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Abstract

We present a novel application of Bayesian opti-
mization to the field of surface science: rapidly
and accurately searching for the global mini-
mum on potential energy surfaces. Controlling
molecule—surface interactions is key for applica-
tions ranging from environmental catalysis to gas
sensing. We present pragmatic techniques, in-
cluding exploration/exploitation scheduling and a
custom covariance kernel that encodes the prop-
erties of our objective function. Our method, the
Bayesian Active Site Calculator (BASC), outper-
forms differential evolution and constrained min-
ima hopping — two state-of-the-art approaches —
in trial examples of carbon monoxide adsorption
on a hematite substrate, both with and without a
defect.

1. Introduction

The study of chemical processes on solid surfaces, which
was recently recognized with the 2007 Nobel Prize in Chem-
istry, is important for cleaner energy and environmental
applications ranging from catalysis to gas sensing.

In particular, heterogeneous catalysis is the study of how
solid materials can influence the rates of chemical reac-
tions. These materials provide binding sites for the reacting
gas molecules and orient them to facilitate chemical bond
breaking and forming. A few examples include the work of
Sivula et al. (2011), who used hematite (a-Fe,O3) for water
splitting, Song (2006), who compared several CO,-selective
catalysts for treating flue gases of power plants via carbon
capture, and Xu et al. (2012), who reviewed the use of iron
oxide for wastewater treatment.
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The process of a molecule binding to a surface (called ad-
sorption) involves searching for energetically favorable bind-
ing sites. Although any site on the surface is theoretically
possible, the most likely sites are the most thermodynami-
cally stable (i.e., those that have the lowest potential energy).
This gives rise to an important question: given a solid sur-
face and a gas molecule, which adsorption configuration
corresponds to the globally minimized potential energy?

From a mathematical point of view, this boils down to an op-
timization problem — efficiently performing global energy
minimization in a multidimensional space, while simultane-
ously ensuring that the identities of the molecule and surface
remain unchanged.

Researchers have attempted several different approaches
to solving this problem. One of the more popular solu-
tions to date, constrained minima hopping (Peterson, 2014),
enforces molecular identity by placing constraints on the
distance between atoms, and uses a stochastic global opti-
mization algorithm based on basin hopping (Wales & Doye,
1997) to explore different molecule—surface configurations.
However, constrained minima hopping is computationally
expensive, often requiring several hundred density func-
tional theory (DFT) calculations in an average run.'

In this paper, we present the Bayesian Active Site Calcu-
lator (BASC), a novel method for predicting adsorption
configurations. We enforce the identity of the molecule
and surface by formulating the problem as the minimization
of a low-dimensional objective function (Section 2). We
model this objective using a Gaussian process with a custom
covariance kernel function that enforces the periodicity of
and relationship between the dimensions of the objective
function (Section 3). We then use Bayesian optimization
(Section 4) to converge to the global solution with relatively
few function evaluations (Sections 5 and 6).

'DFT is a computational method for calculating the total elec-
tronic energy given a particular atomic configuration by self-
consistently solving a nonlinear system of equations related to
the Schrodinger equation; see Section 4.3.
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Figure 1. The three Euler angles fully specify the orientation of a
rigid body in space. This image shows the process of rotating a
dimethyl ether molecule by 7 /3 radians about each axis.

Our study here will be focused on CO (carbon monoxide)
— one of the two components of syngas, adsorbing onto
hematite — a widely used metal-oxide catalyst.

2. Parameterizing the Objective Function

Traditional methods for energy minimization involve op-
timization over multiple dimensions — namely, the three
spatial coordinates of each of its /N atoms. As an adsorbate
molecule grows in size, so do the number of dimensions
in the optimization problem, which scales as 3/N. So, for
even a relatively small molecule such as dimethyl ether
(CH30CH3), its 9 atoms correspond to 27 degrees of free-
dom, which must then be systematically explored to find the
most stable structural configuration.

Because we want to maintain the identity of the molecule
through the optimization procedure, however, our problem
is intrinsically lower-dimensional. We consider six dimen-
sions that are capable of approximating most configurations
of small molecules.

2.1. Six Basic Parameters

First, we need to specify the location of the center of the
molecule along the surface plane. We can do this using two
parameters, x and y. These two parameters are periodic
across the boundaries of the unit cell.” We always take x
and y to be fractional coordinates in the given direction,
such that z,y € [0, 1).

