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Abstract

Dropout is a popular stochastic regularization
technique for deep neural networks that works
by randomly dropping (i.e. zeroing) units from
the network during training. This randomiza-
tion process allows to implicitly train an ensem-
ble of exponentially many networks sharing the
same parametrization, which should be averaged
at test time to deliver the final prediction. A typi-
cal workaround for this intractable averaging op-
eration consists in scaling the layers undergoing
dropout randomization. This simple rule called
“standard dropout” is efficient, but might degrade
the accuracy of the prediction. In this work we
introduce a novel approach, coined “dropout dis-
tillation”, that allows us to train a predictor in
a way to better approximate the intractable, but
preferable, averaging process, while keeping un-
der control its computational efficiency. We are
thus able to construct models that are as effi-
cient as standard dropout, or even more efficient,
while being more accurate. Experiments on stan-
dard benchmark datasets demonstrate the validity
of our method, yielding consistent improvements
over conventional dropout.

1. Introduction

Dropout is a popular regularization technique introduced
in the context of neural networks that improves on the gen-
eralization capabilities of a predictor by preventing the co-
adaptation of features (Hinton et al., 2012; Srivastava et al.,
2014). The idea is to randomly set to zero (a.k.a. dropout)
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hidden and/or input units of a neural network during each
iteration of the optimization algorithm in order to discour-
age the network from relying on single features, but rather
consider the output of committees of features. This simple
idea has been playing a pivotal role in the field for the last
few years by effectively overcoming overfitting issues and
pushing the performance of neural networks to new state-
of-the-art levels in many application areas.

Since the introduction of dropout, several works in the lit-
erature have attempted to explain its success in avoiding
overfitting. Some works supported the view of dropout
performing stochastic gradient descent of some regularized
loss function (Baldi & Sadowski, 2013), or as an adaptive
L regularizer (Wager et al., 2013), or more recently as an
approximation to a well-known Bayesian model, namely
the deep Gaussian process (Gal & Ghahramani, 2015a).
Thanks to its regularizing effect, dropout contributes to re-
ducing the inherent complexity, and thus the variance of
the model it is applied to. This is formally stated in (Gao
& Zhou, 2014), where the authors show that dropout deliv-
ers an exponential reduction in the Rademacher complexity
of deep neural networks. While it is intuitive that dropout
contributes to reducing the generalization error by keeping
the variance of the model under control, it seems less ob-
vious that dropout might also play a role in reducing the
model bias. The latter property arises from the ability of
dropout training to escape poor, local minima during the
optimization of the empirical risk (Jain et al., 2015).

Dropout training intuitively trains an ensemble of exponen-
tially many neural networks, one for each configuration of
dropped units, while sharing the same parametrization. The
goal is to minimize the expected empirical risk of the en-
semble, which is however an intractable objective. Never-
theless, it can be effectively optimized via a stochastic gra-
dient descent procedure, where the randomization process
involves also dropping out units. At test time, the contri-
bution from each network in the ensemble should be av-
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eraged to deliver the final prediction. This computation is
again intractable and it is typically approximated by em-
ploying a simple heuristic, which introduces a scaling fac-
tor in each layer undergoing dropout regularization (Hin-
ton et al., 2012). This workaround called standard dropout
works in practice, but might suffer from a loss in the fi-
nal accuracy. In (Gal & Ghahramani, 2015b), it is indeed
empirically shown that improved results can be obtained
by approximating the ideal averaging predictor via (com-
putationally more intensive) Monte Carlo sampling, which
gives a better control of the approximation quality.

Our work provides a novel approach, called dropout dis-
tillation, for inference with deep neural networks using
dropout regularization. The goal is to mimic the ideal, but
computationally intractable averaging predictor exhibiting
improved accuracy, without sacrificing the computational
efficiency of the simple scaling heuristic known from stan-
dard dropout. In our proposed solution we project the ideal
predictor into a space of tractable/efficient predictors in a
way to minimize a divergence measure, accounting for a
specified loss function and respecting the underlying data
distribution. To bypass the intractability of this objective,
which stems from the necessity of evaluating the ideal pre-
dictor, we propose to adopt a stochastic optimization strat-
egy akin to the one used for dropout training. Additionally,
we characterize suitable loss functions for our approach.

