Black-box Optimization with a Politician

Sébastien Bubeck
Microsoft Research

Yin-Tat Lee
MIT

Abstract

We propose a new framework for black-box con-
vex optimization which is well-suited for situ-
ations where gradient computations are expen-
sive. We derive a new method for this frame-
work which leverages several concepts from con-
vex optimization, from standard first-order meth-
ods (e.g. gradient descent or quasi-Newton meth-
ods) to analytical centers (i.e. minimizers of self-
concordant barriers). We demonstrate empiri-
cally that our new technique compares favorably
with state of the art algorithms (such as BFGS).

1. Introduction

In standard black-box convex optimization (Nemirovski
and Yudin, 1983; Nesterov, 2004; Bubeck, 2015) first-order
methods interact with an oracle: given a query point x, the
oracle reports the value and gradient of the underlying ob-
jective function f at z. In this paper we propose to replace
the oracle by a politician. Instead of answering the original
query x the politician changes the question and answers a
new query y which is guaranteed to be better than the orig-
inal query « in the sense that f(y) < f(x). The newly
selected query y also depends on the history of queries that
were made to the politician. Formally we introduce the fol-
lowing definition (for sake of simplicty we write V f(x) for
either a gradient or a subgradient of f at z).

Definition 1 Ler X C R" and f : X — R. A politician
® for f is a mapping from X x U2 (X x R x R™")* 1o
X such that for any k > 0,2 € X,h € (X x R x R?)*
one has f(®(x,h)) < f(x). Furthermore when queried at
x with history h a politician for f also output f(®(x,h))
and V f(®(x, h)) (in order to not overload notation we do
not include these outputs in the range of ®).

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

SEBUBECK @MICROSOFT.COM

YINTAT @MIT.EDU

Let us clarify the interaction of a first-order method with
a politician. Note that we refer to the couple (first-order
method, politician) as the algorithm. Let M : U2 (X x
R x R™)* — X be a first-order method and & a politician
for some function f : X — R. The course of the algo-
rithm (M, @) then goes as follows: at iteration k + 1 one
first calculates the method’s query point 41 = M (hy)
(with hg = 0), then one calculates the politician’s new
query point Y11 = P(xky1,hs) and the first order in-
formation at this point (f(yx+1), Vf(yk+1)), and finally
one updates the history with this new information i1 =
(hk, (Ykt1, f(Ykt1), VF(Yr+1))). Note that a standard or-
acle simply corresponds to a politician O for f such that
O(z,h) = (z, f(z), Vf(z)) (in particular the algorithm
(M, ©) is the usual algorithm corresponding to the first-
order method M).

The philosophy of the above definition is that it gives in
some sense an automatic way to combine different opti-
mization algorithms. Say for example that we wish to com-
bine the ellipsoid method with gradient descent. One way
to do so is to design an “ellipsoidal politician™: the politi-
cian keeps track of a feasible ellipsoidal region based on
the previously computed gradients, and when asked with
the query x the politician chooses as a new query y the re-
sult of a line-search on the line between x and the center
of current ellipsoid. Gradient descent with this ellipsoidal
politician would then replace the step = < = — nV f(x)
by z < y — nV f(y). The hope is that in practice such a
combination would integrate the fast incremental progress
of gradient descent with the geometrical progress of the el-
lipsoid method.

In this paper we focus on unconstrained convex optimiza-
tion. We are particularly interested in situations where cal-
culating a (sub)gradient has superlinear complexity (i.e.,
> n) such as in logistic regression and semidefinite pro-
gramming. In such cases it is natural to try to make the
most out of the computed gradients by incorporating ge-
ometric reasoning (such as in the ellipsoid method). We
do so by introducing the geometric politician (Section 3),
which is based on a combination of the recent ideas of

Black-box optimization with a politician

(Bubeck et al., 2015) with standard cutting plane/interior
point methods machinery (through the notion of a “cen-
ter” of a set, see Section 4). For a given first order method
M, we denote by M+ the algorithm obtained by running
M with the geometric politician. We demonstrate empiri-
cally (Section 5) the effectiveness of the geometric politi-
cian on various standard first-order methods for convex op-
timization (gradient descent, Nesterov’s accelerated gradi-
ent descent, non-linear conjugate gradient, BEGS). In par-
ticular we show that BFGS+ is a surprisingly robust and
parameter-free algorithm with state of the art performance
across a wide range of problems (both smooth and non-
smooth).