Second, we need to specify how “close” the molecule is to
the surface. We can do this with another parameter, which
we will call z. We take z to be given in A.3

>The term unit cell refers to a section of the surface, usually
shaped like a parallelogram, that infinitely repeats itself to form
the entire surface.

3An Angstrom (A) is a unit of measurement equal to 10~ *°
meters, very near the length of an atomic bond.

Figure 2. An example configuration of CO on hematite. The red
atoms are oxygen; brown is iron; and black is carbon. The C atom
in CO is positioned at {x,y) = (0.5,0.5), and itis z = 2.2A
above the surface. The molecule is rotated with Euler coordinates
(0,v) = (%, %). The symmetry of the CO molecule nullifies the
Euler coordinate ¢. The surface is periodic across the boundaries
of the unit cell, shown in black.

Finally, we need to specify the orientation of the molecule.
The orientation of a rigid body in space is fully specified
by three parameters, ¢, 6, and 1, commonly known as the
Euler angles. We always take ¢, 0, and 1 to be measured in
radians. See Figure 1 for an illustration of the Euler angles.

Molecules that are symmetric about an axis, like CO and
CO,, need only two Euler coordinates rather than three.
Single-atom adsorbates do not need any Euler coordinates.

We can therefore approximate the configuration of a
molecule on a catalyst surface with just six parameters,
and sometimes fewer. An example configuration is shown
in Figure 2.

2.2. Additional Parameters

The six parameters of Section 2.1 neglect structural changes
of the molecule and of the surface. We consider two types
of structural changes: free structural parameters and defor-
mation by adsorption.

2.2.1. FREE STRUCTURAL PARAMETERS

Consider a molecule like ethane, C,Hg. In addition to the
three Euler angles, ethane needs one more parameter — the
internal angle of rotation about the C—C bond — to fully
define its orientation. This parameter is periodic, and it
could be added to the objective function.

2.2.2. DEFORMATION BY ADSORPTION

It is usually the case that the interaction of the molecule with
the surface causes one or the other to deform in a way that
would otherwise not occur in free space. For example, the
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length of an internal bond may increase or decrease, and the
binding of a molecule to the surface may cause the atoms
on the surface to move.

These changes are difficult to parameterize. Depending on
the molecule, some number of parameters could potentially
be added to correspond to common ways that the molecule
could deform. The number of parameters would increase
dramatically, though, for complex surfaces and molecules.

Fortunately, our results for a CO molecule on a hematite
surface indicate that deformation by adsorption can be ne-
glected. The user can run an additional relaxation step to
converge BASC’s result to the true global minimum.*

3. Designing an Appropriate Kernel

Bayesian optimization (see Section 4.1) operates by mak-
ing observations of the objective function and adding those
observations to a Gaussian process model. A Gaussian pro-
cess, or GP (Rasmussen & Williams, 2006), is a Bayesian
method popular as a technique for performing nonlinear
regression.

A kernel function, or covariance function, is a measure of
the “similarity” between two points based on their locations
in the parameter space of an objective function (Duvenaud,
2014, chap. 2). A GP uses a kernel function coupled with a
prior belief 1) (the mean function) to make predictions of
the objective function by weighing the influence of known
observations over an unknown point in space.

The classical example of a kernel function is the squared
exponential, or SE:

1
ksg(x1,22) = 0% exp ( Vel (x2 — 131)2) (1

where £ is the length scale and o2 is the output variance.
The length scale defines the “region of influence” of a point
within the parameter space; the influence of an observation
decreases as one considers points farther and farther away
from the observation. The variance defines the “expected
deviation” of the function away from its average value.

We use the SE kernel for modeling the z dimension. For the
other two axes, we use variations on it, which are explained
below. To combine everything into one all-encompassing
multi-dimensional kernel, we multiply the kernels together
using the method presented in Duvenaud (2014, chap. 2).

*A “relaxation step” means converging the full-dimensional
system (three coordinates for each atom) to a local potential energy
minimum, typically using a classical optimization algorithm like
L-BFGS (Liu & Nocedal, 1989) and typically until the forces on
every atom are less than 0.05eV/A.
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Figure 3. Four slices of the x—y plane from the objective function
for CO on a-Fe,0; (hematite). The global minimum is near the
center of the dark area in the first slice.

3.1. Standard Periodic Kernel (x and y)

Figure 3 shows several slices along the x—y plane of the
objective function. The figures indicate that the objective
function is rather smooth and periodic in these dimensions.

