
Recycling Randomness with Structured Matrices

7. Appendix
We now prove all theoretical results of the paper. We need
to introduce some technical denotation.

From now on f denotes one from the following functions:
sin, cos, sign or a linear rectifier. We call the set of these
functions F . For two vectors v, w we denote by v · w
their dot product. We denote by Gistruct for i = 1, ..., km
the building blocks of the structured matrix constructed ac-
cording to the P-model that are vertically stacked to pro-
duce the final structured matrix. Let v1, v2 ∈ Rn be two
datapoints from the preprocessed input-dataset D1HD0X .
Let d be a fixed integer constant. Let R = {i1, ..., ir}
be some r-element subset of the set {1, ...,m}, where m
stands for the number of rows used in the construction
of matrices Gistruct (key building blocks of our structured
mechanism). Finally, let α1, ..., αr be positive integers
such that α1 + ...+ αr = d.

Definition 7.1. For three vectors: v, w, z ∈ Rn and a given
nonlinear function f ∈ F we denote:

φ(v, w, z) = f(z · v)f(z · w).

We will show that for a variety of functions Ψ : Rr → R
the expected value of the expression TG,dv1,v2(R, α1, ..., αr)
given by the formula:

Ψ(φ1(v1, v2, gi1)α1 , ..., φr(v
1, v2, gir )αr ), (12)

where g1, ..., gm is the set of m gaussian vectors form-
ing gaussian matrix G, each obtained by sampling in-
dependently n values from the distribution N (0, 1) and
φis differ by the choice of nonlinear mapping fi ∈ F ,
can be accurately approximated by its structured version
TA,dv1,v2((R, α1, ..., αr) which is of the form:

Ψ(φ1(v1, v2, ai1)α1 , ..., φr(v
1, v2, air )αr ), (13)

where a1, ..., am are rows of the structured matrix A =
Gistruct. The importance of TG,dv1,v2(R, α1, ..., αr) and

TA,dv1,v2(R, α1, ..., αr) lies in the fact that dth moments
of the random variables approximating considered ker-
nels in the unstructured and structured mechanism can
be expressed as weighted sums of the expressions of the
form TG,dv1,v2(α1, ..., αr) and TA,dv1,v2(α1, ..., αr) respectively

if Ψ(x1, ..., xr) = x1 · ... · xr. Thus if TA,dv1,v2(α1, ..., αr)

closely approximates TG,dv1,v2(α1, ..., αr) then the corre-
sponding moments are similar. That, as we will see soon,
implies several theoretical guarantees for the structured
method. In particular, this means that the variances are sim-
ilar. Since in the unstructured setting the variance is of the
order O( 1

m ), that will be also the case for the structured
setting. This in turn will imply concentration results pro-
viding theoretical explanation for the observations from the

experimental section that show the quality of the proposed
structured setting.

We need to introduce a few definitions.

Definition 7.2. We denote by ∆ξ
s the supremum of the ex-

pression ‖ξ(y1, ..., ym) − ξ(y′1, ..., y
′
m)‖ over all pairs of

vectors (y1, ..., ym), (y′1, ..., y
′
m) from the domain D that

differ on at most one dimension and by at most s. We say
that a function ξ : Rm → R is M -bounded in the domain
D if ∆ξ

∞ = M .

Note that the value of the function φi(v1, v2, gi)αi depends
only on the projection giproj of gi on the 2-dimensional
space spanned by v1 and v2. Thus for a given pair v1, v2

function φ is in fact a function Bv
1,v2

i of this projection.

Definition 7.3. Define:

pλ,ε = sup
i,v1,v2,‖ζ|∞≤ε

P[|Bv
1,v2

i (giproj + ζ)−

Bv
1,v2

i (giproj)| > λ],

(14)

where the supremum is taken over all indices i = 1, ...,m,
all pairs of linearly independent vectors from the domain,
all coordinate systems in span(v1, v2) and vectors ζ of L1-
norm at most ε in some of these coordinate systems.

We will use the following notation: σi,j(n1, n2) =
PT
i,n1

Pj,n2 . To compress the statements of our theoretical
results, we will use also the following notation:

ξ(ii, i2) = 2χ(i1, i2)

√ ∑
1≤n1<n2≤n

(σi1,i2(n1, n2))2,

We will also denote: λ(i1, i2) =
∑n
j=1 |σi1,i2(j, j)| and

λ̃(i1, i2) = |
∑n
j=1 σi1,i2(j, j)| for 1 ≤ i1 ≤ i2 ≤ m (see:

3.1).

Note first that the preprocessing step preserves kernels’
values since transformation HD0 is an isometry and con-
sidered kernels are spherically-invariant. We start with
Lemma 4.1.