2. Affine invariant politician

As mentioned above we assume that the complexity of
computing the map x — V f(z) is superlinear. This im-
plies that we can afford to have a politician such that the
complexity of computing the map (z,h) — ®(z,h) is
O(n x poly(k)) (we think of the number of iterations k
as typically much smaller than the dimension n). We show
in this section that this condition is (essentially) automati-
cally satisfied as long as the politician is affine invariant in
the following sense (we use a slight abuse of language and
refer to a map f — @y, where ® is a politician for f, as a
politician):

Definition 2 A politician f — Py is called affine invariant
if for any function f and any affine map T : R™ — R"
such that T'(x) = z + La for some matrix L, k > 0,2 €
R™ (y;,vi,9:) € R™ x R x R", one has

T(®yor(, (yi, vi, LT.‘]i)ie[k]))
=@ (T'(z), (T(i)s Ui»gi)ie[k])'

We say that an affine invariant politician has cost ¥ : N —
N ifforany f : R¥ — R the map (x,h) € R¥ x (RF x R x
R¥)* s ®f(z, h) can be computed in time 1) (k).

Proposition 1 Let ® be an affine invariant politician with
cost . Then for any f : R" — R, (y;,v5,9;) € R® x
R x R",i € [k] and x,y; € y1 + Span(gi,...,gr) one
can compute ® ¢ (x, (y;,vi, 9i)icpr)) € R™ in time (k) +
O(nk?).

Proof Let G be the n x k matrix with i*" column given by
gi- We consider the @ R decomposition of G which can be
computed in time O(nk?), that is Q is an n X k matrix and
Rak x k matrix such that G = QRand Q" Q = 1. Let T
be the affine map defined by 7" = y; + Q. Note that since
x € yy + Span(gy,...,gr) onehas z = T(Q " (z — y1))

(and similarly for ;). Thus by affine invariance one has

D f (2, (Y, vi, i)
= (T(Q" (x — 1)), (T(Q" (yi —y1)), vi> 9:))
=yt Qq’foT(QT(x - 1), (QT(yi —y1),vi, Ri)),

where R; is the i*" column of R. Furthermore by definition
of the cost 1) and since f o T is defined on R* we see that
this last quantity can be computed in time v (k) + O(nk?),
thus concluding the proof. |

The above proposition shows that with an affine invariant
politician and a first order method M verifying for any
(Yis viy 9i)iepr) € (R™ X R x R™)¥,

s 9k);

M((yi7vi7gi)i€[k]) S Y + Span(yla oo Yk g1, - -

one can run k steps of the corresponding algorithm in time
O(nk? + ki (k)) plus the time to compute the & function
values and gradients of the underlying function f to be op-
timized. Note that one gets a time of O(nk?) instead of
O(nk?) as one can store the QR decomposition from one
step to the next, and updating the decomposition only cost
O(nk).

3. Geometric politician

We describe in this section the geometric politician which
is based on ideas developed in (Bubeck et al., 2015). A key
observation in the latter paper is that if f is a a-strongly
convex function minimized at =* then one has for any z,

. L F Vi@ 2 .
vz - v < MEPE -2 () - f)).
This motivates the following definition:
1 2
B(z, a, fval) := {z eER":||z—xz— an(x)

2 2
< % - (f(x) — fval)} .
In particular given the first order information at y1, ..., yx

one knows that the optimum x* lies in the region R C R"
defined by

Ry = ﬂ B(y;, o, fval) where fval = mbﬁf(yl) (1)
1€
i€[k]

