard yinyang after a number
of iterations, which can be done by deactivating the grey
marked lines in Alg. 5. We empirically observed a value of
15 iterations to work well in practice. Thus with this pro-
posal we solve yinyang’s problem of having a slow start.

5. Experimental evaluation

A series of experiments were carried out using 9
datasets, most of which are taken from the libsvm
homepage'. Additionally, large scale image and malware
datasets were analysed. The sets were selected to cover a
broad range of variations in sample size, number of feature
dimensions and sparsity, see the left column in Table 2.
Prior to experimentation, they have all been scaled to the
range between 0 and 1. In the following, for a sample
2 € R? and analogously for a block vector zy € R®, we
denote the number of non-zero components by nnz(x) or
nnz(xp), respectively. Moreover, for a set of samples X =
{1 ...z,}, we introduce the notation annz(X) to denote
the average number of non-zero elements, i.e. annz(X) :=
L5 nnz(z;). In the experiments, the same initial clus-
ter centers are chosen for all methods. As a consequence,
the exact same clustering is generated after every iteration.

Determining the block vector size. To determine a good
value for the number of blocks used in the blockification
technique described in Section 3, an experiment with the
algorithm kmeans_optimized was conducted. In Fig. 1 we
observe the clustering duration for various block vector
sizes for the datasets usps and sector while having a static
k of 1000. Note that instead of reporting absolute block
vector sizes in the x-axis, we use the relative number of
non-zero elements in the block vectors. To be more pre-
cise, we use the ratio %(())((B))’ which is more appropri-

'https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

g — yinyang
B 3 -

g- — block vectors
=

2 2

15)

Q

>

5 1

g

[}

g 0 -

| | | |
0 200 400 600 800

number of clusters

1,000

Figure 2. Additional memory consumption (rel. to input size) for
yinyang’s data structures vs. storing the block vectors. The worst
case memory consumption of the block vectors is independent of
the number of clusters while it grows linearly for yinyang.

ate in a sparse setting. In Fig. 1 we observe that a value
b leading to 0.15 annz(X) < annz(Xp) < 0.4 annz(X)
results in the shortest clustering duration for both datasets.
Based on the results from this experiment, in the follow-
ing the size of the block vectors is chosen in such a way
that annz(Xp) ~ 0.3annz(X). This is achieved by start-
ing off with a static initial block size, and iteratively reduc-
ing the block size until annz(Xp) < 0.3 annz(X) holds.
In our experiments, this iterative procedure typically needs
around 3-4 steps until the condition is met. Creating the
block vectors in memory is very cheap compared to com-
puting even one iteration of k-means. If » = annz(X) - n
is the memory needed to store the input matrix X (sparse),
then the block vectors Xp require about 0.3 memory. The
worst case memory consumption due to block vectors is
therefore 0.3r for Xp plus an additional 0.3r for the stor-
age of the cluster center block vectors. This worst case
is only reached if every sample is a cluster. On the other
hand, to store the groups yinyang needs Tko - N memory.
Fig.2 shows that when increasing k, yinyang exceeds the
constant worst case memory consumption of the block vec-
tors. Storing the block vectors gets cheaper (relative to total
memory consumption) with increasing sparsity of X while
yinyang does not profit from a higher sparsity.

Center count dependency. The nature of how block vec-
tors are constructed makes them very interesting especially
for sparse data. In a sparse setting, since the cluster cen-
ters are computed as the mean of the points in the corre-
sponding cluster, they tend to become more sparse with
increasing k. At the same time the evaluation of the dot
product between the samples and between the block vectors
gets cheaper. Additionally, for sparser data, the approxima-
tion of the distances through block vectors gets more ac-
curate. To verify this claim, an experiment was conducted
using the algorithm kmeans_optimized where the block vec-
tor size was fixed and the number of clusters k was varied
between 2 and 1000. Figure 3 shows the results of the ex-
periment for the sector and the usps dataset. The y-axis

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Speeding up k-means by approximating Euclidean distances via block vectors

17‘ T T T T]

—

avoided calculations
o
(=2}
T
|

0.4 =
— Sector
02+ — USPS ||
| | | | T T
0 200 400 600 800 1,000

number of clusters

Figure 3. Observing the relative number of full distance calcula-
tions avoided by block vectors in kmeans_optimized with fixed
block vector size while varying the number of clusters k. The
number of avoided calculations increases proportionally with k.