Proof. Note that it suffices to show that for any two given
vectors x, y ∈ Rn the following holds:

E[f(Gistructx) · f(Gistructy)] = E[f(Gx) · f(Gy)], (15)

whereG is the unstructured gaussian matrix. Let gi,jstruct be
the jth row of Gistruct and let gj be the jth row of G. Note
that we have:

E[f(gi,jstruct ·x)f(gi,jstruct ·y)] = E[f(gj ·x)f(gj ·y)]. (16)

The latter follows from the fact that gi,jstruct has the same
distribution as g. To see this note that gi,jstruct = g ·Pi. Thus
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dimensions of gi,jstruct are projections of g onto columns
of Pi. Each projection is trivially gaussian from N (0, 1)
(that is implied by the fact that each column is normal-
ized). The independence of different dimensions of gi,jstruct
comes from the observation that different columns are or-
thogonal. Thus we can use a simple property of gaussian
vectors stating that the projections of a gaussian vector on
mutually orthogonal directions are independent. The equa-
tion 15 implies equation 16 by the linearity of expectation
and that completes the proof.

Now we prove Theorem 4.1. This one is easily implied by
a more general result that we state below. We will assume
that function Ψ from equations: 12, 13 is M -bounded for
some given M > 0. We will assume that expected values
defining TA,d are not with respect to the random choices
determining Pis.

Theorem 7.1. Let v1, v2 ∈ Rn be two vectors from a
dataset X . Let R = {i1, ..., ir} ∈ {1, ...,m} and let
α1, ..., αr be the set of positive integers such that α1 +
... + αr = d. Assume that each structured matrix Gistruct
consists of m rows and either sup1≤i1<i2≤m λ(i1, i2) =
o( n

log2(n)
) if Pis were constructed deterministically or

sup1≤i1<i2≤mE[λ̃(i1, i2)] = o( n
log2(n)

) if Pis were con-
structed randomly. In the latter case assume also that for
any 1 ≤ i1 < i2 ≤ m and 1 ≤ n1 < n2 ≤ n the
nth1 column of Pi1 is chosen independently from the nth2
column of Pi2 . Denote by Ψmax the maximal value of
the function Ψ for the datapoints from X . Let qdv1,v2 =

|TA,dv1,v2(R, α1, ..., αr) − TG,dv1,v2(R, α1, ..., αr)| denote the
absolute value of the difference of the two fixed terms on
the weighted sum for the d-moments of the kernel’s approx-
imation in the structured P-model setting and the fully un-
structured setting. Then for any λ, ε > 0, T > 0, n large
enough and Pis chosen deterministically we have:

qdv1,v2 ≤ (pgen+pstruct)Ψmax+

d∑
i=0

pif (iM+(d−i)∆Ψ
λ ),

where:

pgen =
4r√
2πT

e−
T
2 + 4ne−

log2(n)
8 , (17)

pif =

(
d

i

)
(pλ,ε)

i (18)

and

pstruct = 4

m∑
i=1

χ(i, i)e
− 1

2ξ2(i,i)
n2

log6(n)

+2
∑

1≤i1≤i2≤m

χ(i1, i2)e
− ε2n

3
2

2ξ2(i1,i2)T log4(n)

(19)

If Pis are chosen from the probabilistic model then the
above holds with probability at least 1 − pwrong, where

pwrong = 2
∑
i≤i1<i2≤m e

− n2

8 log6(n)
∑n
j=1

(σi1,i2
(j,j))2 .

Proof. Consider the expression

qdv1,v2 = |TA,dv1,v2(R, α1, ..., αr)− TG,dv1,v2(R, α1, ..., αr)|.

We will use formulas for TG,d and TA,d given by equa-
tions: 12 and 13. Without loss of generality we will assume
that A = GistructD1 i.e. in our theoretical analysis we will
make D1 a part of the structured mechanism and move it
away from the preprocessing phase (obviously both ways
are equivalent because of the associative property of ma-
trix mutliplication). We have already noted that each argu-
ment of the function Ψ from equations: 12 and 13 depends
only on the projections of ai1 , ..., air on the 2-dimensional
space spanned by v1 and v2. Denote these projections as:
ai1proj ,...,a

ir
proj respectively and fix some orthonormal ba-

sis B of this 2-dimensional space. As we will see soon,
in the P-model setting the coordinates of aiprojs in B can
be expressed as g · si,j for j = 1, 2, where g is a vector
representing a budget of randomness of the corresponding
P-model and si,js are some vectors from Rt (parameter t
stands for the length of g).