To model = and y, we employ a periodic kernel proposed in
MacKay (1998) and documented in Rasmussen & Williams
(2006, eqn. 4.31), which has become known as the standard
periodic (SP) kernel. We use the following one-dimensional
form, implemented by The GPy authors (2012-2015):

1
kp(x1,22) = 0% exp <_€2 sin? <(x2 — 1) ;)) 2
where p is the period.

3.2. Spherical Kernel (Euler angles)

The three Euler angles (see Figure 1) have trigonometric
relationships that benefit from a specialized kernel.

To illustrate the relationships, consider a linear molecule
with its axis of symmetry aligned to the z axis. First we
perform the 6 rotation about the x axis, followed by the
1) rotation about the z axis. This is analogous to walking
along the surface of a sphere: you start at the north pole,
you walk south along a line of longitude, and then you walk
west along a line of latitude.

Figure 4 shows how a slice of the objective function along
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Figure 4. Two projections of a slice of the 6— plane from the
objective function for CO on hematite atz = y = O and z = 1.5 A.
The color scale is the same as in Figure 3.

the 6—) plane for CO on hematite conforms well to a spher-
ical projection. How can we represent this spherical rela-
tionship in a kernel function?

A handful of methods for representing kernel functions
in spherical space have been proposed (Berman, 1980;
Brauchart et al., 2014). For example, Solin & Sérkkd (2014)
present an approach making use of eigenfunction expan-
sions of the Laplace operator and show how it can be used
to model temperature patterns on the surface of the earth. Pa-
ciorek’s approach (2003) projects the sphere into Euclidean
space and uses a convolution in the spherical domain to
combine the kernels for each point.

We propose an approach based on the observation that the
SE and SP kernels are of the same form: an exponential
function of a distance metric (Euclidean distance in the
SE kernel, and periodic distance in the SP kernel). Our
spherical kernel takes the same form, but uses the great
circle distance as its metric:’

daco (91, 1&1, ég, ﬁg) = arcsin(sin 0, sin 6
+ cos 07 cos O COS(’(/AJQ — 1&1)) 3)
where éi is the inclination (or “latitude’) and 1; is the az-

imuth (or “longitude”). The conversion from our Euler

angles is:
™

9i=§—9i Wi = s

The kernel function can then be written as:
2 1 5
kspr(01,02,v1,%2) = 07 exp —272dc;c €]

To illustrate this kernel, we show in Figure 5 an example

SThe form in Equation 3 is not numerically stable for small
distances, so in practice, we use the haversine form.

75°

Figure 5. A GP using the spherical kernel function (Equation 4)
with £ = 7/6 and 0 = 5 fit to three observations, shown in
blue, with values from top to bottom of 5, 4, and 6. The GP has a
constant mean of zero and noise variance of 0.12.

GP using the kernel to fit three observations. Observe that
the kernel makes the function periodic around the sphere.

For sufficiently small ¢, Equation 4 is positive-definite to
numerical precision and can be safely used as a kernel func-
tion. Empirically, we drew the first 150 points of the Sobol
sequence (Burkardt & Chisari, 2011) for a slice of our ob-
jective function and fitted a GP using the spherical kernel to
that data. We then incremented / in steps of 0.001 until we
found a value of ¢ that produced a covariance matrix that
was not positive-definite to machine precision. The largest
value of ¢ that our GP could handle was 0.977, or 0.3117.
In the remainder of our work, we have bounded the value of
of £ at 0.3m.

4. Optimizing the Objective Function

In Section 2, we showed how we can represent the problem
at hand as a low-dimensional objective function, and in
Section 3, we documented a kernel to model it. In this
section, we explain Bayesian optimization and how we have
applied it in BASC.

4.1. Bayesian Optimization

Bayesian optimization (BO) is a method for finding the
global minimum of an expensive, black-box oracle function
over some bounded set of parameters. It was first doc-
umented by Mockus et al. (1978), but it remained largely
confined to theoretical literature until being revived by Jones
et al. (1998) and finding several practical applications, most
popularly the optimization of machine learning algorithms
(Snoek et al., 2012). Compared with other global optimiza-
tion algorithms, BO has an advantage when the objective
function is expensive (more expensive than the optimization
routine) and lacks a well-defined mathematical represen-
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tation (Brochu et al., 2010). In the last two years, BO
has begun seeing practical applications outside of machine
learning, in areas such as robotics (Heping et al., 2015),
bioengineering (Luna & Martinez, 2014), and mechanical
engineering (Sterling et al., 2015). However, to the best of
our knowledge, this is the first documented application of
BO to the field of surface science.