Now suppose that given this first order information at
Y1, ...,y the first order method asks to query x. How
should we modify this query in order to take into account
the geometric information that ** € Rj;? First observe

Black-box optimization with a politician

that for any z, B(z, «, fval) is contained in a halfspace that
has z on its boundary (in the limiting case o« — 0 the set
B(z,a, f(2)) is exactly a halfspace). In particular if the
next query point y1 is the center of gravity of Ry then
we have that the volume of Ry is at most 1 — 1/e times
the volume of Ry, (see (Griinbaum, 1960)), thus leading to
an exponential convergence rate. However the region Ry
can be very large initially, and the center of gravity might
have a large function value and gradient, which means that
R, would be intersected with a large sphere (possibly so
large that it is close to a halfspace). On the other hand the
first order method recommends to query z, which we can
think of as a local improvement of y;, which should lead
to a much smaller sphere. The issue is that the position of
this sphere might be such that the intersection with Ry is
almost as large as the sphere itself. In order to balance be-
tween the geometric and function value/gradient consider-
ations we propose for the new query to do a line search be-
tween the center of Ry, and the recommended query x. The
geometric politician follows this recipe with two important
modifications: (i) there are many choices of centers that
would guarantee an exponential convergence rate while be-
ing much easier to compute than the center of gravity, and
we choose here to consider the volumetric center, see Sec-
tion 4 for the definition and more details about this notion;
(ii) we use a simple heuristic to adapt online the strong con-
vexity parameter o, namely we start with some large value
for o and if it happens that the feasible region Ry, is empty
then we know that o was too large, in which case we reduce
it. We can now describe formally the geometric politician,
see Algorithm 1. Importantly one can verify that the geo-
metric politician is affine invariant and thus can be imple-
mented efficiently (see the proof of Proposition 1).

Algorithm 1: Geometric Politician

Parameter: An upper bound on the strong convexity
parameter «. (Can be +00.)
Input: Query z, past queries and the corresponding
first order information (y;, f(y:), V.f(¥:))iek)-
Let fval = min;cx) f(y:) and the feasible region
Ri(a) = Ve Blyi, o, fval).
if Ry () = () then
Let « be the largest number such that
Ry(a) # 0.
a <+ a/4d.
end
Let Y1 = argmingc (. (1-1)e(Ry () ter) /(Y)
where ¢(Ry («)) is the volumetric center of Ry («)
(see Section 4).

Output: yi1 1, f(yr+1) and V f(yr41)-

4. Volumetric center

The volumetric barrier for a polytope was introduced in
(Vaidya, 1996) to construct an algorithm with both the ora-
cle complexity of the center of gravity method and the com-
putational complexity of the ellipsoid method (see [Sec-
tion 2.3, (Bubeck, 2015)] for more details and (Lee et al.,
2015) for recent advances on this construction). Recalling
that the standard logarithmic barrier F'p for the polytope
P={z €R":ax <b;,i € [m]}is defined by

Fp(z)=— Zlog(bi —a,),
i=1

one defines the volumetric barrier vp for P by
vp(x) = logdet(V2Fp(x)).

The volumetric center ¢(P) is then defined as the mini-
mizer of vp. In the context of the geometric politician (see
Algorithm 1) we are dealing with an intersection of balls
rather than an intersection of halfspaces. More precisely
the region of interest is of the form:

k
R:ﬂ{mER":Hx—cngri}.
i=1

For such a domain the natural self-concordant barrier to
consider is:

k
1
Fr(z) = 3 Zlog (r? = [lz = il?) -
i=1

The volumetric barrier is defined as before by
vr(z) = logdet(V2Fg(x)),

and the volumetric center of R is the minimizer of vg. It is
shown in (Anstreicher, 2004) that vy is a self-concordant
barrier which means that the center can be updated (when
a new ball is added to R) via few iterations of Newton’s
method. Often in practice, it takes less than 5 iterations to
update the minimizer of a self-concordant barrier (Goffin
and Vial, 1999; Bahn et al., 1995) when we add a new con-
straint. Hence, the complexity merely depends on how fast
we can compute the gradient and Hessian of Fir and vg.