We will show that si,js, even though not necessarily pair-
wise orthogonal, are close to be pairwise orthogonal with
high probability. Let us assume now that vectors si,j can
be chosen in such a way that each si,j satisfies: si,j =
wi,j + ρ(i, j), where vectors wi,j are mutually orthogonal,
we have ‖si,j‖2 = ‖wi,j‖2 and furthermore ‖ρ(i, j)‖2 ≤ ρ
for some given ρ > 0. We call this property the ρ-
orthogonality property. We will later show that the ρ-
orthogonality property depends on the random diagonal
matrix D1.

Assume now that the ρ-orthogonality property is satis-
fied. Denote by gH the projection of the “budget-of-
randomness” vector g onto 2r-dimensional linear space H
spanned by vectors from {si,j}. Note that then the coordi-
nates of aiprojs in B can be rewritten as g · wi,j + ε(i, j),
where |ε(i, j)| ≤ ε and ε = ‖gH‖2ρ. Thus each ψi in
the formula from equation 13 can be then expressed as
Bv

1,v2

i (giproj + ε(i)), where giprojs stand for the projec-
tions onto 2-dimensional linear space spanned by v1 and
v2 of independent copies of gaussian vectors gi. Each gi

is of the same distribution as the corresponding structured
vector ai and ε(i)s are vectors with the L1-norm satisfy-
ing ‖ε(i)‖ ≤ ε. The independence comes from the fact
that variables of the form g · wi,j are independent. That,
as in the proof of Lemma 4.1 is implied by the well known
fact that dot products of a given gaussian vector with or-
thogonal vectors are independent. Note that if not the term
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ε(i) then the formula for TA,d would collapse to its un-
structured counterpart TG,d. We will argue that both ex-
pressions are still close to each other if ε(i) have small L1-
norm.

Let us fix λ > 0. Our goal is to count these in-
dices i that satisfy the following: |ψi(v1, v2, gi)α

i −
ψi(v

1, v2, gi)α
i | > λ, where gis corresponds to the afore-

mentioned independent counterparts of ais. We call them
bad indices. Based on what we have said so far, we
can conclude that the latter inequality can be expressed as
|Bv

1,v2

i (giproj + ε(i)) − Bv
1,v2

i (giproj)| > λ. Let us first
find the upper bound on the probability of the event that
the number of bad indices is j for some fixed 1 ≤ j ≤ d.
Note that since gis are independent, we can use Bernoulli
scheme to find that upped bound. Using the definition
of pλ,ε we obtain an upper bound of the form pupper ≤(
d
j

)
(pλ,ε)

j . If the number of bad indices is j then by the
definition ofM and ∆Ψ

λ we see that TA,d differs from TG,d

by at most iM + (d− i)∆Ψ
λ . Summing up over all indices

j we get the second term of the upper bound on qdv1,v2 from
the statement of the theorem.

However the ρ-orthogonality does not have to hold. Note
that (by the definition of Ψmax) to finish the proof of
the theorem it suffices to show that the probability of ρ-
orthogonality not to hold is at most pgen + pstruct.

Lemma 7.1. The ρ-orthogonality property holds with
probability at least 1− (pgen + pstruct).

Proof. We need the following definition.

Definition 7.4. Let x = (x1, ..., xn) be a vector with
‖x‖2 = 1. We say that x is θ-balanced if |xi| ≤ θ√

n
for

i = 1, ..., n.

For a fixed pair of vectors v1, v2 ∈ X choose some or-
thonormal basis B = {x1, x2} of the 2-dimensional space
spanned by v1 and v2. Let x̃1 and x̃2 be the images of x1

and x2 under transformationHD0, whereH is a Hadamard
matrix and D0 is a random diagonal matrix. We will
show now that with high probability x̃1 and x̃2 are log(n)-
balanced. Indeed, the ith dimension of x̃1 is of the form:
x̃1
i = hi,1x

1
1 + ...+ hi,nx

1
n, where hi,j stands for the entry

in the ith row and jth column of a matrixHD0. We need to
find a sharp upper bound on P[|hi,1x1

1 + ...+ hi,nx
1
n| ≥ a]

for a = log(n)√
n

.

We will use the following concentration inequality, calles
Azuma’s inequality

Lemma 7.2. Let X1, ..., Xn be a martingale and as-
sume that −αi ≤ Xi ≤ βi for some positive constants
α1, ..., αn, β1, ..., βn. Denote X =

∑n
i=1Xi. Then the

following is true:

P[|X − E[X]| > a] ≤ 2e
− a2

2
∑n
i=1

(αi+βi)
2

In our case Xj = hi,jx
1
j and αi = βi = 1√

n
. Apply-

ing Azuma’s inequality, we obtain the following bound:

P[|hi,1x1
1 + ... + hi,nx

1
n| ≥

log(n)√
n

] ≤ 2e−
log2(n)

8 . The
probability that all n dimensions of x̃1 and x̃2 have abso-
lute value at most log(n)√

n
is, by the union bound, at least

pbalanced = 1 − 2n · 2e−
log2(n)

8 = 1 − 4ne−
log2(n)

8 . Thus
this a lower bound on the probability that x̃1 and x̃2 are
log(n)-balanced. We will use this lower bound later. Now
note that it does not depend on the particular form of the
structured matrix since it is only related to the preprocess-
ing phase, where linear mappings D0 and H are applied.

