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Abstract
Partition functions of probability distributions
are important quantities for model evaluation and
comparisons. We present a new method to com-
pute partition functions of complex and multi-
modal distributions. Such distributions are of-
ten sampled using simulated tempering, which
augments the target space with an auxiliary in-
verse temperature variable. Our method exploits
the multinomial probability law of the inverse
temperatures, and provides estimates of the par-
tition function in terms of a simple quotient of
Rao-Blackwellized marginal inverse temperature
probability estimates, which are updated while
sampling. We show that the method has interest-
ing connections with several alternative popular
methods, and offers some significant advantages.
In particular, we empirically find that the new
method provides more accurate estimates than
Annealed Importance Sampling when calculat-
ing partition functions of large Restricted Boltz-
mann Machines (RBM); moreover, the method is
sufficiently accurate to track training and valida-
tion log-likelihoods during learning of RBMs, at
minimal computational cost.

1. Introduction
The computation of partition functions (or equivalently,
normalizing constants) and marginal likelihoods is an im-
portant problem in machine learning, statistics and statisti-
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names was randomized.
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cal physics, and is necessary in tasks such as evaluating the
test likelihood of complex generative models, calculating
Bayes factors, or computing differences in free energies.
There exists a vast literature exploring methods to perform
such computations, and the popularity and usefulness of
different methods change across different communities and
domain applications. Classic and recent reviews include
(Gelman & Meng, 1998; Vyshemirsky & Girolami, 2008;
Marin & Robert, 2009; Friel & Wyse, 2012).

In this paper we are interested in the particularly challeng-
ing case of highly multimodal distributions, such as those
common in machine learning applications (Salakhutdinov
& Murray, 2008). Our major novel insight is that simulated
tempering, a popular approach for sampling from such dis-
tributions, also provides an essentially cost-free way to es-
timate the partition function. Simulated tempering allows
sampling of multimodal distributions by augmenting the
target space with a random inverse temperature variable
and introducing a series of tempered distributions. The idea
is that the fast MCMC mixing at low inverse temperatures
allows the Markov chain to land in different modes of the
low-temperature distribution of interest (Marinari & Parisi,
1992; Geyer & Thompson, 1995).

As it turns out, (ratios of) partition functions have a sim-
ple expression in terms of ratios of the parameters of
the multinomial probability law of the inverse tempera-
tures. These parameters can be estimated efficiently by
averaging the conditional probabilities of the inverse tem-
peratures along the Markov chain. This simple method
matches state-of-the-art performance with minimal com-
putational and storage overhead. Since our estimator
is based on Rao-Blackwellized marginal probability esti-
mates of the inverse temperature variable, we denote it
Rao-Blackwellized Tempered Sampling (RTS).

In Section 2 we review the simulated tempering technique



Partition Functions from Rao-Blackwellized Tempered Sampling

and introduce the new RTS estimation method. In Sec-
tion 3, we compare RTS to Annealed Importance Sam-
pling (AIS) and Reverse Annealed Importance Sampling
(RAISE) (Neal, 2001; Burda et al., 2015), two popular
methods in the machine learning community. We also show
that RTS has a close relationship with Multistate Bennett
Acceptance Ratio (MBAR) (Shirts & Chodera, 2008; Liu
et al., 2015) and Thermodynamic Integration (TI) (Gel-
man & Meng, 1998), two methods popular in the chemical
physics and statistics communities, respectively. In Sec-
tion 4, we illustrate our method in a simple Gaussian exam-
ple and in a Restricted Boltzmann Machine (RBM), where
it is shown that RTS clearly dominates over the AIS/RAISE
approach. We also show that RTS is sufficiently accurate to
track training and validation log-likelihoods of RBMs dur-
ing learning, at minimal computational cost. We conclude
in Section 5.

2. Partition Functions from Tempered
Samples

In this section, we start by reviewing the tempered sam-
pling approach and then introduce our procedure to esti-
mate partition functions. We note that our approach is use-
ful not only as a stand-alone method for estimating par-
tition functions, but is essentially free in any application
using tempered sampling. In this sense it is similar to im-
portance sampling approaches to computing partition func-
tions (such as AIS).