BO starts by considering a set of known observations of
the oracle function. It fits a GP to those observations, and
then it picks a new point to evaluate by maximizing the
expected improvement (EI) over the parameter space. EI is
a non-convex function that has higher values near promis-
ing observations, lower values near bad observations, and
medium values in unexplored areas.® The point that maxi-
mizes EI will be evaluated by the oracle function and added
to the GP. This process repeats itself until the user is satisfied
with the result.

4.2. Exploration and Exploitation Scheduling

BO, and GPs in general, assume that the objective function
is drawn from the distribution encoded by the kernel. With
our real-life potential energy surface, this is unlikely to be
the case. Instead, we can manipulate the hyperparameters
to control how BO chooses points to evaluate.

The output variance o2 can be used to control the trade-
off between so-called exploration (evaluating a point in an
unknown area of the function space) and exploitation (eval-
uating a point near a previous, promising observation). We
use a decaying function to schedule a region of exploration
followed by a region of exploitation:

o2 = Bexp (1 _ (nf)Q) (5)

where n is the current iteration number, B is a fixed constant,
and f is what we call the influence fraction of an observation:
the fraction of the total parameter space that is influenced
by the observation. We typically assume that “influence”
travels for 2 length scales in each dimension. This function
is chosen such that the first f~! observations (in which
0?2 > B) are capable of exploring the entire parameter
space, with all subsequent observations (in which 02 < B)
transitioning into exploitation mode. Equation 5 is shown
in Figure 6.

4.3. Computing the Potential Energy

Our parameterization takes a vector of numbers and out-
puts a set of atomic coordinates. To convert those atomic
coordinates into a scalar potential energy, we turn to the
field of computational chemistry. There are two primary ap-

SMaximizing EI is actually just one example of what is more
generally known as an acquisition function.
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Figure 6. Equation 5 with B=1 and f=0.02, designed to schedule
exploration in the first 50 iterations and exploitation in the second
50 iterations.

proaches: one involving classical mechanics and empirical
force fields, such as that of Lennard-Jones (1924), and the
other involving quantum mechanics, such as that of Kohn
and Sham (1965).

Kohn and Sham’s method, density functional theory (KS—
DFT), is a reformulation of the Schrodinger equation to
express the electron density as a function of the electron
coordinates; since the electron density is the squared mod-
ulus of the wavefunction, the approaches are, in principle,
exact. An initial electron density is correlated one-to-one to
the total electronic energy, which is a sum over kinetic and
potential (including electron-electron and electron-nuclear)
terms. The method then involves an iterative procedure to
converge the electronic energy as a functional of the elec-
tronic coordinates.

With the electronic structure being calculated on the fly us-
ing quantum mechanics, DFT is naturally more rigorous
and accurate than classical mechanics, so it has been suc-
cessfully used to model structure and properties in extended
systems, such as semiconductors (Jensen, 2007). We there-
fore use DFT for all of our calculations.

4.4. Details of Our Implementation

In BASC, we make use of the following domain-specific
implementation details.

Initialization We initialize the GP by evaluating the objec-
tive function at a point from the Sobol sequence (Burkardt &
Chisari, 2011). Each time we ran BASC, we used a different
initial observation.

Noise We set the likelihood variance (the “noise”) to be
an arbitrary small, but nonzero, number. We found em-
pirically that settings larger than around 10~* caused the
algorithm to get stuck evaluating points in the close vicinity
of a promising observation due to the observation having a
low confidence interval.
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Period We fix the period for « and y at 1, since we have
defined x and y to be in fractional coordinates.

Length Scales We can use our knowledge about the topol-
ogy of the objective function to set reasonable lengths scales.
In the « and y directions, we set the length scales to 1 A, a
conservative value on the order of the length of an atomic
bond, expressed in fractional coordinates depending on the
size of the unit cell. In the other dimensions, we use 0.25 A
in z and % in the spherical kernel.

Mean Function To ensure that the mean function, p(x),
is within the true range of the objective function, after each
iteration, we set u(z) to be a constant equal to the mean of
all previous observations.

Scheduling We set the constant B for the scheduling func-
tion (Equation 5) to be fixed at 10 eV, a value slightly larger
than the overall variance of the objective function. Based
on our choices for length scales, the influence fraction turns
out to be f = 0.0177.