For simplicity we will now denote x̂1 and x̂2 simply as
x1 and x2, knowing these are the original vectors after ap-
plying linear transformation HD0. Let us get back to the
projections of ais onto 2-dimensional linear space spanned
by v1 and v2. Note that we have already noticed that ai ·xj
(j = 1, 2) is of the form g · si,j for some vector si,j ∈ Rt,
where t is the size of the “budget of randomness” used in
the given P-model. From the definition of the P-model we
obtain:

si,jl = d1p
i
l,1x

j
1 + ...+ dnp

i
l,nx

j
n (20)

for l = 1, ..., t, where si,jl stands for the lth dimension of
si,j , pil,k is the entry in the lth row and kth column of Pi
and drs are the values on the diagonal of the matrix D0.
As we noted earlier, we want to show that si,js are close
to be mutually orthogonal. To do it, we will compute dot
products si1,j1 · si2,j2 . We will first do it for i1 = i2. We
have:

si1,j1 · si1,j2 = xj11 x
j2
1

t∑
l=1

(pi1l,1)2 + ...+ xj1n x
j2
n

t∑
l=1

(pi1l,n)2

+2
∑

1≤n1<n2≤n

dn1dn2x
j1
n1
xj2n2

(

t∑
i=1

pi1l,n1
pi2l,n2

)

(21)

Now we take advantage of the normalization property of
the matrices Pi and the fact that x1 is orthogonal to x2

and conclude that the first term on the RHS of the equa-
tion above is equal to 0. Thus we have:

si1,j1 · si1,j2 = 2
∑

1≤n1<n2≤n

dn1
dn2

xj1n1
xj2n2

σi1,i1(n1, n2).

(22)

Note that if for any fixed Pi any two different columns
of Pi are orthogonal then σi1,i1(n1, n2) = 0 and thus
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si1,j1 · si1,j2 = 0. This is the case for many structured ma-
trices constructed according to the P-model, for instance
circulant, Toeplitz or Hankel matrices.

Let us consider now si1,j1 · si2,j2 for i1 6= i2. By the pre-
vious analysis, we obtain:

si1,j1 · si2,j2 = σi1,i2(1, 1)xj11 x
j2
1 + ...+ σi1,i2(n, n)xj1n x

j2
n

+2
∑

1≤n1<n2≤n

dn1dn2x
j1
n1
xj2n2

σi1,i2(n1, n2).

(23)

This time in general we cannot get rid of the first term in
the RHS expression. This can be done if columns of the
same indices in different Pis are orthogonal. This is in fact
again the case for circulant, Toeplitz or Hankel matrices.

Let us now fix some 1 ≤ i1 ≤ m and κ > 0. Our goal is to
find an upper bound on the following probability: P[|si1,j1 ·
si2,j2 | > κ].

We have:

P[|si1,j1 · si2,j2 | > κ] =

P[|
∑

1≤n1<n2≤n

dn1
dn2

xj1n1
xj2n2

2σi1,i2(n1, n2)| > κ]. (24)

For {n1, n2} such that n1 6= n2 and σi1,i1(n1, n2) 6= 0 let
us now consider random variables Yn1,n2

that are defined
as follows

Yn1,n2 = 2dn1dn2x
j1
n1
xj2n2

σi1,i1(n1, n2). (25)

From the definition of the chromatic number χ(i1, i1) we
can deduce that the set of all this random variables can be
partitioned into at most χ(i1, i1) subsets such that random
variables in each subset are independent. Let us denote
these subsets as: L1, ...,Lr, where r ≤ χ(i1, i1). Note that
an event {|

∑
1≤n1<n2≤n dn1

dn2
xj1n1

xj2n2
2σi1,i1(n1, n2)| >

κ} is contained in the sum of the events: E = E1 ∪ ...∪ Er,
where each Ej is defined as follows:

Ej = {|
∑
Y ∈Lj

Y | ≥ κ

χ(i1, i1)
}. (26)

Thus, from the union bound we get:

P[E ] ≤
χ(i1,i1)∑
i=1

P[Ei]. (27)

Now we can use Azuma’s inequality to find an upper bound
on P[Ei] and we obtain:

P[Ei] ≤ 2e
−

κ2

χ2(i1,i1)

2
∑

1≤n1<n2≤n(2σi1,i1
(n1,n2))2(x

j1
n1

)2(x
j2
n2

)2 . (28)