2.1. Simulated Tempering
Consider an unnormalized, possibly multimodal distribu-
tion proportional to f(x), whose partition function we want
to compute. Our method is based on simulated temper-
ing, a well known approach to sampling multimodal dis-
tributions (Marinari & Parisi, 1992; Geyer & Thompson,
1995). Simulated tempering begins with a normalized and
easy-to-sample distribution p1(x) and augments the tar-
get distribution with a set of discrete inverse temperatures
{0 = β1 < β2 < ... < βK = 1} to create a series of
intermediate distributions between f(x) and p1(x), given
by

p(x|βk) =
fk(x)
Zk

, (1)

where fk(x) = f(x)βkp1(x)
1−βk , (2)

and Zk =
�
fk(x)dx . (3)

ZK is the normalizing constant that we want to compute.
Note that we assume Z1 = 1 and p(x|β1) = p1(x).
However, our method does not depend on this assumption.
When performing model comparison through likelihood ra-
tios or Bayes factors, both distributions f(x) and p1(x) can
be unnormalized, and one is interested in the ratio of their
partition functions. For the sake of simplicity, we consider

here only the interpolating family given in (2); other pos-
sibilities can be used for particular distributions, such as
moment averaging (Grosse et al., 2013) or tempering by
subsampling (van de Meent et al., 2014).

When β ∈ {βk}Kk=1 is treated as a random variable, one
can introduce a prior distribution r(βk) = rk, and define
the joint distribution

p(x,βk) = p(x|βk)rk , (4)

= fk(x)rk
Zk

. (5)

Unfortunately, Zk is unknown. Instead, suppose we know
approximate values Ẑk. Then we can define

q(x, βk) ∝ fk(x)rk/Ẑk , (6)

which approximates p(x, βk). We note that the distribu-
tion q depends explicitly on the parameters Ẑk. A Gibbs
sampler is run on this distribution by alternating between
samples from x|β and β|x. The latter is given by

q(βk|x) =
fk(x)rk/Ẑk�K

k�=1 fk�(x)rk�/Ẑk�
. (7)

Sampling as such enables the chain to traverse the inverse
temperature ladder stochastically, escaping local modes un-
der low β and collecting samples from the target distribu-
tion f(x) when β = 1 (Marinari & Parisi, 1992). When K
is large, few samples will have β = 1. Instead, an improved
strategy to estimate expectations of functions over the tar-
get distribution is to Rao-Blackwellize, or importance sam-
ple, based on (7) to use all sample information (Geyer &
Thompson, 1995).

2.2. Estimating Partition Functions
Letting Ẑ1 ≡ Z1 = 1, we first note that by integrating
out x in (6) and normalizing, the marginal distribution over
the βk’s is

q(βk) =
rkZk/Ẑk�K

k�=1 rk�Zk�/Ẑk�
. (8)

Note that if Ẑk is not close to Zk for all k, the marginal
probability q(βk) will differ from the prior rk, possibly by
orders of magnitude for some k’s, and the βk’s will not be
efficiently sampled. One approach to compute approximate
Ẑk values is the Wang-Landau algorithm (Wang & Landau,
2001; Atchade & Liu, 2010). We use an iterative strategy,
discussed in Section 2.4.

Given samples {x(i),βk(i)} generated from q(x,βk), the
marginal probabilities above can simply be estimated by
the normalized counts for each bin βk, 1

N

�N
i=1 δk,k(i) . But

a lower variance estimator can be obtained by the Rao-
Blackwellized form (Robert & Casella, 2013)

ĉk = 1
N

�N
i=1 q(βk|x(i)) . (9)
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Figure 1. Comparison of log Ẑk and log ĉk estimates, in some of the first eight iterations of the initialization procedure described in
Section 2.4, with and without Rao-Blackwellization, with K = 100. The initial values were Ẑk = 1 for all k, and the prior was uniform,
rk = 1/K. The model is a RBM with 784 visible and 10 hidden units, trained on the MNIST dataset. Each iteration consists of 50
Gibbs sweeps, on each of 100 parallel chains. Since in the non-Rao-Blackwellized case, the updates are unstable and sometimes infinite,
for demonstration purposes only, we define ĉk ∝ 0.1+

�N
i=1 δk,k(i) and normalize. Note that in the Rao-Blackwellized case, the values

of ĉk in the final iteration are very close to those of rk, signaling that the Ẑk’s are good enough for a last, long MCMC run to obtain the
final Ẑk estimates.

