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Abstract

We propose a scheme for recycling Gaussian
random vectors into structured matrices to ap-
proximate various kernel functions in sublin-
ear time via random embeddings. Our frame-
work includes the Fastfood construction of Le
et al. (2013) as a special case, but also ex-
tends to Circulant, Toeplitz and Hankel matri-
ces, and the broader family of structured matri-
ces that are characterized by the concept of low-
displacement rank. We introduce notions of co-
herence and graph-theoretic structural constants
that control the approximation quality, and prove
unbiasedness and low-variance properties of ran-
dom feature maps that arise within our frame-
work. For the case of low-displacement matri-
ces, we show how the degree of structure and
randomness can be controlled to reduce statis-
tical variance at the cost of increased computa-
tion and storage requirements. Empirical results
strongly support our theory and justify the use of
a broader family of structured matrices for scal-
ing up kernel methods using random features.

1. Introduction
Consider a k-dimensional feature map of the form,

1
—s
Vi
where the input data vector x is drawn from R™, s(-)
denotes a real-valued or complex-valued pointwise non-
linearity (activation function), and M is a k£ x n Gaus-
sian random matrix. It is well known that as a func-
tion of a pair of data vectors, the Euclidean inner product
U(x)TW(z), converges to a positive definite kernel func-
tion KC(x, z) depending on the choice of the scalar nonlin-

earity, as k — oo. For example, the complex exponential
nonlinearity s(z) = e~* corresponds to the Gaussian ker-

U(x) = (Mx) (1)
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nel (Rahimi & Recht, 2007), while the rectified linear func-
tion (ReLU), s(z) = max(x,0), leads to the Arc-cosine
kernel (Cho & Saul, 2009).

In recent years, such random feature maps have been used
to dramatically accelerate the training time and inference
speed of kernel methods (Scholkopf & Smola, 2002) across
a variety of statistical modeling problems (Rahimi & Recht,
2007; Xie et al., 2015) and applications (Huang et al., 2014;
Vedaldi & Zisserman, 2012). Standard linear techniques
applied to random nonlinear embeddings of data are equiv-
alent to learning with approximate kernels. To quantify
the benefits, consider solving a kernel ridge regression task
given [ training examples. With traditional kernel methods,
dense linear algebra operations on the Gram matrix associ-
ated with the exact kernel function imply that the training
complexity grows as O(I> + [?>n) and the time to make a
prediction on a test sample grows as O(In). By contrast,
random feature approximations reduce training complexity
to O(Ik? + 1kn) and test speed to O(kn). This is a major
win on big datasets where [ is very large, provided that a
small value of k can provide a good approximation to the
kernel function.

In practice, though, the optimal value of k is often large,
albeit still much smaller than [. For example, in a speech
recognition application (Huang et al., 2014) involving
around two million training examples, about hundred thou-
sand random features are required to achieve state of the
art results. In such settings, the time to construct the
random feature map is dominated by matrix multiplica-
tion against the dense Gaussian random matrix, which be-
comes the new computational bottleneck. To alleviate this
bottleneck, (Le et al., 2013) introduce the “Fastfood” ap-
proach where Gaussian random matrices are replaced by
Hadamard matrices combined with diagonal matrices with
Gaussian distributed diagonal entries. It was shown in (Le
et al., 2013) that for the specific case of the complex ex-
ponential nonlinearity, the Fastfood feature maps provide
unbiased estimates for the Gaussian kernel function, at the
expense of additional statistical variance, but with the com-
putational benefit of reducing the feature map construc-
tion time from O(kn) to O(klog n) by using the Fast
Walsh-Hadamard transform for matrix multiplication. The
Fastfood construction for kernel approximations is akin to
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the use of structured matrices - in lieu of Gaussian ran-
dom matrices - in Fast Johnson-Lindenstrauss transform
(FILT) (Alon & Chazelle, 2009) for dimensionality reduc-
tion, fast compressed sensing (Bajwa et al., 2007; Rauhut
etal., 2012), and randomized numerical linear algebra tech-
niques (Alon & Chazelle, 2011; Mahoney, 2011) Specific
structured matrices were recently applied for approximat-
ing angular kernels (Choromanska et al., 2016). Some
heuristic results for approximating kernels with circulant
matrices were given in (Yu et al., 2015).