The space of predictors we define for the projection allows
us to control the efficiency of the final predictor, while
the minimization of the divergence from the ideal predic-
tor promotes improved accuracies. By focussing on mod-
els having the same complexity as the one trained with
dropout, it is possible to preserve the computational effi-
ciency of e.g. standard dropout, while aiming for better
predictions. By specifying a space of smaller, more com-
pressed models one can further reduce the computational
burden. We demonstrate the effectiveness of our method
in both scenarios, where improved predictors are obtained
both in terms of computational efficiency and prediction
accuracy compared to standard dropout.

Another aspect of our method with a practical application
is that it allows us to improve any pre-trained model using
dropout, without necessarily having access to the training
data. Indeed, we simply require a collection of unlabelled
data to carry out the dropout distillation procedure. Once
the optimization is accomplished, the new and improved
model can be directly deployed for future predictions.

As for the name of our approach, the word “distillation” has
been used in the literature to indicate the task of transfer-
ring knowledge from some cumbersome model (typically
an ensemble of deep networks) to a simpler one (Hinton
et al., 2014). Since this task shares similarities with our
approach, we have decided to term it dropout distillation.

More details about this analogy will be given in paper.

The rest of the paper is organized as follows. Sec. 2 reviews
dropout training and emphasizes on the objective that it ac-
tually optimizes. Sec. 3 is dedicated to the inference pro-
cess, where we review two state-of-the-art approaches and
highlight their limitations. Sec. 4 describes our proposed
approach, coined dropout distillation. Sec. 5 assesses the
validity of our method on several benchmark datasets, us-
ing different network architectures. Finally, we draw con-
clusions and discuss future works in Sec. 6.

2. Dropout training

In this section we discuss the basic idea of dropout train-
ing. Dropout has originally been introduced to train feed-
forward neural networks (Hinton et al., 2012). For this rea-
son, and for the sake of clarity, we will stick to the same
type of architecture in the rest of the paper. However, our
proposed method can also be applied to recurrent networks
exploiting dropout (Pham et al., 2014).

Consider a feed-forward neural network with layers
{h1, ..., hy}. Each layer is a function defined as h;(z) =
a(8;z), where a() is an element-wise, non-linear activation
function, which might be different across layers, and 8; is a
matrix of layer parameters. The composition of the layers
defines the neural network fo = hpo---ohy : X — ),
where © = {84,...,0,} comprises all trainable weights,
and X, ) denote the input and output spaces, respectively.

By applying dropout training to a network fg, one implic-
itly introduces gating variables in the model, allowing to
switch on/off connections within the network. Depending
on whether the gating variables act on the output of net-
work units or on network connections, we have the classic
dropout setting or the so-called drop-connect setting (Wan
et al., 2013), respectively. In the dropout case, a gated
layer takes the form h;(z) = a(8;(o; @ z)), where o;
is a vector of gating (i.e. binary) variables and e denotes
the Hadamard (or element-wise) product. Consequently,
the gating variables o; determine which input dimensions
from the previous layer are taken into account during the
computation. In the drop-connect case, a gated layer is
given by h;(z) = a((Z; e B;)z), where £; is a matrix of
gating variables. The latter form works at a finer gran-
ularity by allowing to discard contributions from specific
connections. Indeed, dropout can be seen as an instance
of drop-connect under a properly-structured sampling dis-
tribution. Note that the layer expressions for both cases of
dropout and drop-connect take slightly different forms in
case of convolutional layers, but we omit the details here,
since they are not relevant for the purposes of this section.

We denote by fo , a gated neural network parametrized
by © with a configuration of gating variables given by
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o = {o1,...,0,}." Different configurations of gating
variables generate different network topologies, for parts
of the original network will be virtually eliminated, while
O remains shared among all representable topologies.

The goal of dropout training is to find a parametrization
©* that minimizes the expected risk associated with the
gated neural network fg ,, where the expectation is not
only taken with respect to the unknown joint data distribu-
tion over (x,y), but involves also the gating variables o.
Accordingly, the risk takes the following form:

R(@) = E’m#},tf [f(y, f@,o’(w)] ) (1)

where ¢ Y x Y — R is a loss function penalizing
wrong predictions. The expectation with respect to o is
taken by considering each gating variable an independent
Bernoulli variate with parameter 1 — p, where p is re-
garded as the dropout rate. Typically, p is set to % to max-
imize the entropy of the sampling distribution, but in gen-
eral different gating variables in the network might have
different dropout rates. Regarding the expectation over
(z,y), this cannot be resolved, since the underlying dis-
tribution is unknown. Therefore, one resorts to empiri-
cal risk approximation, replacing E, , [-] with an empiri-
cal average computed from independent training samples

T = {(-’Bhyl)a ey (wnayn)}:

R©)=1 > Eo Uy, fo.olxi)] . 2

so in practice f%(@) is the actual objective that dropout
training optimizes, which converges to R(©) for n — oo.