Proposition 2 For the analytic barrier Fr, we have that

VFR(Z‘) :Alexla
V2FR(z) =247 A+ X1

where d is a vector defined by (r? — ||z — ci||2)_1, Aisa
k x n matrix with it row given by d;(z)(x — ¢;), \P) =
DiclH] d¥(x) and 11 is a k x 1 matrix with all entries
being 1.

Black-box optimization with a politician

For the volumetric center, we have that
Vog(z) = ((2trH ") I+ 4H ') ATd+8A 0,
V2up(x) = 484754 — 6447 (AH1AT)? 4
+ (8ex(DY) + 2@ er(H)) 1+ 4\ H~!
+8tr(H ') ATDA+ 16sym (ATDAH ™)
—4tr(H ?)A"DIDA —8H 'A"DIJDAH™!

— 8sym(A'DJDAH) —8(d"AH 'ATd) H™!

— 16sym (A" diag (AH 2AT) JDA)
— 32sym (ATdiag(AH_lATd)AH_l)

where H = V*Fg(z), 0, = e] AH 1A e, e; is the indi-
cator vector with it coordinate, J is a k x k matrix with all
entries being 1, sym(B) = B+ B, diag(v) is a diagonal
matrix with diag(v);; = v;, D = diag(d), ¥ = diag(o),
and B®) is the Schur square of B defined by Bg) = B?j.

The above proposition shows that one step of Newton
method for analytic center requires 1 dense matrix multi-
plication and solving 1 linear system; and for volumetric
center, it requires 5 dense matrix multiplications, 1 ma-
trix inversion and solving 1 linear system if implemented
correctly. Although the analytic center is a more popular
choice for “geometrical” algorithms, we choose volumet-
ric center here because it gives a better convergence rate
(Vaidya, 1996; Atkinson and Vaidya, 1995) and the extra
cost 1 (k) is negligible to the cost of updating QR decom-
position nk.

5. Experiments

In this section, we compare the geometric politician against
two libraries for first order methods, minFunc (Schmidt,
2012) and TFOCS (Becker et al., 2011). Both are popu-
lar MATLAB libraries for minimizing general smooth con-
vex functions. Since the focus of this paper is all about
how to find a good step direction using a politician, we
use the exact line search (up to machine accuracy) when-
ever possible. This eliminates the effect of different line
searches and reduces the number of algorithms we need to
test. TFOCS is the only algorithm we use which does not
use line search because they do not provide such option. To
compensate on the unfairness to TFOCS, we note that the
algorithm TFOCS uses is accelerated gradient descent and
hence we implement the Gonzaga-Karas’s accelerated gra-
dient descent (Gonzaga and Karas, 2013), which is specif-
ically designed to be used with exact line search. Another
reason we pick this variant of accelerated gradient descent
is because we found it to be the fastest variant of accel-
erated gradient descent (excluding the geometric descent
of (Bubeck et al., 2015)) for our tested data (Gonzaga and
Karas also observed that on their own dataset).

The algorithms to be tested are the following:

e [SD] Steepest descent algorithm in minFunc.

e [Nes] Accelerated gradient descent, General Scheme
2.2.6 in (Nesterov, 2004).

e [TFOCS] Accelerated gradient descent in TFOCS.

e [GK] Gonzaga-Karas’s of Accelerated Gradient De-
scent (Sec 5.1).

e [Geo] Geometric Descent (Bubeck et al., 2015).
e [CG] Non-Linear Conjugate Gradient in minFunc.

e [BFGS] Broyden—Fletcher—Goldfarb—Shanno algo-
rithm in minFunc.

e [PCG] Preconditioned Non-Linear Conjugate Gradi-
ent in minFunc.

e [(+] Geometric Politician itself (Sec 5.1).
e [GK+] Using GK with Geometric Oracle (Sec 5.1).

e [BFGS+] Using BFGS with Geometric Oracle (Sec
5.1).