Now, if we assume that the vectors of the orthonormal basis
B are log(n)-balanced, then by the union bound we obtain
the following upper bound on the probability P[E ]:

P[E ] ≤ 2χ(i1, i1)e
− κ2n2

2 log4(n)χ2(i1,i1)
∑

1≤n1<n2≤n(2σi1,i1
(n1,n2))2 .
(29)

We can conclude, using the union bound again, that for
a log(n)-balanced basis B the probability that there exist
i1, j1, j2 such that: |si1,j1 · si1,j2 | > κ is at most

p1,bad(κ) ≤ 2

m∑
i=1

χ(i, i)e
− κ2

2ξ2(i,i)
n2

log4(n) . (30)

Now let us find an upper bound on the expression
p2,bad(κ) = P[∃i1,i2,j1,j2,i1 6=i2 : |si1,j1 ·si2,j2 | > κ], where
i1 6= i2. We will assume that vectors of the basis B are
log(n)-balanced. Using the formula on si1,j1 · si2,j2 for
i1 6= i2, we get:

P[|si1,j1 · si2,j2 | > κ] =

P[|σi1,i2(1, 1)xj11 x
j2
1 + ...+ σi1,i2(n, n)xj1n x

j2
n

+2
∑

1≤n1<n2≤n

dn1
dn2

xj1n1
xj2n2

σi1,i2(n1, n2)| > κ].
(31)

Assume first that Pis are chosen deterministically. Note
that by log(n)-balanceness, we have:

|
n∑

n1=1

σi1,i2(n1, n1)xj11 x
j2
1 | ≤

log2(n)

n
λ(i1, i2). (32)

Thus, by the triangle inequality, we have:

P[|si1,j1 · si2,j2 | > κ]

≤ P[|2
∑

1≤n1<n2≤n

dn1
dn2

xj1n1
xj2n2

σi1,i2(n1, n2)| ≥

κ− log2(n)

n
λ(i1, i2)].

(33)

Using the same analysis as before, we then obtain the fol-
lowing bound on pbad(κ, θ):

p2,bad(κ) ≤ 2
∑

1≤i1<i2≤m

χ(i1, i2)e
−

(κ− log2(n)
n

λ(i1,i2))2

2ξ2(i,i)
n2

log4(n) .

(34)

We can conclude that in the setting where Pis are chosen
deterministically, under our assumptions on λ(i1, i2), for
κ > 0 that does not depend on n and n large enough the fol-
lowing is true. The probability that there exist two different
vector si1,j1 , si2,j2 such that |si1,j1 · si2,j2 | > κ satisfies:
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pbad(κ) ≤ 2
∑

1≤i1≤i2≤m

χ(i1, i2)e
−

(κ− log2(n)
n

λ(i1,i2))2

2ξ2(i,i)
n2

log4(n) .

(35)

Now let us assume that Pis are chosen probabilistically.
In that setting we also assume that columns of different in-
dices are chosen independently (this is the case for instance
for the FastFood Transform). Let us now denote:

Yj = σi1,i2(j, j)xj1j x
j2

j (36)

for j = 1, ..., n. Denote Y =
∑n
i=1 Y1 + ... + Yn. Note

that the condition on λ̃(i1, i2) from the statement of the
theorem implies that E[Y ] = on(1). From the condition
regarding independence of columns of different indices we
deduce that Yis are independent. Therefore we can apply
Azuma’s inequality and obtain the following bound on the
expression: P[|Y − E[Y ]| > a]:

P[|Y − E[Y ]| > a] ≤ 2e
− a2

8
log4(n)

n2
∑n
j=1

(σmax
i1,i2

(j,j))2

.
(37)

If we now take a = 1
log(n) and under log(n)-balanceness

assumption, we obtain:

P[|Y − E[Y ]| > a] ≤ 2e
− n2

8 log6(n)
∑n
j=1

(σmax
i1,i2

(j,j))2

. (38)

Assume now that |Y − E[Y ]| ≤ 1
log(n) . This hap-

pens with probability at least 1 − pwrong with re-
spect to the random choices of Pis, where pwrong =

2e
− n2

8 log6(n)
∑n
j=1

(σmax
i1,i2

(j,j))2 . But then random variable |Y |
is of the order on(1).

Note that we have:

P[|si1,j1 · si2,j2 | > κ] =

P[|Y + 2
∑

1≤n1<n2≤n

dn1dn2x
j1
n1
xj2n2

σi1,i2(n1, n2)| > κ].