Dropout training minimizes R(©) via stochastic gradient
descent, where the randomization is not limited to drawing
mini-batches from the set of samples in T, but also to se-
lecting different gating variable configurations per training
data (see Alg. 1).2

By appropriately decreasing the learning rates, denoted
by 7 in Alg. 1, the sequence of network parameters
{09 0%, ...} generated by dropout training converges al-
most surely to a local minimum of (2), akin to other forms
of stochastic gradient descent (Bottou, 1998).

The use of dropout in deep neural networks is often re-
stricted to very few layers, typically one or two close to
the terminal one, instead of applying it to the entire net-
work. One of the reasons is that longer training schemes
are necessary if dropout is extensively used, since a much
larger space of network topologies has to be explored by the

"For simplicity reasons we discuss based on the dropout case,
but the results also apply to drop-connect.

2One can also share the same configuration of gating variables
across samples in the mini-batch for the sake of computational
efficiency (Graham et al., 2015).

Algorithm 1 Dropout training
1: Input: Training set 7 C X x )

2:t=0

3: Initialize network parameters ©°

4: repeat

5: Sample {(Tr,,Yry )y -+ s (Trps Ym )} T

6:  Sample gating variable configurations o', ..., o™
7:  Update learning rate 7,

g Ofl=0'— Z:j=1 %g(yﬂj7f@i7aj (iL’m‘))

9: t=t+1

10: until stopping condition is met
11: Output: ©* = ©!

stochastic optimization algorithm. Another current limita-
tion is that it is not clear how to properly tackle the infer-
ence process, which we address in our paper.

3. Dropout inference

Dropout training aims to minimize an intractable objec-
tive as described in the previous section. The intractability
stems from the expectation spanning a number of network
topologies, which is in general exponential in the num-
ber of network units, or network connections, depending
on whether dropout or drop-connect is employed, respec-
tively. Nevertheless, the stochastic gradient descent proce-
dure that is adopted for the optimization, which considers
random network topologies for each update, is viable in
practice and delivers good parametrizations within reason-
able training times, as was demonstrated by many works
that have been successfully using dropout in the last years.

Besides training, another important aspect to consider
when employing dropout is how to properly perform infer-
ence. As one may expect, the same intractability issue that
is faced at training time persists also at test time. Indeed,
the proper way of delivering a prediction for a test sample
x € X given a network with parameters ©* trained with
dropout is by averaging the prediction of all possible gated
networks. In other terms, one ideally targets the following
predictor that we call ideal predictor:

fdropoul(m) = EO’ [f@*,a(w)} . (3)

Again, we find that the expectation poses in general an in-
tractable computation. The rest of this section summarizes
how state-of-the-art approaches are approximating (3), be-
fore we introduce our novel solution in Section 4.

3.1. Standard dropout

The standard approach to avoid evaluating different net-
works at test time has been proposed in the original dropout
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papers (Hinton et al., 2012; Srivastava et al., 2014). The
idea is to simply scale the argument of the activation func-
tion by 1 — p in each layer where dropout has been ap-
plied during training with rate p, ie. h;(z) = a((l —
p)8;z) and similarly for drop-connect. At test time, all
units/connections are involved in the computation. In-
tuitively, the scaling factor compensates for the average
number of missing units during training. This simple
workaround, despite being of practical use, is only weakly
motivated and relies on the assumption that E,, [h;(z)] =~
h;(E, [2]) in each layer of the network (Baldi & Sadowski,
2014). The latter assumption does not hold in general, for
the quality of the approximation also depends on the type
of activation function adopted, which is instead neglected.