We only tested the geometric oracle on GK and BFGS be-
cause they are respectively the best algorithms in theory
and practice on our tested data. The)+ algorithm is used as
the control group to test if the geometric politician by itself
is sufficient to achieve good convergence rate. We note that
all algorithms except Nes are parameter free; each step of
SD, Nes, TFOCS, GK, Geo, CG takes O(n) time and each
step of BFGS, PCG, 0+, GK+ and BFGS+ takes roughly
O(nk) time for k" iteration.

5.1. Details of Implementations

The first algorithm we implement is the (+ algorithm
which simply repeatedly call the politician. As we will
see, this algorithm is great for non smooth problems but
not competitive for smooth problems.

Algorithm 2: 0+

Input: x.
for k< 1,2,--- do

\ Set g1 < q’f(xk, (fiaf(xi)vvf(xi))ie[k])'
end

The second algorithm we implement is the accelerated gra-
dient descent proposed by Gonzaga and Karas (Gonzaga
and Karas, 2013). This algorithm uses line search to learn

Black-box optimization with a politician

Algorithm 3: Gonzaga-Karas’s variant of Acceler-
ated Gradient Descent
Input: z;.
v = 2a, vg = xg and Yo = xp.
fork < 1,2,--- do
Yo < s (Ye-1)-
Zi+1 = line_search(yg, —V f(yk)).
if & > /1.02 and we are using first order
oracle then o = /2. (*)

. IVl
if o > 2(F(yr)—F @k 1)) then
. IV f Cyw)1I?

20(f(yr)—F(wn+1))”

G= (a||vk —yill® + (Vf (k) vk —) -

A =G+ V)P + (=) (f (k) - f(yr)-

B=(a-)((Tr41) = f@n) —v(f(yx) —

fxy)) —

C=(f (xk+1) f(xk))-

5:37 +vB2-4AC = (1—B)y + Ba.

Vg1 = ((1 - ﬂ)VUk + B(ayr — V£ (yx)).
end

the the smoothness parameter and strong convexity param-
eter, see Algorithm 3. We disable the line (*) in the al-
gorithm if ®; is a politician instead of an oracle because
v > « does not hold for the strong convexity parameter o
if ® is not an oracle.

The third algorithm we implemented is the Broy-
den—Fletcher—Goldfarb—Shanno (BFGS) algorithm. This
algorithm uses the gradients to reconstruct the Hessian and
use it to approximate Newton’s method, see Algorithm 4.
We note that another natural way to employ the politician
with BFGS is to set zx41 = line_search(®s(xy),p)
and this runs faster in practice; however, this algorithm
computes two gradients per iteration (namely V f(z) and
Vf(®s(xx))) while we restrict ourselves to algorithms
which compute one gradient per iteration.

5.2. Quadratic function

We consider the function

f@)=(z—¢)"D(x—c),)

where D is a diagonal matrix with entries uniformly sam-
pled from [0,1] and ¢ is a random vector with entries
uniformly sampled from the normal distribution N (0, 1).
Since this is a quadratic function, CG, BFGS and BFGS+
are equivalent and optimal, namely, they output the mini-
mum point in the span of all previous gradients.

Algorithm 4: BFGS
Input: z;.
fork < 1,2,--- do
p=—Vf(zg).
fori<— k—1,---,1do
i = (si,p) [(8, Yi)-
P =D — 0Y;.
end
p= <Sk—1,yk—1> [Yk—1, Yk—1) D-
fori < 1,--- ,k—1do
Bi <yz, >/<Szayl>
p=p+ (v — Bi)yi
end
241 = @f (line_search(zy, p)).
Sk = Tht1 — Thy Y = V[(Tp41) —

Vf(xg).