Maximizing Expected Improvement Our implementa-
tion uses differential evolution internally to maximize the
expected improvement. This is one source of stochasticism
in our implementation of BO.

DFT Configuration We use the LDA exchange-
correlation functional (Perdew & Wang, 1992) and a
pseudo partial wave electron density basis set using GPAW
(Mortensen et al., 2005; Enkovaara et al., 2010).

Hematite Surface We obtained a crystal structure for
a-Fe,;03 (hematite) from Materials Project. We used the
R3C space group, corresponding to material ID “mp-24972”
(Jain et al., 2013; Ong et al., 2015). We cut the 001 sur-
face from the crystal structure, with two unit cell layers and
15 A of vacuum. We then relaxed the surface using DFT
and L-BFGS. The bottom unit cell layer was frozen, while
the top layer was allowed to move. The relaxed hematite
surface was used as a basis for all further calculations.

CO Molecule Our CO (carbon monoxide) molecule has
the oxygen atom 1.128 A below the carbon atom along the z
axis. The center of the carbon atom is always the reference
point for the z, y, and z parameters.

5. State of the Art

We will compare BASC to two other methods: differential
evolution (an alternative global optimization routine) and
constrained minima hopping (a domain solution).

Table 1. Hyperparameter settings for Differential Evolution.

CASE Por. ToOL. MUTATION RECOMB.
DEFAULT 15 0.01 0.5T0 1 0.7
AGGRESSIVE 5 0.01 0.5T0 1 0.9

5.1. Differential Evolution

Differential evolution (DE), first documented by Storn and
Price (1997), is a general routine for the global optimization
of a bounded objective function.

DE, which is a type of genetic algorithm, starts with a fixed
number of candidates (the population), which should be rea-
sonably well-distributed over the parameter space. It calls
the objective function for each of those candidates, and at
each step, it performs a “mutation” process in which the next
generation of candidates are more likely to inherit properties
from the “best” candidates in the previous generation.

Like BO, DE has hyperparameters needing to be set. We ran
two different cases of DE: one with default, conservative
settings, and one with aggressive settings.” Aggressive
parameters cause the algorithm to terminate more quickly,
but they risk converging to a local minimum. These settings
are listed in Table 1.

We gave DE the same objective function as BO. We used
the “best1bin” strategy from the implementation in SciPy.

5.2. Constrained Minima Hopping

In contrast, constrained minima hopping (CMH) is a routine
for optimizing adsorbate-surface structures, documented by
Peterson (2014). It builds on Goedecker’s earlier routine
called minima hopping (2004).

CMH starts with an initial molecule—surface configuration,
and it lets the molecule relax to a local potential energy
minimum (via L-BFGS). Each local minimization requires
around 25 function evaluations for CO on hematite. Through
this process, the atoms of the molecule are allowed to move
independently of one another, but a Hookean constraint is
applied to ensure that the molecular identity is maintained.
Once a local minimum is found, it is recorded. The system
is then randomly permuted by a fixed amount of energy
and allowed to relax again. If the new local minimum is
the same as the previous local minimum, the next random
permutation will add extra energy. This process is repeated
several times until the user is satisfied with the result.

In our runs, CMH evaluated the atomic forces and potential
energy using DFT, like the parameterized objective function.

"The “default” settings are those in the SciPy implementation
of DE as of SciPy version 0.15.
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CO on Hematite (stoichiometric)
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Figure 7. Ranges of best observation after each call to DFT for CO on hematite. The error bars show max and min, and the solid lines
show the median. At least four runs of each routine are included. The dashed black line shows the minimum for the parameterized
objective function; since CMH allows for deformation of the molecule and surface atoms, it is capable of reaching a lower energy.

6. Results

To evaluate its performance, we compared BASC (our
Bayesian optimization-based method) to two state-of-the-
art routines — differential evolution (DE) and contrained
minima hopping (CMH) — to find the most energetically
stable binding site of CO on a hematite surface.

We considered two different structures of hematite: one sto-
ichiometric, and the other with an oxygen vacancy (defect)
on the surface. Oxygen-deficient, or “reduced,” catalysts
have a strong propensity to redistribute electrons, and they
are increasingly popular for applications including photocat-
alytic reactors and battery technology (Wang et al., 2012).