3.2. MC dropout

A more direct way of facing the computation of (3) is via
Monte Carlo (MC) sampling, i.e. one generates a random
sequence o!,...,0™ of m gating variable configurations
and averages the predictions of the corresponding gated

neural networks:
. 1 &
fdropout(w) - E Z f@*,di (ZIJ) . (4)
i=1

This procedure called MC dropout has the advantage of
giving a finer control on the approximation quality, since
fdmpom — faropout for m — co. However, it requires con-
siderable increase of computation at test time (= m times
slower on a single CPU). It has also been empirically shown
in (Gal & Ghahramani, 2015b) that MC dropout exhibits a
better performance than the standard scaling heuristic from
the previous subsection in the presence of extensive use of
dropout even at earlier convolutional layers.

4. Dropout distillation

An ideal solution for the inference phase combines the ben-
efits from the two state-of-the-art approaches described be-
fore, i.e. it aims at retaining the computational efficiency
of standard dropout while obtaining accuracies as good as
the ones delivered from the computationally more expen-
sive MC dropout. The method we propose is aligned with
this goal and stems from the observation that one can try to
project the ideal, but intractable, predictor defined as in (3)
on a space of more tractable ones.

Let ©* be the parametrization of the neural network that
has been obtained with dropout training and let Q C X —
Y be a set of predictors with input space X and output
space ) that can be tractably, or even efficiently, evalu-
ated. As an example, Q might consist of deterministic feed-
forward neural networks having the same topology as the
original network fg+. Now, our goal is to find a predictor
in Q that matches as close as possible faropou defined as in

standard Q

dropout .
\ dropout

\,

.\. distil}ation
° ° ° \V "

° ® o q

L e o ° e o

° e ° ° 0\ J (q*)
\f@* o °“‘fdropout

Figure 1. Visualization of dropout distillation. Set F includes
predictors of the same type as the original network trained with
dropout (with possibly different parametrizations) as well as all
possible gated networks (dots illustrating fe« , for some o). Set
Q is the user-defined set of efficient predictors, which might have
a non-empty intersection with F. In general, the ideal dropout
predictor faropout, Which is intractable to compute, belongs neither
to F nor Q. Dropout distillation finds a predictor ¢* € Q that
minimizes its divergence from furopoux measured in terms of J.
Standard dropout belongs to F because it produces a predictor of
the same type as the original network, just with scaled parameters.
It might also belong to Q, in which case standard dropout can be
used to initialize the dropout distillation optimization procedure.

(3). We achieve this by minimizing an objective function
J(q), which measures the dissimilarity between any pre-
dictor ¢ € Q and the ideal predictor fgropou as follows (see
Fig. 1 for an illustration of the procedure):

J(Q) =[Eg [g(fdropout(w)a Q(w))] . &)

Here, the expectation is taken with respect to the unknown
data distribution over X'.> The objective .J is given in terms
of a function ¢(y, §), which measures the loss incurred by
disagreements between ¢ and the ideal predictor. Note that
this loss function might differ from the one used during
dropout training, i.e. the one in (1), but for reasons of
convenience we reuse the same notation.

The benefits that come from minimizing J are as fol-
lows. We can replace the intractable predictor in (3) with
a tractable one, which will target the accuracies of fyropout
and preserve at the same time the computational cost of
standard dropout, taking a proper choice of Q. However,
optimizing (5) still requires evaluating faropour, Which is not
tractable, and requires also computing the expectation over
x. The latter problem can be pragmatically addressed by
replacing the expectation with an empirical average over
independent samples S = {x1,...,®,} drawn from the
unknown distribution, i.e.

J@)= 3 Y Wampale) @), ©)

which can approximate .J(q) arbitrarily well, since .J (q) —
J(q) for n — oo. The set of unlabelled samples S might

3Please note that no label information is needed at this point.
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Algorithm 2 Dropout distillation
1: Input: a dataset S C X and a parametrization ©* of a
neural network trained with dropout
. Assume: Q a parametrized family of predictors g
t=0
. Initialize parameters 2°
repeat
Sample {z,,,...,&x, } CS
Sample gating variable configurations ¢!, ..., o
Update learning rate 7

N,
N Qt+1 = Qt — @ . O i ‘ . v
? m ; aQE(fO N (xﬂg)vQQ (mm))