end

5.3. Variant of Nesterov’s Worst Function
(Nesterov, 2004) introduced the function

n—1

fl@) = (L==[1])* + Y (x[k] - alk + 1])°

k=1

and used it to give a lower bound for all first-order meth-
ods. To distinguish the performance between CG, BFGS
and BFGS+-, we consider the following non-quadratic vari-
ant

n—1

=g(l—a[1]) +) galk] -2k +1)) 3

k=1

f(x)

for some function g to be defined. If we pick g(z) =
|z| then all first order methods takes at least n itera-
tions to minimize f exactly. On the other hand with
g(x) = max(|x\ - 0.1 0) one of the minimizer of f is
(1,35, 3%,+,75,0,0,---,0), and thus it takes at least 11
iterations for first order methods to minimize f in this case.
We “regularize” the situation a bit and consider the function

\/(x —0.1)>40.0012 — 0.001 ifz>0.1

g(x) = \/(x +0.1)2+0.0012 — 0.001 ifz < —0.1"
0 otherwise

Since this function is far from quadratic, our algorithms
(0+, GK+, BFGS+) converge much faster. This is thus
a nice example where the geometric politician helps a lot
because the underlying dimension of the problem is small.

5.4. Binary regression with smoothed hinge loss

We consider the binary classification problem on the
datasets from (Chang and Lin, 2011). The problem is to

Black-box optimization with a politician

Random Quadratic Functior!

-—-—-—-8D
————TFOCS| 1
—— -~ GK
—~~ 7" Nes
Geo
PCG
GK+
optimal

Function Error

0 20 40 . B0 80
Iteration

Figure 1. Comparison of first-order methods for the function (2)
with n = 10000.

minimize the regularized empirical risk:
=)\
Z (biaTx) +3 || “4)

where a; € R?, b; € R are given by the datasets, \ is
the regularization coefficient, ¢y is the smoothed hinge loss
defined by

3\>—‘

0 if 2z < -1
pi(z)=Rz+1-% ifz>—-1+t
5 (z+1)% otherwise

and ¢ is the smoothness parameter. The usual choice for ¢ is
1, here we test both ¢t = 1 and t = 10~*. The latter case is
to test how well the algorithms perform when the function
is non-smooth.

We note that for this problem it would be natural to com-
pare ourselves with SGD (stochastic gradient descent) or
more refined stochastic algorithms such as SAG (Le Roux
et al., 2012) or SVRG (Johnson and Zhang, 2013). How-
ever since the focus of this paper is on general black-box
optimization we stick to comparing only to general meth-
ods. It is an interesting open problem to extend our algo-
rithms to the stochastic setting, see Section 6.

In figures 3 and 4, we show the performance profile for
problems in the LIBSVM datasets (and with different val-
ues for the regularization parameter \). More precisely for
a given algorithm we plot = € [1, 10] versus the fraction of
datasets that the algorithm can solve (up to a certain pre-
specified accuracy) in a number of iterations which is at
most x times the number of iterations of the best algorithm
for this dataset. Figure 3 shows the case ¢ = 1 with the
targeted accuracy 10~%; Figure 4 shows the case ¢t = 10~*
with the targeted accuracy 1072, We see that TFOCS is
slower than SD for many problems, this is simply because
SD uses the line search while TFOCS does not, and this

10° Variant of Nesterov's Worst Function

Function Error

0 50 100 150 200 250
Iteration

Figure 2. Comparison of first-order methods for the function (3)
with n = 10000.

makes a huge difference for simple problems. Among al-
gorithms taking O(n) time per iteration, CG and Geo per-
form the best, while for the O(nk) algorithms we see that
BFGS, BFGS+ and GK+ perform the best. The gap in
performance is particularly striking in the non-smooth case
where BFGS+- is the fastest algorithm on almost all prob-
lems and all other methods (except GK+) are lagging far
behind (for 20% of the problems all other methods take 10
times more iterations than BFGS+ and GK+).