Small datasets 100 250 1000
usps 0.956 0.968 0.976
E2006 0.699 0.777 0.811
sector 0.336 0.521 0.739
Medium-sized datasets 100 500 5000
real-sim 0.035 0.143 0.237
mediamill 0909 0.954 0.978
Large datasets 100 1000 10000
caltech101 0.748 0.855 0.950
kdd2010 0.987 0.997 0.999
avira.201 0.882 0.944 0.976
mnist800k 0.836 0.960 0.984

Table 1. The percentage of avoided distance calculations when
running kmeans_optimized with different values of k for various
datasets. In every case, the number of avoided distance calcula-
tion increases proportional to k.

denotes the number of full distance calculations avoided,
which indicates how good the lower bound 1b” (z, ¢) ap-
proximates the actual distance d(x, ¢). It can be observed
that for both datasets the percentage of avoided calculations
increases proportionally with the number of k. The same
can be observed for all datasets in Table 1.

Clustering duration. A standard k-means algorithm us-
ing only the proposed lower bound as optimization retains
the original complexity of k-means with O(nki), with i
being the number of iterations until convergence. In prac-
tice however, the setting of annz(Xp) ~ 0.3annz(X)
adds a linear scaling factor to the runtime. If the lower
bounds never avoid any distance calculation, every iter-
ation requires 30% additional work, implying an overall
runtime increase of 30%. On the other hand, if the lower
bounds always lead to skipping a full distance calculation,
the runtime reduces by 70%. In Table 2 empirical evalua-
tions with all proposed algorithms and considered datasets
were done to determine the actual speedup over a non op-
timized standard k-means. The reported results include the
time to create the initial block vectors for X as well as the
block vectors for the clusters. In more than 74% of all cases

Speed-up relative to k-means

Dataset Num fast optimized .
num / dim / avg. nnz clusters yinyang k-means yinyang
usps 100 9.7 8.9 7.1
250 12.6 134 8.3
729112561223 1000 18.3 175 7.6
2000 I
16087 / 150360 / 1241 1000 47 77 34
sector 100 1.9 2.1 1.9
250 33 39 3
6412 /55197 /163 1000 55 75 32
real-sim 100 4.7 2.4 4.6
y 500 2.5 1.4 2.8
72309 /20958 /51 5000 18 29 18
mediamill 100 13 5.6 11.3
500 16.9 11 14.7
30993 /120/ 119 5000 19.4 144 33
100 14.6 2.4 14.9
caltech101
1000 27.4 38 30.1
926860/ 128 /77 10000 15.8 74 16
kdd2010 1000 By) 5o
510302 /2014669 /37 10000 22.9 16.2 119
avira 201 100 11.5 4.6 10.3
y 1000 15.6 10.6 12.5
161320/2384 /418 10000 214 22.9 122
. 100 23.6 35 23.8
mnist800k
1000 30.3 5.8 28.4
810000/783 /193 10000 36.5 21.7 26.6

Table 2. Observing the speed-up factor with respect to standard
k-means of optimized k-means, yinyang, and fast yinyang for var-
ious datasets and various values of cluster sizes k. Fast yinyang
outperforms yinyang in over 74% of the cases.

fast_yinyang outperforms yinyang in terms of clustering du-
ration, with a speedup of up to 2.4. In the cases where
yinyang outperforms fast_yinyang, the maximum observed
speedup over fast_yinyang is 1.12. Another observation is
that kmeans_optimized is faster than yinyang in seven of the
nine experiments with the highest value of k. This is one of
the main results of this work, since apart from storing the
block vectors, kmeans_optimized has no additional mem-
ory and maintenance cost with increasing k compared to
the linear increasing costs of yinyang and fast_yinyang.

6. Conclusion

In this paper we demonstrated the effectiveness of a novel
approach to approximate Euclidean distances based on
block vectors, by integrating the resulting lower bounds
into yinyang k-means, which lead to a significant speedup
especially when using many cluster centers. The usefulness
of the technique became even more obvious in the block
vector enabled algorithm kmeans_optimized. By having a
memory consumption not depending on k and even getting
more efficient with high k&, the technique fills the gap of
clustering algorithms having the ability to cluster datasets
into a large number of clusters efficiently. In a future work
the influence of scaling and feature remapping on the ap-
proximation of Euclidean distances will be further studied.

Speeding up k-means by approximating Euclidean distances via block vectors

Acknowledgements

Markus Kichele is supported by a scholarship of the Lan-
desgraduiertenférderung Baden-Wiirttemberg at Ulm Uni-
versity.

References

Alsabti, Khaled. An efficient k-means clustering algo-
rithm. In Proc. IPPS/SPDP Work. High Performance
Data Mining, 1998.

Arthur, D. and Vassilvitskii, S. K-means++: The advan-
tages of careful seeding. In Proc. 18th Ann. ACM-SIAM
Symp. Discr. Alg. (SODA), pp. 1027-1035, 2007.