10 t=t+1
11: until stopping condition is met
12: Output: Q* = Qf

m

PRDID AL

e.g. come from the training set used in (1) during training
or from freshly collected data samples (see Subsec. 4.2).
We are then left with the issue of evaluating fgropout, Which
in turn requires computing the expectation over o. This
leads to a similar problem as the one we have encountered
when minimizing R(©) during the training phase, and the
workaround there was to simply randomize o during the
stochastic gradient descent steps. As we will see later,
this is indeed a viable solution also for the minimization
of J (q), ie we can replace faropou With a randomly-
gated network feo- , within a stochastic gradient descent
procedure, akin to Alg. 1. However, the application of this
trick merits attention, because it does not guarantee con-
vergence towards the desired solution, ie. a minimizer
of J(q), at least not in general, due to the position of the
expectation over ¢, which is nested within the loss func-
tion. It is instead possible to show (Bottou, 1998) that the
aforementioned procedure, which is reported in Alg. 2 for a
parametrized family of predictors, targets a local minimizer
of a different objective, namely

J@) =+ Y B ool a@)] . )

To legitimate the use of the stochastic gradient descent in
Alg. 2 to minimize .J(¢), we have to establish relations be-
tween the latter objective and the objective .J'(g) that is
actually optimized. How minimizers of J(g) relate to the
ones of J'(¢) will result from the theorem below (proof in
supplementary material), providing conditions under which
strong connections between J and .J’ can be made:

Theorem 1. LetY C R andlet J' : Q — R be defined as

J'(q) = Ea; [((for o(2), q()] - ®)
Then the following holds:

i) if € is convex in its first argument then for all ¢ € Q,

J(q) < J'(q);

i) if there exist functions g1,g2 : Y — Rand g3 : Y —

R* such that ((y,9) = g1(y) + g2(9) +y " g3(§) then
there exists A € R such that for all q € Q,

J(q)=J(q) +A.

The theorem holds true also if we replace J and J " with J
and J', respectively.

Thm. 1 shows that whenever we employ a loss function
convex in its first argument — and many losses that are typi-
cally used do satisfy this property — the dropout distillation
algorithm in Alg.2 optimizes an upper-bound of the objec-
tive in (6). The second part of the theorem provides an even
more intriguing conclusion because with the given condi-
tions for the loss function, it guarantees the correctness of
the optimization procedure also for the empirical approx-
imation .J(¢) in Equ. (6). Indeed, if J(q) = J'(q) + A,
where A is not depending on ¢, then minimizers of J(gq)
will coincide with minimizers of J’(q), thus legitimating
our proposed dropout distillation approach.

4.1. Notes about the loss function

An important question concerns the restrictiveness of the
condition that Thm. 1-ii) puts on the loss function. For-
tunately, there is a significant class of known loss func-
tions that satisfy the required condition. In particular, all
losses that are Bregman divergences (Bregman, 1967) ful-
fill the requirements. A loss function £(y, ) is a Bregman
divergence if it takes the form (y,4) = ¢(y) — ¢(J) —
(y — 9)"Vé(3), where ¢ : D — R is a strictly con-
vex, differentiable function defined on a convex set D.
By setting g1(y) = o(y), 92(3) = 9 Vo(d) — 4(7)
and g3(9) = —Ve(§) we have that any Bregman diver-
gence satisfies the hypothesis of Thm. 1-ii). E.g., Breg-
man divergences are the squared Euclidean distance and
the Kullback-Leibler divergence, which are often used to
define losses for regression and classification tasks.*

4.2. Generation of the unlabelled dataset S

The set of samples S that is used to define the objective
in (6) can be generated in a number of different ways. A
naive solution consists in generating random samples ac-
cording to some noise distribution (e.g. Gaussian noise).
This allows us to generate unlimited amount of data, but
it jeopardizes the effectiveness of the dropout distillation
algorithm, due to the large discrepancy between the sam-
pling distribution and the true data distribution. Another
solution consists in retaining the same samples used dur-
ing training if still available, ie. S = {x; € X

*The squared Euclidean distance is generated by é(y) =
|ly||?, while the KL-divergence by the entropy function.
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(z;,y) € T forsomey € Y}. This yields a more sig-
nificant outcome from the algorithm, but it might be prone
to overfitting, since it insists on fitting the target predictor
faropout Only on samples used to train it.> Another possibil-
ity considers using perturbed versions of the training sam-
ples. This allows us to artificially generate a large number
of samples, which will be close to the true data manifold,
while counteracting the aforementioned overfitting issue.
The preferred solution is however to construct S based on
previously unseen samples, drawn from the data distribu-
tion. This is however not always possible, in which case
the use of perturbed training samples yields a good com-
promise.