6.1. Stoichiometric Hematite

In the stoichiometric (defect-free) system, we ran four rou-
tines: BASC, DE with conservative settings, DE with ag-
gressive settings, and CMH. All of the routines found the
same solution — the CO molecule oriented C-down directly
over an Fe atom on the surface. This configuration is shown
in Figure 8. The corresponding coordinates in our objective
function’s parameter space are shown in Table 2.

Table 2. Solution of the objective function for CO on hematite.

X Y z 0 P
0.493 0.023 1.5A 3.077 0.009

Figure 7 plots the minimum energy observed from DFT as
a function of the number of calls to DFT. BASC converges
the most quickly, converging to 0.1 eV above the minimum

Figure 8. All of the routines identify the above configuration for
CO on hematite.

of the parameterized objective function in 100 iterations in
the median case and 94 iterations in the best case. DE with
the default settings reaches that threshold in 192 iterations
in the median case and 181 iterations in the best case. DE
with the aggressive settings reaches it in 93 iterations in the
best case, but it does not reach it in the median case.

For comparison, CMH is also shown on the plot. CMH does
not use the same parameterized objective function as BASC
and DE; in particular, it is allowed to perform the “defor-
mation by adsorption” that we discussed in Section 2.2.2.
This allows it to achieve a potential energy that is smaller
than the minimum possible from the parameterized objec-
tive function. However, the solution it finds is virtually
identical to the one from the objective function, with only
minor shifts in atom positions; this validation confirms the
accuracy of our approach. The most notable difference is
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CO on Hematite (oxygen-deficient)

Table 3. Solution of the objective function for CO on oxygen-
deficient hematite.
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Figure 9. Range of minimum potential energies after each call to
DFT for CO on oxygen-deficient hematite. Four runs each of
BASC and DE are included; only one run of CMH is included.

that CMH’s C—O bond length is around 1.141 A (up from
1.128 A), suggesting that bond length may be a beneficial
free structural parameter to add to the objective function.
Performing an unconstrained L-BFGS relaxation step on
BASC’s solution, with a cost of 26 more DFT function calls,
yields a configuration closer to that of CMH, at -188.81 eV.

6.2. Oxygen-Deficient Hematite

To prepare the oxygen-deficient surface, we first removed
the oxygen atom that was nearest the top of the surface,
located near z = y = 0.75. We then re-relaxed the empty
surface (using DFT and L-BFGS).

‘We ran BASC, differential evolution, and constrained min-
ima hopping on this surface. We ran DE with only the
conservative settings, since we found from Figure 7 that the
aggressive settings lead to instability.

As before, all three routines agree on the solution. In this
case, it is the CO molecule oriented C-down directly over
an Fe atom, but with the CO tilted over the vacancy site,
as shown in Figure 10. This result makes sense physically,
because the oxygen atom in CO should be attracted to the
oxygen vacancy site in the surface. The solution after re-
laxing the BASC result with L-BFGS has the CO molecule
more severely tilted toward the vacancy site, correspond-
ing to an energy of -180.74 eV, which exceeds CMH’s best
result of -180.46 eV.? The coordinates are shown in Table 3.

In addition, it is reassuring that BASC performs well in
the oxygen-deficient system. Figure 9 plots the minimum
observed energy versus the number of calls to DFT. On
average, BASC finds a configuration within 0.1 eV of the
minimum by iteration 96, while DE finds it by iteration 198.

8CMH’s solution has the CO molecule positioned over one of
the other Fe atoms, but still tilted toward the vacancy site.

0.401

0.955

1.5

2.909

4.64

Figure 10. All routines identify the above configuration for CO on
hematite with a defect. The atoms are in slightly different positions
than Figure 8 because the atoms in the surface were allowed to
relax after the oxygen was removed. The CO is positioned above
the same Fe atom as in Figure 8, but its oxygen atom on top is
“leaning” toward the vacancy site.

7. Conclusion

This paper documents a novel application of Bayesian opti-
mization to a field of study outside the bounds of traditional
machine learning.

We started by considering the problem in the field of surface
science: determining the optimal molecule—surface configu-
ration. We modeled the problem as an optimization problem
with a well-defined objective function. We derived a custom
kernel for the objective function. We presented a pragmatic
scheduling function for running Bayesian optimization on a
non-ideal objective function. We then compared our method
with two others—differential evolution and constrained min-
ima hopping—and found that our approach was accurate
and had the best performance in terms of number of calls
to DFT. Our Bayesian optimization approach to efficiently
sample the search space has broad impact for surface science
at environmental interfaces.

Our code is available at:
https://gitlab.com/caml/basc
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