The estimates in (9) are unbiased estimators of (8), since

q(βk) =
�
q(βk|x)q(x)dx . (10)

Our main idea is that the exact partition function can be
expressed by ratios of the marginal distribution in (8),

Zk = Ẑk
r1
rk

q(βk)

q(β1)
, k = 2, . . . ,K . (11)

Plugging our estimates ĉk of q(βk) into (11) immediately
gives us the consistent estimator

ẐRTS
k = Ẑk

r1
rk

ĉk
ĉ1

, k = 2, . . . ,K . (12)

The resulting procedure is outlined in Algorithm 1.

2.3. Rao-Blackwellized Likelihood Interpretation
We can alternatively derive (12) by optimizing a Rao-
Blackwellized form of the marginal likelihood. From (8),
the log-likelihood of the {βk(i)} samples is

log q({βk(i)}Ni=1) =
�N

i=1 log(Zk(i)) (13)

−N log
��K

k=1 rkZk/Ẑk

�
+ const.

Because βk(i) was sampled from q(β|x(i)), we can reduce
variance by Rao-Blackwellizing the first sum in (13), re-
sulting in

LRB [Z] =
�N

i=1

�K
k=2 log(Zk)q(βk|x(i))

−N log
��K

k=1 rkZk/Ẑk

�
+ const,

= N
�K

k=2 log(Zk)ĉk (14)

−N log
��K

k=1 rkZk/Ẑk

�
+ const .

The normalizing constants are estimated by maximizing
(14) subject to a fixed Z1, which is known. Setting the

Algorithm 1 Rao-Blackwellized Tempered Sampling
Input: {βk, rk}k=1,...,K , N

Initialize log Ẑk, k = 2, ..., K
Initialize β ∈ {β1, ...,βK}
Initialize ĉk = 0, k = 1, ...,K
for i = 1 to N do

Transition in x leaving q(x|β) invariant.
Sample β|x ∼ (β|x)
Update ĉk ← ĉk + 1

N q(βk|x)
end for
Update ẐRTS

k ← Ẑk
r1ĉk
rk ĉ1

, k = 2, ..., K

derivatives of (14) w.r.t. Zk’s to zero gives a system of lin-
ear equations

�K
k�=2

rk�

Ẑk�

�
δk�,k

ĉk
− 1

�
Zk� = r1 k = 2, . . . ,K

whose solution is (12).

2.4. Initial Iterations
As mentioned above, the chain with initial Ẑk’s may mix
slowly and provide a poor estimator (i.e. small q(βk)’s are
rarely sampled). Therefore, when the Ẑk’s are far from the
Zk’s (or equivalently, the rk’s are far from the ĉk’s), the
Ẑk’s estimates should be updated.

Our estimator in (12) does not directly handle the case
where Ẑk is sequentially updated. We note that the like-
lihood approach of (14) is straightforwardly adapted to this
case and is straightforwardly numerically optimized (see
Appendix A for details). A simpler, less computationally
intensive, and equally effective strategy is as follows: start
with Ẑk = 1 for all k (or a better estimate, if known),
and iterate between estimating ĉk with few MCMC sam-
ples and updating Ẑk with the estimated ẐRTS

k using (12).
In our experiments using many parallel Markov chains, this
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procedure worked best when the updated Markov chains
started from the previous last x’s, and fresh, uniformly ran-
dom sampled βk’s.

Once the Ẑk’s estimates are close enough to the Zk’s to
facilitate mixing, a long MCMC chain can be run to provide
samples for the estimator. Because ĉk estimates q(βk), and
q(βk) � rk when Ẑk � Zk, a simple stopping criterion for
the initial iterations is to check the similarity between ĉk
and rk. For example, if we use a uniform prior rk = 1/K,
a practical rule is to iterate the few-samples chains until
maxk |rk − ĉk| < 0.1/K.

Figure 1 shows the values taken by Ẑk and ĉk in these initial
iterations in a simple example. The figure also illustrates
the importance of using the Rao-Blackwellized form (9) for
ĉk, which dramatically reduces the noise in the estimator
1
N

�N
i=1 δk,k(i) for q(βk).