4.3. Why ‘distillation”?

The terminology “distillation” has been introduced in (Hin-
ton et al., 2014) to indicate the task of transferring knowl-
edge that resides within some cumbersome models to a
small model for the sake of easier deployment. The same
concept was pioneered in (Bucila et al., 2006) under a dif-
ferent name, namely model compression. The underlying
idea is to use a trained, complex model, or ensemble of
models, to label a large set of unlabelled data, thus gener-
ating de facto a new training set, which is then used to train
another smaller model. If we re-interpret the same idea
within a Bayesian scenario, where the ensemble is gener-
ated by a Bayesian posterior distribution, then an even older
precursor of distillation is (Snelson & Ghahramani, 2005),
where the purpose was to construct compact approxima-
tions of Bayesian predictive distributions. Another recent
work that that aims at distilling a Monte Carlo approxima-
tion to the Bayesian posterior predictive distribution is (Ko-
rattikara et al., 2015). Here, the authors propose an algo-
rithm that is close in spirit to ours, even though it was not
related to dropout.

We refer to our approach as dropout distillation because
it follows to some extent the general scheme of the distil-
lation paradigm: the stochastic regularization of dropout
yields a large ensemble of possible predictors (exponen-
tial in the number of gating variables), which we want to
mimic in the best possible way via a single predictor from
some hypothesis space Q. Our main focus is to construct a
predictor having the same complexity of standard dropout,
while targeting the better accuracies of the averaged pre-
diction in (3), and at the same time provide some theoreti-
cal guarantees that legitimate the use of the proposed algo-
rithm. Nevertheless, nothing prevents our approach from
performing model compression by restricting Q to smaller
models, as we will also demonstrate with some experiments
in the following section.

> faropout yields crisper predictions on the data it was trained on,
thus limiting the amount of transferable dark knowledge.

5. Experiments

In this section we assess the effectiveness of dropout distil-
lation when applied to a variety of neural network architec-
tures for classification tasks. We start with experiments in
Subsect. 5.1 that validate our core contribution, i.e. com-
paring our proposed dropout distillation approach against
state-of-the-art inference with dropout. In Subsect. 5.2 we
illustrate the impact of using different datasets for training
of dropout distillation. Finally, Subsect. 5.3 demonstrates
the ability of our approach to jointly perform dropout distil-
lation and target model compression, i.e. considering tar-
get predictor architectures with lower model complexity. In
all our experiments we have considered the KL-divergence
as loss function for both training and distillation phases.

5.1. Dropout distillation vs. standard- and MC dropout

In a first series of experiments we compare Standard
dropout (see Sec. 3.1) and Monte Carlo (MC) dropout (see
Sec. 3.2) with the proposed dropout Distillation algorithm.
In all cases, we first train a baseline network and evaluate
its performance using standard and MC dropout inference.
In the case of MC dropout, we average m = 100 predic-
tions using randomly sampled configurations of the gating
variables. Next, we use Alg. 2 to train a new deep neural
network having the same architecture as the baseline net.
We did not experience significant reduction of test errors
when increasing m. The parameters € are initialized from
those of the baseline, while the dataset S is obtained by ran-
domly perturbing the training images (pixels of the training
images are randomly set to zero with probability 0.2).

The results are summarized in Table 1, including mean
test errors with corresponding standard deviations over 5
repetitions for MC and our method. Dropout distillation
performs better than standard dropout in almost all experi-
ments (and equally well on the MNIST LeNet). We observe
that in most cases MC dropout outperforms our approach,
at the cost of a ~100 fold increase in computational com-
plexity and higher error standard deviation. Interestingly,
the performance delta between standard and MC dropout
is consistently higher for network architectures with multi-
ple dropout layers (e.g. CIFAR10 Quick, AllConv). Next,
we provide a description of each dataset used along with
corresponding training settings.