(39)

Thus, using our bound on Y for a fixed κ and n large
enough we can repeat previous analysis and conclude that
in the probabilistic setting of Pis the following is true:

pbad(κ) ≤ 2
∑

1≤i1≤i2≤m

χ(i1, i2)e
−

(κ
2
)2

2ξ2(i,i)
n2

log4(n) . (40)

Thus we can conclude that in both the deterministic and
probabilistic setting for Pis we get:

pbad(κ) ≤ 2
∑

1≤i1≤i2≤m

χ(i1, i2)e
− κ2

8ξ2(i,i)
n2

log4(n) . (41)

Now we will show that the squared lengths of vectors si,j

are well concentrated around their means and that these
means are equal to 1. Let us remind that we have:

si,jl = d1p
i
l,1x

j
1 + ...+ dnp

i
l,nx

j
n. (42)

Thus we get:

‖si,j‖22 =
∑

1≤n1<n2≤n

dn1dn2x
j1
n1
xj2n2

2σi,i(n1, n2)+

n∑
n1=1

(σi,i(n1, n1))2(xjn1
)2 =

∑
1≤n1<n2≤n

dn1dn2x
j1
n1
xj2n2

2σi,i(n1, n2) + 1,

(43)

where the last inequality comes from the fact that each col-
umn of each Pi has l2-norm equal to 1.

Since obviously E[dn1
dn2

xj1n1
xj2n2

2σi,i(n1, n2)] = 0, then
indeed E[‖si,j‖22] = 1. Let us find the upper bound on the
following probability: P[|‖si,j‖22 − 1| > 1

log(n) ]. We have:

P[|‖si,j‖22 − 1| > 1

log(n)
] =

P[|dn1
dn2

xj1n1
xj2n2

2σi,i(n1, n2)| > 1

log(n)
].

(44)

We can again apply Azuma’s inequality and the union
bound as we did before and obtain:

P[∃i,j : |‖si,j‖22 − 1| > 1

log(n)
] ≤ ps, (45)

where ps = 4
∑m
i=1 χ(i, i)e

− 1
2ξ2(i,i) log2(n)

n2

log4(n) .

We will assume now that all si,j satisfy: |‖si,j‖22 − 1| ≤
1

log(n) , in particular:√
1− 1

log(n)
≤ ‖si,j‖2 ≤

√
1 +

1

log(n)
. (46)

Let us assume right now that the above inequality holds.
Let {wi,j} be a set of vectors obtained from {si,j} by the
Gram-Schmidt process. Without loss of generality we can
assume that ‖wi,j‖2 = ‖si,j‖2. Note that the size of the set
{si,j} is in fact not 2m, but 2r and in all practical applica-
tion r � m. Assume now that |si1,j1 · si2,j2 | ≤ κ for any
two different vectors si1,j1 , si2,j2 and some fixed κ > 0.
Now, one can easily note that directly from the description
of the Gram-Schmidt process that it leads to the set of vec-
tors {wi,j} such that ‖si,j − wi,j‖2 ≤ κΓ(2r), where Γ
is some constant that depends just on the size of the set
{si,j}. Thus if we want ρ-orthogonality with ρ = ε

‖gH‖2 ,
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where gH stands for the random projection of a vector g
onto 2r-dimensional linear space spanned by vectors from
{si,j}, then we want to have:

ε

‖gH‖2
= κΓ(2r). (47)

Thus we need to take:

κ =
ε

Γ(2r)‖gH‖2
. (48)

Note that gH is a 2r-dimensional gaussian vector. Now let
us take some T > 0. By the union bound the probabil-
ity that gH has l2 norm greater than

√
2r ·
√
T is at most:

2rP[|ĝ|2 > T ], where ĝ stands for a gaussian random vari-
able taken from N (0, 1). Now we use the following in-
equality for a tail of the gaussian random variable:

P[|ĝ| > x] ≤ 2
e−

x2

2

x
√

2π
. (49)

Thus we can conclude that the probability that gH has l2
norm larger than

√
2r ·
√
T is at most pgauss(T ) ≤ 4r√

2πT
.

In such a case we need to take κ of the form:

κ =
ε

Γ(2r)
√

2r
√
T
. (50)

We are ready to finish the proof of Lemma 7.1. Take
κ = ε

Γ(2r)
√

2r
√
T

. Let us first take the setting where Pis
are chosen deterministically. Take an event Ebad which
is the sum of the events which probabilisites are upper-
bounded by pgauss(T ), 1 − pbalanced, pbad(κ) and ps. By
the union bound, the probability of that event is at most
pgauss + (1 − pbalanced) + pbad(κ) + ps which is upper-
bounded by pgen + pstruct for n large enough. Note that if
Ebad does not hold then ρ-orthogonality is satisfied. Now
let us take the probabilistic setting for choosing Pis. We
proceed similarly. The only difference is that right now
we need to assume that the event upper-bounded by pwrong
does not hold (this one depends only on the random choices
for setting up Pis). Thus again we get the statement of the
lemma. That completes the proof of Lemma 7.1.