2.5. Bias and Variance

In Appendix B, we show that the bias and variance of
log Ẑk using Eqn. (12) can be approximated by

E
�
log ẐRTS

k

�
− logZk ≈ 1

2

�
σ2
1

ĉ21
− σ2

k

ĉ2k

�
, (15)

and Var[log ẐRTS
k ] ≈ σ2

1

ĉ21
+

σ2
k

ĉ2k
− 2σ1k

ĉk ĉ1
. (16)

where σ2
1 = Var[ĉ1], σ2

k = Var[ĉk], and σ1k = Cov[ĉ1, ĉk].
This shows that the bias of log Ẑk has no definite sign. This
is in contrast to many popular methods, such as AIS, which
underestimates logZk (Neal, 2001), and RAISE, which
overestimates logZk (Burda et al., 2015).

3. Related Work
In this section, we briefly review some popular estimators
and explore their relationship to the proposed RTS estima-
tor (12). All the estimators below use a family of tempered
distributions, as appropriate for multimodal distributions.
In some cases the temperatures are fixed parameters, while
in others they are random variables. Note that RTS belongs
to the latter group, and relies heavily on the random nature
of the temperatures.

3.1. Wang-Landau

A well-known approach to obtain approximate values of
the Zk’s is the Wang-Landau algorithm (Wang & Landau,
2001; Atchade & Liu, 2010). The setting is similar to ours,
but the algorithm constantly modifies the Ẑk’s along the
Markov chain as different βk’s are sampled. The factors
that change the Ẑk’s asymptotically converge to 1. The
resulting Ẑk estimates are usually good enough to allow
mixing in the (x,β) space (Salakhutdinov, 2010), but are
too noisy for purposes such as likelihood estimation (Tan,

2015).

3.2. AIS/RAISE

Annealed Importance Sampling (AIS) (Neal, 2001) is per-
haps the most popular method in the machine learning liter-
ature to estimate logZK . Here, one starts from a sample x1

from p1(x), and samples a point x2, using a transition func-
tion K2(x2|x1) that leaves f2(x) invariant. The process is
repeated until one has sampled xK using a transition func-
tion that leaves f(x) invariant. The vector (x1, x2, ..., xK)
is interpreted as a sample from an importance distribution
on an extended space, while the original distribution p(xK)
can be similarly augmented into an extended space. The
resulting importance weight can be computed in terms of
quotients of the fk’s, and provides an unbiased estima-
tor for ZK/Z1, whose variance decreases linearly with K.
Note that the inverse temperatures in this approach are not
random variables.

The variance of the AIS estimator can be reduced by aver-
aging over several runs, but the resulting value of log(ẐK)
has a negative bias due to Jensen’s inequality. This in
turn results in a positive bias when estimating data log-
likelihoods.

Recently, a related method, called Reverse Annealed Im-
portance Sampling (RAISE) was proposed to estimate the
data log-likelihood in models with latent variables, giv-
ing negatively biased estimates (Burda et al., 2015; Grosse
et al., 2015). The method performs a similar sampling
as AIS, but starts from a sample of the latent variables at
βK = 1 and proceeds then to lower inverse temperatures.
In certain cases, such as in the RBM examples we con-
sider in Section 4.2, one can obtain from these estimates of
the data log-likelihood an estimate of the partition function,
which will have a positive bias. The combination of the
expectations of the AIS and RAISE estimators thus ‘sand-
wiches’ the exact value (Burda et al., 2015; Grosse et al.,
2015).

3.3. BAR/MBAR

Bennett’s acceptance ratio (BAR) (Bennett, 1976), also
called bridge sampling (Meng & Wong, 1996), is based on
the identity

Zk

Z1
=

Ep(x|β1)[α(x)fk(x)]

Ep(x|βk)[α(x)f1(x)]
, (17)

where α(x) is an arbitrary function such that 0 <�
f1(x)fk(x)α(x)dx < ∞, which can be chosen to min-

imize the asymptotic variance. BAR has been generalized
to estimate partition functions when sampling from mul-
tiple distributions, a method termed the multistate BAR
(MBAR) (Shirts & Chodera, 2008).
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Assuming that there are nk i.i.d. samples for each inverse
temperature βk (N samples {xi}i=1,...,N in total), and
Δx = log f(x) − log p1(x), the MBAR partition function
estimates can be obtained by maximizing the log-likelihood
function (Tan et al., 2012):