Finally in figures 5 and 6 we test five algorithms on
three specific datasets (respectively in the smooth and non-
smooth case). In both figures we see that BFGS+ performs
the best for all three datasets. BFGS performs second for
smooth problems while GK+ performs second for nons-
mooth problems.

5.5. Summary

The experiments show that BFGS+ and BFGS perform the
best among all methods for smooth test problems while
BFGS+ and GK+ perform the best for nonsmooth test
problems. The first phenomenon is due to the optimality
of these algorithm for quadratic problems. We leave the
explanation for the second phenomenon as an open prob-
lem. At least, the experiments show that this is not due to
the geometric oracle itself since ()+ is much slower, and
this is not due to the original algorithm since GK performs
much worse than GK+ for those problems. Overall these
experiments are very promising for the geometric oracle
as a replacement of quasi Newton method for non-smooth
problems and as a general purpose solver due to its robust-
ness.

Black-box optimization with a politician

Performance Profile For Smooth Problems

0.8 1

Frequency
©
[¢2)

o
»

0.2

2 4 6 8 10
Required Time Compared to the Best

Figure 3. Performance profile on problem (4) witht = 1and A =
1074,107°,107%,1077,1078.

6. Discussion

First order methods generally involve only very basic oper-
ations at each step (addition, scalar multiplication). In this
paper we formalize each step’s operations (besides the gra-
dient calculation) as the work of the politician. We showed
that the cost per step of an affine invariant politician (k)
is negligible compared to the gradient calculation (which is
Q(n)). This opens up a lot of possibilities: instead of basic
addition or scalar multiplication one can imagine comput-
ing a center of gravity, solving a linear program, or even
searching over an exponential space (indeed, say £ < 30
and n > 10'0, then 2¥ < n). Our experiments demonstrate
the effectiveness of this strategy. On the other hand from
a theoretical point of view a lot remains to be done. For
example, one can prove results of the following flavor:

Theorem 1 Let f such that ol < V2 f(x) < fI,Vz € R®
and let k = B/a. Suppose that in the Geometric Politician
we replace the volumetric center by the center of gravity or
the center of the John ellipsoid. Let yy, be the output of the
kth step of SD+ with some initial point xo. Then, we have
that

flyr) = £(z7)
1

k
Sk <1 B @(min(nlog(n),n))) (f(zo) = f&"))

and

. 268 R?
flye) — f(=)Sm

where R = max ;)< f(a) |2 — 2.

This claim says that, up to a logarithmic factor, SD+ en-
joys simultaneously the incremental progress of gradient

lPerformamce Profile For Nonsmooth Problems

2

0.8

Frequency
©
[¢2)

o
»

0.2

2 4 6 8 10
Required Time Compared to the Best

Figure 4. Performance profile on problem (4) with ¢t = 10~ and
A=10"%10"°%10"%10"7,1078.

descent and the geometrical progress of cutting plane meth-
ods. There are three caveats in this claim:

e We use the center of gravity or the center of the John
ellipsoid instead of the volumetric center. Note how-
ever that it is well-known that the volumetric center
is usually more difficult to analyze, (Vaidya, 1996;
Atkinson and Vaidya, 1995).

e The extraneous log(x) comes from the number of po-
tential restart when we decrease «. Is there a better
way to learn «v that would not incur this additional log-
arithmic term?

e (Bubeck et al., 2015) shows essentially that one can
combine the ellipsoid method with gradient descent to
achieve the optimal 1 — 1/1/x rate. Can we prove
such a result for SD+-?

The geometric politician could be refined in many ways.
Here are two simple questions that we leave for future
work:

e One can think that gradient descent stores 1 gradient
information, accelerated gradient descent stores 2 gra-
dient information, and our method stores all past gra-
dient information. We believe that neither 1, 2 nor all
is the correct answer. Instead, the algorithm should
dynamically decide the number of gradients to store
based on the size of its memory, the cost of computing
gradients, and the information each gradient reveals.

e Is there a stochastic version of our algorithm? How
well would such a method compare with state of the
art stochastic algorithms such as SAG (Le Roux et al.,
2012) and SVRG (Johnson and Zhang, 2013)?