CIFAR10 experiments. The CIFARIO  dataset
(Krizhevsky & Hinton, 2009) consists of 60.000 tiny
color images of size 32 x 32, each belonging to one of 10
semantic classes like airplane, cat, etc. 50.000 images are
meant to be used as training data and the rest for testing.
We consider two recent network architectures using
dropout at several layers: Network in Network (Lin et al.,
2014) (NiN) and All Convolutional Network (Springen-
berg et al., 2014) (AllConv). We also consider a modified
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Network Standard ~ Monte Carlo Distillation Network Train Pert. Train Test
MNIST LeNet 0.67 % 0.67£0.01 % 0.67%+0.01 % CIFAR10 Quick 17.15 % 17.20 % 17.23 %
MNIST LeNetAll 0.51 % 0.494+0.01 % 0.4940.01 % CIFAR10 NiN 11.20 % 11.14 % 11.14 %
CIFAR10 Quick 18.15% 16.78+0.14 % 17.20%0.06 % CIFAR10 AllIConv 10.59 % 10.80 % 10.64 %
CIFAR10 NiN 11.16 % 11.04£0.06 % 11.14£0.04 % CIFAR100 AllConv 31.88 % 32.07 % 31.75 %
CIFAR10 AllConv 11.20 % 10.60+0.10 % 10.8040.04 % CIFAR100 NiN 35.21 % 35.20 % 35.18 %
CIFAR100 AllConv ~ 32.46 % 30.994+0.18 % 32.07£0.05 %

CIFAR100 NiN 35.28 % 35.05+0.08 % 35.20+0.05 %

Table 1. Left: Comparison of test data errors using standard dropout, Monte Carlo dropout and our proposed dropout distillation on
the CIFAR10, CIFAR100 and MNIST datasets using several different network architectures (with standard deviations for 5 repetitions
of MC and our distillation approach). Right: Dropout distillation results obtained by training on: original training samples (Train);

perturbed training samples (see Sec. 5.1, Pert. Train); unlabelled test samples (Test).

CIFAR10 Quick
30 : :
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Figure 2. Test data misclassification rate for CIFAR10 dataset us-
ing described “Quick” network architecture. Comparison of error
rates for Standard, Monte Carlo and our proposed dropout distil-
lation inference.

version of the “Quick” architecture of cuda-convnet®,
where we perform dropout after every convolutional or
fully connected layer, except for the final one.

All baseline networks are trained using stochastic gradi-
ent descent with momentum 0.9 and Ly regularization.
For NiN and AllConv we adopt the originally reported
meta-parameters, while for Quick we perform 300 train-
ing epochs, with a learning rate of 0.05 for the first 200 and
0.005 for the last 100. For dropout distillation we use the
same training schedule for all networks: first, we perform
20 epochs using a learning rate equal to the one used in the
last iteration of the baseline network, then we reduce the
learning rate by a factor of 10 and run the training for 10
additional epochs. For each network, during training we
vertically flip each input image with probability 0.5.

CIFAR100 experiments. The CIFARIO0 dataset
(Krizhevsky & Hinton, 2009) is almost identical to
CIFAR10, except for the number of classes which is
increased to 100. Each class contains 600 images, where
500 are reserved for training and 100 for testing. We
consider the same Network in Network and All Convolu-
tional architectures as used for the CIFAR10 experiments.
Also, the training procedures for the baseline and distilled

6 https://code.google.com/archive/p/cuda-convnet/

networks remain the same.

MNIST experiments. As a final benchmark, we consider
the MNIST (LeCun et al., 1998) handwritten digits recog-
nition dataset. Here we adopt two variations of the well
known LeNet-5 (LeCun et al., 1998) architecture: one us-
ing dropout after the penultimate layer (LeNet) and one
using dropout after every convolutional or fully connected
layer (LeNetAll). The baseline networks are trained using
the following schedules: 20 epochs with a learning rate of
1073, then 10 epochs with a learning rate of 10~%, while
dropout distillation is performed in the same way as for CI-
FAR10 and CIFAR100.

5.2. Performing distillation with different training sets

As mentioned in Section 4.2, the unlabelled dataset S can
be generated in a number of different ways. Here, we com-
pare the results obtained from three different strategies: 1)
using the original training samples (Train), ii) using per-
turbed training samples as described in Section 5.1 (Pert.
Train) and iii) using the test data samples (Test). Please
note that in none of the aforementioned strategies the cor-
responding ground truth labels are used, thus legitimating
also iii) as a potential, though somewhat limited data gen-
eration scenario. The results obtained on the different CI-
FAR networks are reported in the right Table 1. We observe
that our approach is largely insensitive w.z¢. the proposed
strategies of generating training data. Overall, we experi-
ence a gap of at most ~ 0.3% for different ways to generate
S, confirming the effectiveness of our approach to handle
different types of training data.