Our contributions in this paper are as follows:

e We study a general family of structured random ma-
trices that can be constructed by recycling a Gaussian
random vector using a sequence of elementary genera-
tor matrices (introduced in Section 3). This family in-
cludes Circulant, Toeplitz and Hankel matrices. It also
includes the Fastfood construction of (Le et al., 2013)
as a special case. We show that fast sublinear time ran-
dom feature maps obtained from these matrices pro-
vide unbiased estimates of the exact kernel, with vari-
ance comparable to the fully unstructured Gaussian
case (Section 4). We introduce various structural co-
herence and graph-theoretic constants that control the
quality of randomness we get from our model. Our
approach generalizes across various choices of non-
linearities and kernel functions.

e Of particular interest for us is the class of general-
ized structured matrices that have low-displacement
rank (Pan, 2001; Sindhwani et al., 2015). Such matri-
ces span an increasingly rich class of structures as the
displacement rank is increased: from Circulant and
Toeplitz matrices, to inverses and products of Toeplitz
matrices, and more. The displacement rank provides a
knob with which the degree of structure and random-
ness can be controlled to tradeoff computational and
storage requirements against statistical variance.

e We provide empirical support for our theoretical re-
sults (Section 5). In particular, we show that Circulant,
Fastfood and low-displacement Toeplitz-like matrices
provide high quality sublinear-time feature maps for
approximating various kernels. With increasing dis-
placement rank, the quality of the approximation ap-
proaches that of the fully Gaussian random matrix.

2. Background and Preliminaries

We start by giving a brisk background on random feature
maps and structured matrices.

2.1. Random Embeddings, Nonlinearities and Kernels

Random feature maps may be viewed as arising from
Monte-Carlo approximations to integral representations of

kernel functions. The original construction by Rahimi &
Recht (2007) was motivated by a classical result that char-
acterizes the class of shift-invariant positive definite func-
tions.

Theorem 2.1 (Bochner’s Theorem (Bochner, 1933)).
A continuous shift-invariant scaled kernel function
K(x,2) = ¢(x — z) on R™ is positive definite if and only
if it is the Fourier transform of a unique finite probability
measure p on R™. That is, for any x,z € R,

IC(X,Z) — / e—i(x—z)Twp(W)dW _ Ewwp[e—i(x—z)TW} .

Bochner’s theorem stablishes one-to-one correspondence
between shift-invariant kernel functions and probability
densities on R", via the Fourier transform. In the case of
the Gaussian kernel with bandwidth o, the associated den-
sity is also Gaussian with covariance matrix o2 times the
identity.

While studying synergies between kernel methods and
deep learning, (Cho & Saul, 2009) introduce b*"-order arc-
cosine kernels via the following integral representation:

Ky(x,2) = /Rd i(wix)i(w!z)(w?x)?(wl'z)? p(w)dw

where i(-) is the step function, i.e. i(z) = 1if 2 > 0
and 0 otherwise; and the density p is chosen to be stan-
dard Gaussian. These kernels evaluate inner products in
the representation induced by an infinitely wide single hid-
den layer neural network with random Gaussian weights,
and admit closed form expressions in terms of the angle

T
0 = cos (=%~ ) between x and z:
lIxll211z[l2

0
Ko(x,2) = 1- p 2
Ki(x,z) = M[sm(ﬂ) + (7 — 0)cos(6)] (3)
where || - ||2 denotes I3 norm.

Monte Carlo approximations to the integral representations
above lead to the following,

w\H

k
Z xT w;)s(z WJ) \II(X)T\II(Z) )

where the feature map ¥(x) has the form given in Eqn. 1,
with rows of M, i.e. w; vectors, drawn from the Gaus-
sian density, and the nonlinearity s set to the following:
complex exponential, s(z) = e'=, for the Gaussian kernel
with bandwidth o; hard-thresholding, s(x) = i(z), for the
angular similarity kernel in Eqn. 2; and ReLU activation,
s(z) = max(z,0), for the first order arc-cosine kernel in
Eqn. 3.
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2.2. Structured Matrices