As mentioned above, the proof of Lemma 7.1 completes
the proof of the theorem.

Now we prove Theorem 4.2.

Proof. Fix some x, z ∈ Rn. Assume that a matrix A is
used to compute the approximation of the kernel k(x, z).
Matrix A is either a truly random Gaussian matrix as it
is the case in the unstructured computation or a struc-
tured matrix produced according to the P-model. We as-
sume that A has k rows and consists of k

m blocks stacked

vertically. If A is produced via the P-model then each
block is a structured matrix Gistruct. The approxima-
tion of the kernel k̃P(x, z) is of the form: k̃A(x, z) =
1
k

∑ k
m
i=1

∑m
j=1[φ(ai,j · x, ai,j · y)], where ai,j stands for

the jth row of the ith block and φ : R2 → R is either of the
form φ(a, b) = f(a)f(b), where f is a ReLU/sign function
or φ(a, b) = cos(a) cos(b) + sin(a) sin(b). The latter for-
mula for φ is valid if a kernel under consideration is Gaus-
sian. Let use denote the random variable: φ(ai,j ·x, ai,j ·y)
as Xi,j . Then we have:

k̃A(x, z) =
1

k

k
m∑
i=1

m∑
j=1

Xi,j . (51)

Thus we have:

V ar(k̃A(x, z)) = V ar(
1

k

k
m∑
i=1

m∑
j=1

Xi,j) =

1

k2
V ar(

k
m∑
i=1

m∑
j=1

Xi,j) =
1

k2
[

k
m∑
i=1

m∑
j=1

V ar(Xi,j)+∑
i,j1 6=j2

Cov(Xi,j1 , Xi,j2)].

(52)

The last inequality in Eqn.52 is implied by the fact that
different blocks of the structured matrix are computed in-
dependently and thus covariance related to rows from dif-
ferent blocks is 0.

Therefore we obtain:

V ar(k̃A(x, z)) =
1

k2

k
m∑
i=1

m∑
j=1

V ar(Xi,j)+

1

k2

∑
i,j1 6=j2

(E[Xi,j1 , Xi,j2 ]− E[Xi,j1 ]E[Xi,j2 ]).

(53)

Now note that the first expression on the RHS above is the
same for both the structured and unstructured setting. This
is the case since one can note that Xi,j has the same dis-
tribution in the unstructured and structured setting. For the
same reason the expression E[Xi,j1 ]E[Xi,j2 ] is the same for
the structured and unstructured setting. Thus if G stands
for the fully unstructured model and we denote k̃A(x, z) =
k̃P(x, z) ifA is constructed according to theP-model, then
we get:

|V ar(k̃G(x, z))− V ar(k̃P(x, z))| ≤
1

k2

∑
i,j1 6=j2

|E[XPi,j1X
P
i,j2 ]− E[XG

i,j1X
G
i,j2 ]|, (54)
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where XPi,j stands for the version of Xi,j if A was
costructed via the P-model and XG

i,j stands for the fully
unstructured one.

Therfore we have:

|V ar(k̃G(x, z))− V ar(k̃P(x, z))| ≤
1

k2
· k
m

∑
j1 6=j2

|E[XP1,j1X
P
1,j2 ]− E[XG

1,j1X
G
1,j2 ]|, (55)

where the latter inequality is implied by the fact that differ-
ent blocks are constructed independently.

Therefore we get:

|V ar(k̃G(x, z))− V ar(k̃P(x, z))| ≤ 1

k2
· k
m

(
m

2

)
β,

(56)
where β is an upper bound as in Theorem 7.1 for d = 2.
Now we can proceed in the same way as in the proof of
Theorem 4.1 and the proof is completed.

Now we prove Theorem 4.3.

Proof. The fact that µ[P] ≤ κ comes directly from the
definition of the coherence number and the sparse setting
of semi-gaussian matrices. To see that, note that any given
column col of any matrix Pi in the related P-model has
a nonzero dot-product with at most κ2 other columns of
any matrix Pj . This in turn is implied by the fact that
different columns are obtained by applying skew-circulant
shifts blockwise, thus the number of columns from Pj that
have nonzero dot product with col is at most the product of
the number of nonzero dimensions of col and Pj . This is
clearly upper bounded by κ2. This leads to the upper bound
on the coherence µ[P].