L[Z]=
1

N

�N
i=1 log

��K
k=1

nk

N
exp(− logZk + βkΔxi

)
�

+
�K

r=1

nr

N
logZr. (18)

This method was recently rediscovered and shown to
compare favorably against AIS/RAISE in (Liu et al.,
2015). MBAR has many different names in different liter-
atures, e.g. unbinned weighted histogram analysis method
(UWHAM) (Tan et al., 2012) and reverse logistic regres-
sion (Geyer, 1994).

Unlike RTS, MBAR does not use the form of q(β) when es-
timating the partition function. As a price associated with
this increased generality, MBAR requires the storage of all
collected samples, and the estimator is calculated by find-
ing the maximum of (18). This likelihood function does
not have an analytic solution, and Newton-Raphson was
proposed to iteratively solve this problem, which requires
O(NK2 + K3) per iteration. While RTS is less general
than MBAR, RTS has an analytic solution and only requires
the storage of the ĉk statistics. We note that this objective
function is very similar to the one discussed in Appendix A
for combining different Ẑk’s.

Recent work has proposed a stochastic learning algorithm
based on MBAR/UWHAM (Tan et al., 2016), with updates
based on the sufficient statistics ĉk given by

log Ẑ
(t+1)
k = log Ẑ

(t)
k + γt

�
ĉk
rk

− ĉ1
r1

�
. (19)

The step size is recommended to be set to γt = t−1. Note
the similarity with our estimator from (12) in log space,
with log

�
ĉk
rk

�
− log

�
ĉ1
r1

�
as the update. We empirically

found that when the Ẑk’s are far away from the truth, our
update (12) dominates over (19). Because the first order
Taylor series approximation to our estimator is the same as
the term in (19), when ĉk � rk the updates will essentially
only differ by the step size γt.

We also note that there is a particularly interesting relation-
ship between the the cost function for MBAR and the cost
function for RTS. Note that Eq[

nk

N ] is equal to q(βk) for
tempered sampling. If the values of nk

N in (18) are replaced
by their expectation, the maximizer of (18) is equal to the
RTS estimator given in (12). We detail this equivalency in
Appendix D. Hence, the similarity of MBAR and RTS will
depend on how far the empirical counts vary from their ex-
pectation. In our experiments, this form of extra informa-
tion empirically helps to improve estimator accuracy.

3.4. Thermodynamic Integration
Thermodynamic Integration (TI) (Gelman & Meng, 1998)
is derived from basic calculus identities. Let us first assume
that β is a continuous variable in [0, 1]. We again define
Δx = log f(x)− log p1(x), and fβ(x) = f(x)βp1(x)

1−β .
We note that

d

dβ
logZ(β) =

�
1

Z(β)

d

dβ
fβ(x)dx

= Ex|β [Δx], (20)

which yields

log

�
ZK

Z1

�
=

� 1

0

Ex|β [Δx]dβ = Ep(x|β)p(β)

�
Δx

p(β)

�
.

This equation holds for any p(β) that is positive over the
range [0, 1], and provides an unbiased estimator for logZk

if unbiased samples from p(x|β) are available. This is in
contrast to AIS, which is unbiased on Zk, and biased on
logZk. Given samples {x(i),β(i)}i=1,...,N , the estimator
for logZK is

�logZK = logZ1 +
1

N

�N
i=1

Δx(i)

p(β(i))
.

There are two distinct approaches for generating samples
and performing this calculation in TI. First, β can be sam-
pled from a prior p(β), and samples are generated from
fβ(x) to estimate the gradient at the current point in β
space. A second approach is to use samples generated from
simulated tempering, which can facilitate mixing. How-
ever, the effective marginal distribution q(β) must be esti-
mated in this case.

When β consists of a discrete set of inverse tempera-
tures, the integral can be approximated by the trapezoidal
or Simpson’s rule. In essence, this uses the formula-
tion in (20), and uses standard numerical integration tech-
niques. Recently, higher order moments were used to
improve this integration, which can help in some cases
(Friel et al., 2014). As noted by (Calderhead & Girolami,
2009), this discretization error can be expressed as a sum
of KL-divergences between neighboring intermediate dis-
tributions. If the KL-divergences are known, an optimal
discretization strategy can be used. However, this is un-
known in general.