Black-box optimization with a politician

real-sim

10°

=1e-4

~ 10-10

A

10'10
0 50 100 O 50 100

0 50 100 o0 50 100 O 50 100
[-———ceo ———-co

Figure 5. Comparison between Geo, CG, BFGS, GK+, BFGS+
on problem (4) with ¢ = 1 and A = 107*,107%,1075.

References

M. K. Anstreicher. The volumetric barrier for convex
quadratic constraints. Mathematical Programming, 100
(3):613-662, 2004.

David S Atkinson and Pravin M Vaidya. A cutting plane al-
gorithm for convex programming that uses analytic cen-
ters. Mathematical Programming, 69(1-3):1-43, 1995.

Olivier Bahn, O Du Merle, J-L Goffin, and J-P Vial. A
cutting plane method from analytic centers for stochastic
programming. Mathematical Programming, 69(1-3):45—
73, 1995.

Stephen R Becker, Emmanuel J Candes, and Michael C
Grant. Templates for convex cone problems with ap-
plications to sparse signal recovery. Mathematical pro-
gramming computation, 3(3):165-218, 2011.

S. Bubeck. Convex optimization: Algorithms and com-
plexity. Foundations and Trends in Machine Learning, 8
(3-4):231-357, 2015.

S. Bubeck, Y.-T. Lee, and M. Singh. A geometric alter-
native to nesterov’s accelerated gradient descent. Arxiv
preprint arXiv:1506.08187, 2015.

Chih-Chung Chang and Chih-Jen Lin. Libsvm:
A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy (TIST)., 2(3):27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Jean-Louis Goffin and Jean-Philippe Vial. Shallow, deep
and very deep cuts in the analytic center cutting plane
method. Mathematical Programming, 84(1):89-103,
1999.

madelon 5 revl 0 real-sim
w0 10%
3 \ \
2 \
i
~=110"° ——
100 0 50 100 0 50 100
0%y 0%
\! \
< \ \
) \ \
-~ \\ 21\~
2 N~
L 107 1 \Qs_ 10 N~
100 150 0 50 100 0 50 100
10° 10%r
W\ \\
S \\
-2 N N\
T 10 -2 N\
\ 1 -
n - 0 \7 §
10 =
0 50 100 0 50 100 0 50 100
[-———6e0o ———-co BFGS GK+ BFGSH|

Figure 6. Comparison between Geo, CG, BFGS, GK+, BFGS+
on problem (4) with t = 10~* and A = 10*,107%,1075.

Clévis C Gonzaga and Elizabeth W Karas. Fine tuning nes-
terovs steepest descent algorithm for differentiable con-

vex programming. Mathematical Programming, 138(1-
2):141-166, 2013.

B. Griinbaum. Partitions of mass-distributions and of con-
vex bodies by hyperplanes. Pacific J. Math, 10(4):1257-
1261, 1960.

R. Johnson and T. Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems (NIPS), 2013.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gra-
dient method with an exponential convergence rate for
strongly-convex optimization with finite training sets.

In Advances in Neural Information Processing Systems
(NIPS), 2012.

Y.-T. Lee, A. Sidford, and S. C.-W Wong. A faster cutting
plane method and its implications for combinatorial and
convex optimization. Arxiv preprint arXiv:1508.04874,
2015.

A. Nemirovski and D. Yudin. Problem Complexity and
Method Efficiency in Optimization. Wiley Interscience,
1983.

Y. Nesterov. Introductory lectures on convex optimization:
A basic course. Kluwer Academic Publishers, 2004.

M Schmidt. minfunc: unconstrained differentiable multi-
variate optimization in matlab. URL http://www. di. ens.
fr/mschmidt/Software/minFunc. html, 2012.

P. M. Vaidya. A new algorithm for minimizing convex
functions over convex sets. Mathematical programming,
73(3):291-341, 1996.