Bahmani, B., Moseley, B., Vattani, A., Kumar, R., and Vas-
silvitskii, S. Scalable k-means++. Proc. VLDB Endow.,
5(7):622-633, 2012.

Dasgupta, S. The hardness of k-means clustering. Techni-
cal Report CS2007-0890, UC San Diego, 2007.

Ding, Y., Zhao, Y., Shen, X., Musuvathi, M., and Mytkow-
icz, T. Yinyang k-means: A drop-in replacement of the
classic k-means with consistent speedup. In Proc. 32nd
Int. Conf. Mach. Learn. (ICML), pp. 579-587, 2015.

Drake, J. and Hamerly, G. Accelerated k-means with adap-
tive distance bounds. In 5th NIPS Work. Optim. Mach.
Learn., pp. 579-587, 2012.

Elkan, C. Using the triangle inequality to accelerate k-
means. In Proc. 20th Int. Conf. Mach. Learn. (ICML),
pp- 147-153,2003.

Fahim, A.M., Salem, A.M., Torkey, F.A., and Ramadan,
M.A. An efficient enhanced k-means clustering algo-
rithm. J. Zhejiang Univ. SCI. A, 7(10):1626-1633, 2006.

Hamerly, G. Making k-means even faster. In SIAM Int.
Conf. Data Mining (SDM), pp. 130-140, 2010.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements
of Statistical Learning. Springer, 2001.

Horn, R.A. and Johnson, C.R. Matrix Analysis. Cambridge
University Press, 1990.

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D.,
R.Silverman, and Wu, A.Y. An efficient k-means clus-
tering algorithm: Analysis and implementation. IEEE
Trans. Patt. Anal. Mach. Intell., 24:881-892, 2002.

Kaukoranta, T., Franti, P., and Nevalainen, O. A fast ex-
act GLA based on code vector activity detection. I[EEE
Trans. Imag. Proc., 9(8):1337-1342, 2000.

Lloyd, S. Least squares quantization in PCM. IEEE Trans.
Information Theory, 28(2):129-137, 1982.

Low, Y. and Zheng, A.X. Fast top-k similarity queries via
matrix compression. In Proc. 21st ACM Int. Conf. Inf.
Knowl. Manag., pp. 2070-2074, 2012.

Mahajan, M., Nimbhorkar, P., and Varadarajan, K. The
planar k-means problem is NP-hard. In Proc. 3rd Int.
Work. Alg. Comput. (WALCOM), pp. 274-285, 2009.

Mielikainen, J. A novel full-search vector quantization al-
gorithm based on the law of cosines. IEEE Signal Proc.
Letters, 9(6):175-176, 2002.

Ostrovsky, R., Rabani, Y., Schulman, L. J., and Swamy, C.
The effectiveness of Lloyd-type methods for the k-means
problem. J. ACM, 59(6):28:1-28:22, 2013.

Pelleg, D. and Moore, A. Accelerating exact k-means al-
gorithms with geometric reasoning. In Proc. 5th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Mining (KDD),
pp- 277-281, 1999.

Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman,
A. Object retrieval with large vocabularies and fast spa-
tial matching. In IEEE Conf. Comp. Vis. Patt. Recogn.
(CVPR), 2007.

Sculley, D. Web-scale k-means clustering. In Proc. 19th
Int. Conf. World Wide Web, pp. 1177-1178, 2010.

Steinbach, M., Karypis, G., and Kumar, V. A comparison
of document clustering techniques. In KDD Workshop
on Text Mining, 2000.

Torres, L. and Huguet, J. An improvement on codebook
search for vector quantization. /EEE Trans. Comm., 42
(2-4):208-210, 1994.

Vattani, A. The hardness of k-means clustering
in the plane. Unpublished manuscript, 2009.
URL http://cseweb.ucsd.edu/~avattani/
papers/kmeans_hardness.pdf.

Wang, J., Wang, J., Ke, Q., Zeng, G., and Li, S. Fast ap-
proximate k-means via cluster closures. In IEEE Conf.
Comp. Vis. Patt. Recogn. (CVPR), pp. 3037-3044, 2012.

Wu, K.-S. and Lin, J.-C. Fast VQ encoding by an efficient
kick-out condition. [EEE Trans. Circ. Syst. Vid. Tech.,
10(1):59-62, 2000.

Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S.,
Zhou, Z.-H., Steinbach, M., Hand, D.J., and Steinberg,
D. Top 10 algorithms in data mining. Knowl. Inf. Syst.,
14(1):1-37, 2007.

Yeung, K.Y., Haynor, D.R., and Ruzzo, W.L. Validating
clustering for gene expression data. Bioinformatics, 17
(4):309-318, 2001.

http://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf
http://cseweb.ucsd.edu/~avattani/papers/kmeans_hardness.pdf