5.3. Distilling into smaller target networks

Another potential application for our proposed dropout dis-
tillation is related to model compression (Bucild et al.,
2006) or network distillation (Hinton et al., 2014). We can
control the target model capacity, depending on the choice
of the target hypothesis space Q (where we eventually se-
lect our dropout distillation predictor from). Consequently,
we can perform dropout distillation jointly with distilling
the networks knowledge into a less complex target model,


https://code.google.com/archive/p/cuda-convnet/
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Figure 3. Test data misclassification rate for the distilled CIFAR10 Quick network, as a function of percentage of retained parameter.
Left: changing the number of neurons in the first fully connected layer. Right: changing the size of all layers in the network.

such that e.g. the resulting predictors can be deployed on
less powerful hardware platforms. While in the previously
described experiments the target network topology was al-
ways the same as the source network (using its parameters
for initialization), we are now demonstrating results on the
CIFAR10 dataset using modified target networks.

Reduced CIFAR10 Quick network — single layer. In
this experiment we are gradually reducing the number of
output units of the penultimate, fully-connected layer of the
CIFAR10 Quick network while monitoring the prediction
error on test data. To this end, we are decreasing the origi-
nal number of hidden units from 64 by multiples of 8, until
we are finally down to only 8 output units. Both affected
layers (i.e. the penultimate and terminal one) are initialized
randomly by sampling from a gaussian distribution with
standard deviation 0.01, while all preceding layer parame-
ters are initialized from the original network. Fig. 3 shows
the test error as a function of the remaining network pa-
rameters (in percent). We compared the distilled network,
trained with our method, against the same network trained
from the original training data (Baseline in the figure). We
are able to drop ~ 40% of the network parameters, still ob-
taining a test error of &~ 18.02%. This is still lower than
the results obtained by standard dropout inference with all
parameters (18.15%) and significantly better than the base-
line network. Similar to the results presented in Tab. 1, we
find low standard deviations when performing model com-
pression.

Reduced CIFAR10 Quick network — all layers. In this
experiment we reduce the size of the whole network by
proportionally shrinking all the network’s layers. We are
again reducing the number of parameters and therefore the
model capacity, however, this time by gradually removing
filters from the convolutional layers and neurons from the
fully connected layers. Fig. 3, right, shows the test error
with corresponding standard deviations when randomly de-
creasing the number of filters and neurons. Obviously, re-
ducing all layers at once has a larger impact on the overall
performance for a given model size. Indeed, we can see
that the distilled network performs better than the baseline

with compression levels up to 40%. However, retraining
the small network from the original training data yields
lower erros than our distilled network at higher compres-
sion rates. Indeed, if the model capacity shriks too much,
we incur an underfitting issue caused by the regularizing
effect that the dropout distillation introduces, which in turn
prevents overfitting when the model complexity is large.

6. Conclusion and future works

Dropout has proven to be an effective way for regulariz-
ing neural networks and its use contributed to delivering
state-of-the-art results in many application areas. It im-
plicitly allows to train an ensemble of exponentially many
neural networks sharing the same parametrization, where
all outputs should be averaged at test time to deliver the
final prediction. This intractable computation is typically
approximated with an efficient heuristic, by simply scal-
ing the affected layers during inference. In this work we
have introduced dropout distillation, an approach to better
approximate the intractable average predictor, without sac-
rificing the computational efficiency of standard dropout.
To this end, we find a predictor within a family of efficient
predictors in a way to minimize the divergence from the
ideal, but intractable, averaging predictor. Although the di-
vergence itself is intractable to compute, we legitimated the
use of stochastic gradient descent to carry out the optimiza-
tion akin to dropout training, and we showed the correct-
ness of our algorithm for a widely used class of loss func-
tions. Experiments on standard benchmark datasets con-
firmed the validity of our method with consistent improve-
ments over conventional dropout inference. We have also
shown that by confining the hypothesis space to smaller
neural networks, we were able to construct predictors that
can be evaluated more efficiently than standard dropout in-
ference. As a future direction, we will investigate appli-
cations of dropout distillation to neural networks with re-
current connections trained with dropout, as e.g. shown in
(Pham et al., 2014), as our approach makes no assumption
about the form of the predictor.
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