The new formula for pwrong is derived by a similar analy-
sis to the one used to obtain the formula on pwrong in the
proof of Theorem 4.1. This time random variables under
analysis are not independent though, but using the same
trick as the one we used in the proof of Theorem 4.1 to
decouple dependent random variables in the sum to be es-
timated and applying Azuma’s inequality (we omit details
since the analysis is exactly the same as in the aforemen-
tioned proof), we obtain the following: P[|PT

i,n1
Pj,n1

| >
c] ≤ e−Ω(rc2) for i 6= j and any constant c > 0. Taking
the union bound over all the pairs of columns and fixing
c = 1

log2(n)
and r = 3 log5(n), we can conclude that with

probability at least 1 − o( 1
n ) the absolute value of the ex-

pression λ(i, j) from the proof of Theorem 4.1 is of the
order o( n

log2(n)
). That enables us to finish tha analysis in

the same way as in the proof of Theorem 4.1 and derive
similar conclusions.

The bound regarding the chromatic number is implied by
the observation that each coherence graph in the corre-
sponding P-model has degree at most κ2. That follows
directly from the observation we used to prove the upper
bound on µ[P]. But now we can use Lemma 3.1 and that
completes the proof of Theorem 4.3.

Below we present the proof of Theorem 4.4.

Proof. Fix two columns Pi,n1
and Pj,n2

and consider the
expression PT

i,n1
Pj,n2 . We have already mentioned in the

previous proof the right approach to finding strong upper
bound on |PT

i,n1
Pj,n2

|. We first note that PT
i,n1

Pj,n2
can

be written as a sum w1 + ... + wnr, where wis are not
necessarily independent but can be partitioned into at most
three sets such that wariables in each of these sets are in-
dependent. This is true since Gistruct is produced by skew-
circulant shifts and the corresponding coherence graphs has
verrtices of degree at most 2. Note also that each wk satis-
fies: |wk| ≤ 1

αr . In each of the sum we get rid of these wis
that are equal to 0. Then, by applying Azuma’s inequality
independently on each of these subsets and taking union
bound over these subsets, we conclude that for any a > 0:

|PT
i,n1

Pj,n2 > a| ≤ 3e−
a2αr
O(1) (57)

Now we can take the union bound over all pairs of columns
and notice that for every columcn col in Pi and any Pj

there exists at most κ columns in Pj that have nonzero dot
product with col. We can then take a = τ

κ and the proof is
completed.

Let us now switch to dense semi-gaussian matrices. The
following is true.

Theorem 7.2. Consider the setting as in Theorem 4.1.
Assume that entries of any fixed column of Pi are cho-
sen independently at random. Assume also that for any
1 ≤ i ≤ j ≤ m and any fixed column col of Pi each col-
umn of Pj is a downward shift of col by b entries (possibly
with signs of dimensions swapped) and that b = 0 for O(1)
columns in Pj . Then for and T > 0 and n large enough the
following holds:

|E[k̃dP(x, z)]− E[k̃dG(x, z)]| ≤ O(∆), (58)

where ∆ = pgen(T ) + pstruct(T ) + dε+ e−n
1
3 and

ε =
log3(n)

n

n 2
3 + max

1≤i≤j≤m
|

∑
1≤n1<n2≤n

PT
i,n1

Pj,n2
|

 .

As a corollary:

|V ar(k̃P(x, z))− V ar(k̃G(x, z))| = O(
m− 1

2k
∆). (59)
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Proof. The proof of this result follows along the lines of
the proof of Theorem 4.1 and Theorem 4.2. Take the for-
mulas for si1,j1 ·si2,j2 derived in the proof of Theorem 7.1.
Note that we want to have: |si1,j1 · si2,j2 | ≤ ε

Γ(2d)‖gH‖2 ,
where Γ is a constant that depends only on the degree d.
Each si1,j1 · si2,j2 is a sum of random variables that can be
decoupled into O(1) subsums such that variables in each
subsum are independent (here we use exactly the same trick
as in the proof of Theorem 4.1). In each subsum we apply
Azuma’s inequality. Straightforward computations lead to
the conclusion that if one sets up ε as in the statement of
Theorem 7.2 then the probability that there exist different
si1,j1 , si2,j2 such that |si1,j1 · si2,j2 | > ε

Γ(2d)‖gH‖2 is of

the order e−n
1
3 for n large enough. That is the extra term

in the formula for ∆ that was not present in the staement
of Theorem 4.1. The variance results follows immediately
by exactly the same analysis as in the proof of Theorem
4.2.

Note that introduced dense semi-gaussian matrices triv-
ially satisfy conditions of Theorem 7.2 (look for the de-
scription of matrices Pi from Subsection: 3.2.4). The
role of rank is similar as in the sparse setting, i.e. larger
values of r lead to sharper concentration results. Theo-
rem 7.2 can be applied to classes of matrices for which
|
∑

1≤n1<n2≤n PT
i,n1

Pj,n2
| is small and random dense

semi-gaussian matrices satisfy this condition with high
probability.