A m X n matrix is called a structured matrix if it satisfies
the following two properties: (1) it has much fewer degrees
of freedom than mn independent entries, and hence can
be implicitly stored more efficiently than general matrices,
and (2) the structure in the matrix can be exploited for fast
linear algebra operations such as fast matrix-vector mul-
tiplication. Examples include the Discrete Fourier Trans-
form (DFT), the Discrete Cosine Transform (DCT) and
the Walsh-Hadamard Transform (WHT) matrices. Here,
we give other examples particularly relevant to this paper.
The matrices described below are square. Rectangular ma-
trices can be obtained by appropriately selecting rows or
columns.

Circulant Matrices: These matrices are intimately asso-
ciated with circular convolutions and have been used for
fast compressed sensing in (Rauhut et al., 2012). An X n
Circulant matrix is completely determined by its first col-
umn/row, i.e., n parameters. Each column/row of a Circu-
lant matrix is generated by cyclically down/right-shifting
the previous column/row. A skew-Circulant matrix has
identical structure to Circulant, except that the upper trian-
gular part of the matrix is negated. This general structure
looks like,

go  fgn1 ... [
g1 go :
: : fgn-1
8n-1 cee g1 go
with f = 1 for Circulant and f = —1 for skew-Circulant

matrix. Both these matrices admit O(n log n) matrix-
vector multiplication as they are diagonalized by the DFT
matrix (Pan, 2001). We will use the notation circ[g] and
scirc|g] for Circulant and skew-Circulant matrices re-
spectively.

Toeplitz and Hankel Matrices: These matrices imple-
ment discrete linear convolution and arise naturally in dy-

namical systems and time series analysis. Toeplitz matrices
are characterized by constant diagonals as follows,

t0 t (n—1)
t1 to
th1 ... ta to

Closely related Hankel matrices have constant anti-
diagonals. Toeplitz-vector multiplication can be reduced to
O(n log n) Circulant-vector multiplication. For detailed
properties of Circulant and Toeplitz matrices, we point the
reader to (Gray, 2006)

Structured Matrices with Low-displacement Rank:
The notion of displacement operators and displacement
rank (Golub & Loan, 2012; Pan, 2001; Kailath et al.,

1979) can be used to broadly generalize various classes
of structured matrices. For example, under the action of
the Sylvester displacement operator defined as L[T] =
Z,T — TZ_,, every Toeplitz matrix can be transformed
into a matrix of rank at most 2 using elementary shift
and scale operations implemented by matrices of the form
Z; = [ege3...e, feq] for f = £1 where e;...e, are
column vectors representing the standard basis of R™.

For a given displacement rank parameter r, the class of ma-
trices for which the rank of L[T] is at most r is called
Toeplitz-like. Remarkably, this class of matrices admits a
closed-form parameterization in terms of the low-rank fac-
torization of L[T|:

Theorem 2.2 (Parameterization of Toeplitz-like matrices
with displacement rank r (Pan, 2001)). : If an n X n matrix
T satisfies rank(Z, T —TZ_1) < r, then it can be written
as,

T= Z circlg'] scirclh’] (5)
i=1

for some choice of vectors {g', h*}7_, € R™

The family of matrices expressible by Eqn. 5 is very
rich (Pan, 2001), i.e., it covers (i) all Circulant and Skew-
circulant matrices for r = 1, (ii) all Toeplitz matrices and
their inverses for r = 2, (iii) Products, inverses, linear com-
binations of distinct Toeplitz matrices with increasing r,
and (iv) all n x n matrices for r = n. Since Toeplitz-like
matrices under the parameterization of Eqn. 5 are a sum
of products between Circulant and Skew-circulant matri-
ces, they inherit fast FFT based matrix-vector multiplica-
tion with cost O(nrlog n), where r is the displacement
rank. Hence, r provides a knob on the degree of structure
imposed on the matrix with which storage requirements,
computational constraints and statistical capacity can be
explicitly controlled. Recently such matrices were used
in the context of learning mobile-friendly neural networks
in (Sindhwani et al., 2015). We note in passing that the
displacement rank framework generalizes to other types of
base structures (e.g. Vandermonde); see (Pan, 2001).