While the point of this paper is not to improve the TI ap-
proach, we note that the Rao-Blackwellization technique
we propose also applies to TI when using tempered sam-
ples. This gives that the Monte Carlo approximation of the
gradient (20) is

d

dβ
logZ(β)

����
β=βk

� �N
i=1

q(βk|xi)Δxi�N
j=1 q(βk|xj)

. (21)
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This reduces the noise on the gradient estimates, and im-
proves performance when the number of bins is relatively
high compared to the number of collected samples. We re-
fer to this technique as TI-Rao-Blackwell (TI-RB).

TI-RB is further interesting in the context of RTS, because
of a surprising relationship: in the continuous β limit, RTS
and TI-RB are equivalent estimators. However, when using
discrete inverse temperatures, RTS does not suffer from the
discretization error that TI and TI-RB do.

We show the derivation of this relationship in Appendix C,
but we give a quick description here. First, let the inverse
temperature β take continuous values. Replacing the index
k by β in (12), we note that the estimator for RTS can be
written as:

log
�

ẐK

Z1

�(RTS)

=

� 1

0

d

dβ

�
log ĉβ − log rβ + log Ẑβ

�
dβ,

=

� 1

0

�
i q(β|xi)Δxi�

j q(β|xj)
dβ . (22)

Note that the integrand of (22) is exactly identical to the TI-
RB gradient estimate from the samples given in (21). After
integration, the estimators will be identical.

We stress that while the continuous formulation of RTS and
TI-RB are equivalent in the continuous limit, in the discrete
case RTS does not suffer from discretization error. RTS
is also limited to the case when samples are generated by
the joint tempered distribution q(x,β); however, because
it does not suffer from discretization error, we empirically
demonstate that RTS is much less sensitive to the number
of temperatures compared to TI (see Section 4.3).

Parallels between other methods and Thermodynamic Inte-
gration can be drawn as well. As noted in (Neal, 2005), the
log importance weight for AIS can be written as

logw =
�K

k=2(βk − βk−1)Δxk
(23)

and thus can be thought of as a Riemann sum approxima-
tion to the numerical integral under a particular sampling
approach.

4. Examples
In this section, we study the ability of RTS to estimate
partition functions in a Gaussian mixture model and in
Restricted Boltzmann Machines and compare to estimates
from popular existing methods. We also study the de-
pendence of several methods on the number K of inverse
temperatures, and show that RTS can provide estimates of
train- and validation-set likelihoods during RBM training at
minimal cost. The MBAR estimates used for comparison

1000 1500 2000 2500 3000 3500 4000
Number of samples
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0

0.5

1

lo
g 
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RTS
MBAR
TI Riemann
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TI trap corrected
TI RB

Figure 2. Comparison of logZ estimation performance on a toy
Gaussian Mixture Model using an RMSE from 10 repeats. TI
Riemann approximates the discrete integral as a right Riemann
sum, TI trap uses the trapezoidal method, TI trap corrected uses
a variance correction technique developed in (Friel et al., 2014),
TI RB uses a Rao-Blackwellized version of TI discussed in Ap-
pendix C.

in this section were calculated with the pymbar package1.

4.1. Gaussian Mixture Example and Comparisons

Figure 2 compares the performance of RTS to several meth-
ods, including MBAR and TI and its variants, in a mixture
of two 10-dimensional Gaussians (see Appendix E.1 for
specific details). The sampling for all methods was per-
formed using a novel adaptive Hamiltonian Monte Carlo
method for tempered distributions of continuous variables,
introduced in Appendix E. In this case the exact partition
function can be numerically estimated to high precision.
Note that all estimators give nearly identical performance;
however, our method is the simplest to implement and use
for tempered samples, with minimal memory and compu-
tation requirements.

4.2. Partition Functions of RBMs

The Restricted Boltzmann Machine (RBM) is a bipar-
tite Markov Random Field model popular in the machine
learning community (Smolensky, 1986). For the binary
case, this is a generative model over visible observations
v ∈ {0, 1}M and latent features h ∈ {0, 1}J defined
by log f(v, h) = vT c + vTWh + hT b, for parameters
c ∈ RM , b ∈ RJ , and W ∈ RM×J . A fundamental per-
formance measure of this model is the log-likelihood of a
test set, which requires the estimation of the log partition
function. Both AIS (Salakhutdinov & Murray, 2008) and
RAISE (Burda et al., 2015) were proposed to address this
issue. We will evaluate performance on the bias and the
root mean squared error (RMSE) of the estimator. To es-
timate “truth,” we estimate the true mean as the average
of estimates from AIS and RTS with 106 samples from 100

1Code available from https://github.com/
choderalab/pymbar
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Figure 3. Mean and root mean squared error (RMSE) of competing estimators of logZK evaluated on RBMs with 784 visible units
trained on the MNIST dataset. The numbers of hidden units were 500 (Left and Middle Left) and 100 (Middle Right and Right). In
both cases, the bias from RTS decreases quicker than that of AIS and RAISE, and the RMSE of AIS does not approach that of RTS at
1000 Gibbs sweeps until over an order of magnitude later. Each method is run on 100 parallel Gibbs chains, but the Gibbs sweeps in the
horizontal axis corresponds to each individual chain.

parallel chains. We note the variance of these estimates was
very low (≈ 0.006).

Figure 3 shows a comparison of RTS versus AIS/RAISE
on two RBMs trained on the binarized MNIST dataset
(M=784, N=60000), with 500 and 100 hidden units. The
former was taken from (Salakhutdinov & Murray, 2008),2

while the latter was trained with the method of (Carlson
et al., 2015b).

In all the cases we used for p1 a product of Bernoulli dis-
tributions over the v variables which matches the marginal
statistics of the training dataset, following (Salakhutdinov
& Murray, 2008). We run each method (RTS, AIS, RAISE)
with 100 parallel Gibbs chains. In RTS, the number of in-
verse temperatures was fixed at K=100, and we performed
10 initial iterations of 50 Gibbs sweeps each, following
Section 2.4. In AIS/RAISE, the number of inverse tem-
peratures K was set to match in each case the total number
of Gibbs sweeps in RTS, so the comparisons in Figure 3
correspond to matched computational costs. We note that
the performance of RAISE is similar to the plots shown in
(Burda et al., 2015) for these parameters. We also experi-
mented with the case where p1 was the uniform prior, and
these results are included in Appendix F.

4.3. Number of Temperatures
An advantage of the Rao-Blackwellization of temperature
information is that there is no need to pick a precise num-
ber of inverse temperatures, as long as K is big enough
to allow for good mixing of the Markov chain. As shown
in Figure 4, RTS’s performance is not greatly affected by
adding more temperatures once there are enough tempera-
tures to give good mixing.

Also note that as the number of temperatures increases RTS
and the Rao-Blackwellized version of TI (TI-RB) become
increasingly similar. We show explicitly in Appendix C

2Code and parameters available from: http://www.cs.
toronto.edu/˜rsalakhu/rbm_ais.html
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Figure 4. RMSE as a function of the number of inverse tempera-
tures K for various estimators. The model is the same RBM with
500 hidden units studied in Figure 3. Each point was obtained
by averaging over 200 estimates (20 for MBAR due to computa-
tional costs) made from 10,000 bootstrapped samples from a long
MCMC run of 3 million samples.

that they are equivalent in the infinite limit of the num-
ber of temperatures. Due to computational costs, running
MBAR on a large number of temperatures is computation-
ally prohibitive. An issue when estimates are non-Rao-
Blackwellized is that the estimates eventually become un-
stable as we do not have positive counts for each bin. This
is addressed heuristically in the non-Rao-Blackwellized
version of RTS (TS) by adding a constant of .1 to each bin.
For TI, empty bins are imputed by linear interpolation.