2.3. FastFood

In the context of fast kernel approximations, (Le et al.,
2013) introduce the Fastfood technique where the matrix
M in Eqn. 1 is parameterized by a product of diagonal and
simple matrices as follows:

1

=7
Here, S, G, B are diagonal random matrices, P is a permu-
tation matrix and H is the Walsh-Hadamard matrix. The

k x n matrix M is obtained by vertically stacking k/n in-
dependent copies of the n x n matrix F. Multiplication

F SHGPHB. (6)



Recycling Randomness with Structured Matrices

against such a matrix can be performed in time O(k log n).
The authors prove that (1) the Fastfood approximation is
unbiased, (2) its variance is at most the variance of stan-
dard Gaussian random features with an additional O(3)
term, and (3) for a given error probability J, the point-
wise approximation error of a n x n block of Fastfood is at
most O(+/log(n/d)) larger than that of standard Gaussian
random features. However, note that the Fastfood analysis
is limited to the Gaussian kernel and their variance bound
uses properties of the complex exponential. The authors
also conjecture that the Hadamard matrix H above, can be
replaced by any matrix T such that T /\/n is orthonormal,
the maximum entry in T is small, and matrix-vector prod-
uct against T can be computed in O(nlog n) time.

3. Structured Matrices from Gaussian Vectors

In this section, we present a general structured matrix
model that allows a small Gaussian vector to be recycled
in order to mimic the properties of a Gaussian random ma-
trix suitable for generating random features. We first intro-
duce some basic concepts in our construction. Note that we
emphasize intuitions in our exposition - formal proofs are
provided in our supplementary material.

3.1. The P-model

Budget of Randomness: Let ¢t be some given parameter.
Consider the column vector g = (g1, ..., g¢)*, where each
entry is an independent Gaussian taken from A/(0, 1). This
vector stands for the “budget of randomness” used in our
structured matrix construction scheme.

Our goal is to recycle the Gaussian vector g to construct
random matrices with desirable properties. This is accom-
plished using a sequence of matrices which we call the P-
model.

Definition 3.1 (P-model). Given the budget of uncertainty
parameter t, a sequence of m matrices with unit lo norm
columns, denoted as P = {P;}™ |, where P; € R*™
specifies a P-model. Such a sequence defines an m X n
random matrix of the form:
g'P,
g'Py
sppl=| ™

g Py
where g is a Gaussian random vector of length t.

In the constructions of interest to us, the sequence P is
designed to separate structure from Gaussian randomness;
though elements of P can be deterministic or itself random,
Gaussianity is restricted to the vector g. The ability of P
to recycle a Gaussian vector effectively depends on certain
structural constants that we now define.

Definition 3.2 (Coherence of a P-model). For P =
{P;}™,, let P, denote the ' column of the i" matrix.
The coherence of a P-model is defined as,

T
max El§n1<n2§n(Pi,n1Pj7TL2)2 (8)

Note that p[P] is a maximum over all pairs of rows 1 <
i < j < m of the rescaled sums of cross-correlations
PZm P; ., for all pairs of different column indices ny, ny.
Lower values of p[P] will lead to better quality models. In
practice, as we will see in subsequent analysis, it suffices if
u[P] = O(poly(log(n))) which is the case for instance for

Toeplitz and Circulant matrices.

The coherence of the P-model is an extremal statistic of
pairwise correlations. We couple it with another set of ob-
jects describing global structural properties of the model,
namely the coherence graphs.

Definition 3.3 (Coherence Graphs for P-model and their
Chromatic Numbers). Let 1 < 4,57 < m. We define by
G;.; an undirected graph with the set of vertices V (G, ;) =
{{nl, ng} 01 S niy 7£ na S n and Pz:nIijQ 7é 0}
and the set of edges E(G; ;) = {{{n1,n2},{n2,ns}} :
{n1,n2},{n2,n3} € V(Gi;)}. In other words, edges
are between these vertices such that their corresponding
2-element subsets intersect. The chromatic number x(i, 7)
of a graph G; ; is the smallest number of colors that can be
used to color all vertices of G; j in such a way that no two
adjacent vertices share the same color.