4.4. Tracking Partition Functions While Training
There are many approaches to training RBMs, including re-
cent methods that do not require sampling (Sohl-Dickstein
et al., 2010; Im et al., 2015; Gabrié et al., 2015). How-
ever, most learning algorithms are based on Monte Carlo
Integration with persistent Contrastive Divergence (Tiele-
man & Hinton, 2009). This includes proposals based on
tempered sampling (Salakhutdinov, 2009; Desjardins et al.,
2010). Because RTS requires a relatively low number of
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samples and the parameters are slowly changing, we are
able to track the value of a train- and validation-set like-
lihoods during RBM training at minimal additional cost.
This allows us to avoid overfitting by early stopping of the
training. We note that there are previous more involved
efforts to track RBM partition functions, which involve
additional computational and implementation efforts (Des-
jardins et al., 2011).

This idea is illustrated in Figure 5, which shows estimates
of the mean of training and validation log-likelihoods on
the dna dataset3, with 180 observed binary features, trained
on a RBM with 500 hidden units.

We first pretrain the RBM with CD-1 to get initial values
for the RBM parameters. We then run initial RTS iterations
with K = 100, as in Section 2.4, in order to get starting
log Ẑk estimates.

For the main training effort we used the RMSspectral
stochastic gradient method, with stepsize of 1e-5 and pa-
rameter λ = .99 (see (Carlson et al., 2015b) for details).
We considered a tempered space with K = 100 and sam-
pled 25 Gibbs sweeps on 2000 parallel chains between
gradient updates. The latter is a large number compared
to older learning approaches (Salakhutdinov & Murray,
2008), but is similar to that used both in (Carlson et al.,
2015b) and (Grosse & Salakhudinov, 2015) that provide
state-of-the-art learning techniques. We used a prior on the
inverse temperatures rk ∝ exp(2βk), which reduces vari-
ance on the gradient estimate by encouraging more of the
samples to contribute to the gradient estimation.

With the samples collected after each 25 Gibbs sweeps, we
can estimate the ĉk’s to compute the running partition func-
tion. To smooth the noise from such a small number of
samples, we consider partial updates of ẐK given by

Ẑ
(t+1)
K = Ẑ

(t)
K

�
r1
rK

ĉ
(t)
K

ĉ
(t)
1

�α

(24)

with α = 0.2, and t an index on the gradient update. Simi-
lar results were obtained with .05 < α < .5. This smooth-
ing is also justified by the slowly changing nature of the
parameters. Figure 5 also shows the corresponding value
from AIS with 100 parallel samples and 10,000 inverse
temperatures. Such AIS runs have been shown to give ac-
curate estimates of the partition function for RBMs with
even more hidden units (Salakhutdinov & Murray, 2008),
but involve a major computational cost that our method
avoids. Using the settings from (Salakhutdinov & Murray,
2008) adds a cost of 106 additional samples.

3Available from: https://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/multiclass.html
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Figure 5. A demonstration of the ability to track with minimal
cost the mean train and validation log-likelihood during the train-
ing of a RBM on the dna 180-dimensional binary dataset, with
500 latent features.

5. Discussion
In this paper, we have developed a new partition function
estimation method that we called Rao-Blackwellized Tem-
pered Sampling (RTS). Our experiments show RTS has
equal or superior performance to existing methods popu-
lar in the machine learning and physical chemistry com-
munities, while only requiring sufficient statistics collected
during simulated tempering.

An important free parameter is the prior over inverse tem-
peratures, rk, and its optimal selection is a natural question.
We explored several parametrized proposals for rk, but
in our experiments no alternative prior distribution consis-
tently outperformed the uniform prior on estimator RMSE.
(In Section 4.4, a non-uniform prior was used, but this was
to reduce gradient estimate uncertainty at the expense of a
less accurate logZ estimate.) We also explored a contin-
uous β formulation, but the resulting estimates were less
accurate. Additionally, we tried subtracting off estimates
of the bias, but this did not improve the results. Finally,
we tried incorporating a variety of control variates, such
as those in (Dellaportas & Kontoyiannis, 2012), but did
not find them to reduce the variance of our estimates in
the examples we considered. Other control variates meth-
ods, such as those in (Oates et al., 2015), could poten-
tially be combined with RTS in continuous distributions.
We also briefly considered estimating p(βk) via the sta-
tionary distribution of a Markov process, which we dis-
cuss in Appendix G. This approach did not consistently
yield performance improvements. Future improvements
could be obtained through improving the temperature path
as in (Grosse et al., 2013; van de Meent et al., 2014) or in-
corporating generalized ensembles (Frellsen et al., 2016).
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