The chromatic number of a P-model is defined as follows:

Definition 3.4 (Chromatic number of a P-model). The
chromatic number X [P of a P-model is given as:

x[Pl = max x(i,j),

1<i<j<m
where G, ; are associated coherence graphs.

As it was the case for the coherence p[P], smaller values of
the chromatic number x[P] lead to better theoretical results
regarding the quality of the model. Intuitively speaking,
coherence graphs encode in a compact combinatorial way
correlations between different rows of the structured matrix
produced by the P-model. The chromatic number x[P] is
a single combinatorial parameter measuring quantitatively
these dependencies. It can be easily computed or at least
upper-bounded (which is enough for us) for P-models re-
lated to all structured matrices considered in this paper. The
following is a well-known fact from graph theory:

Lemma 3.1. The chromatic number x(G) of an undirected
graph G with maximum degree d,q, satisfies: x(G) <
dmaa: + L
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For all instantiations of P-models considered in this paper
leading to various structured matrices, the vertices of asso-
ciated coherence graphs will turn out to have small degrees
and hence, by Lemma 3.1, small chromatic numbers.

We will introduce one more structural parameter of the P-
model, depending on whether it is specified deterministi-
cally or randomly.

Definition 3.5. The uni-coherence
‘P-model is defined as follows.

are constructed deterministically then [[P] =
Maxi<i<;j<m ZZI=1‘PZn1Pj,m|' If the matrices
that specify P are constructed randomly, then we take
A[P] = maxi<i<j<m B[ 325, P7,,, P

a[P] of the
If matrices P;

j;’MH'

It turns out that the sublinearity in n of uni-coherence fi[P]
helps to establish strong theoretical results regarding the
quality of the P-model.

3.2. Examples of P-model structured matrices

Below we observe that various structured random matri-
ces can be constructed according to the P-model, i.e. by
specifying a sequence of matrices P; in Eqn. 7. We note
that chromatic numbers and coherence values of these P-
models are low. In the next section, we show that this
implies that we can get unbiased, low-variance kernel ap-
proximations from these matrices, for various choices of
nonlinearities. Here we consider square structured matri-
ces for which m = n, or rectangular matrices with m < n
obtained by selecting first m rows of a structured matrix.

3.2.1. CIRCULANT MATRICES

Circulant matrices can be constructed via the P-model with
budget of randomness ¢ = n and matrices {P;}7, of en-
tries in {0, 1}. See Fig. 1 for an illustrative construction.
The coherence of the related P-model trivially satisfies:
u[P] = O(1) and i[P] = 0. The coherence graphs are
vertex disjoint cycles. Since each cycle can be colored with
at most 3 colors, the chromatic number of the P-model sat-
isfies: x[P] < 3.

3.2.2. TOEPLITZ AND HANKEL MATRICES

The associated P-models are obtained in a similar way as
for circulant matrices, in particular each column of each
P; is a binary vector. The corresponding coherence graphs
have vertices of degrees at most 2 and thus the chromatic
number x[P)] is at most 3. As for the previous case, coher-
ence p[P] is of the order O(1) and i[P] = 0.

3.2.3. FASTFOOD MATRICES

The Fastfood (Le et al., 2013) approach is a very special
case of the P-model. Note that the core term in the Fast-

D0 0 0 0\/0 @0 0 0
0o 0 0o 0o o
0 0o ofo o om0
gl 92939495 0O 0 OIRO]J]I0 0 0 0D
95 g1 92 g3 g4 000 0W\®OoOOo0O0O0
0 0 @0 0\/0 0 0 @O0
94 95 91 92 93 00 0Wmolfo o 0o 0@
g3 g4 ¢gs g1 g2 00 0 0D|@o o oo
D0 0 0 0Oy 0 0 0
0O 0 0 0/\O OB 0 O

(12,43 {11}
N ) (

Figure 1. Top left: Circulant gaussian matrix C. Top right:
matrices P1, Py, P3, P4 from the P-model generating C from
the “budget of randomness” (g1, ..., gs). Bottom: Graph G;, ,
corresponding to two highlighted rows of C. Graphs obtained
from circulant matrices are collections of cycles thus their
chromatic number is at most 3.

food transform, Eqn. 6, is the structured matrix HG, where
H = {h; ;} is Hadamard and G is a random diagonal gaus-
sian matrix (the rightmost terms HB in Eqn. 6 implement
data preprocessing to make all datapoints dense, and nor-
malization is implemented by the leftmost scaling matrix
S). The matrix HG can be constructed via the P-model
with the fixed budget of randomness g = (g1, ..., g ) and
using the sequence of matrices P = (P, ...,P,,), where
each P; is a random diagonal matrix with entries on the
diagonal of the form: h;1,..., ;. The quality of the
FastFood approach can be now explained in the general
P-model method framework. One can easily see that the
graphs related to the model are empty (since P;{m Pjn, =
0 for ny # ng). The sublinearity of i[P] comes from the
fact that with high probability any two rows of HG are
close to be orthogonal.

3.2.4. TOEPLITZ-LIKE SEMI-GAUSSIAN MATRICES

Consider Toeplitz-like matrices expressible by Eqn. 5 with
displacement rank 7. We will assume that g', ..., g" € R"
defining the Circulant-components in Eqn. 5 are indepen-
dent Gaussian vectors. They will serve as a “budget of ran-
domness” in the related 7P-model that we are about to de-
scribe, with r allowing a tunable tradeoff between structure
and randomness. The vectors h!, ..., h"defining the skew-
Circulant components in Eqn. 5 can be defined in different
ways. Below we present two general schemes:

Random discretized vectors h’: Each dimension of each
h® is chosen independently at random from the binary set

{_1 1
Vnr? /et

Sparse setting: Each h’ is sparse (but nonzero), i.e. has
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only few nonzero entries. Furthermore, the sign of each hé-
is chosen independently at random and the following holds:
|hl||? +...4 ||h"||? = 1. This setting is characterized by a
parameter x defining the size of the set of dimensions that
are nonzero for at least one h'.

We refer to such matrices as Toeplitz-like semi-Gaussian
matrices. We now sketch how they can be obtained
from the P-model. We take ¢ = nr and g =
(g%, 9%, ..., g7, ..., gn)T. The matrix P is constructed
by vertically stacking r matrices S; for j = 1, ...,r, where
each S; is constructed as follows. The first column of S;
is h? and the subsequent columns are obtained from pre-
vious by skew-Circulant downward shifts. Matrix P; for
i > 1 is obtained from P;_; by upward Circulant shifts,
independently for each column at each block S;.

Matrices constructed according to this procedure satisfy
conditions regarding certain structural parameters of the P-
model (see: Theorem 4.4). In particular, in the sparse semi-
Gaussian setting the corresponding coherence graphs have
vertices of degrees bounded by a constant; thus, by Lemma
3.1 the P-models associated with them have low chromatic
numbers.

3.3. Construction of Random Feature Maps

Given S[P], the m x n structured random matrix defined
by a P-model, in lieu of using the & x n Gaussian random
matrix M in Eqn. 1, the feature map for a data vector x is
constructed as follows.

e Preprocessing phase: Compute x’ = D;HDgx,
where H € R"*" is a ly-normalized Hadamard ma-
trix and Dy, Dy € {—1,+1}"*" are independent ran-
dom diagonal matrices. Note that this transformation
does not change the values of Gaussian or Arc-cosine
kernels, since they are spherically-invariant. This pre-
processing densifies the input data vector.

e Compute x”” = S[P]x € R™.

e Compute X € R* by concatenating random instantia-
tions of the vector x” above obtained from k/m inde-
pendent constructions of S[P].

e Return ¥(x) = ﬁs(i)

Note that the displacement rank r for low displacement
rank matrices and the number of rows m of a single struc-
tured block can be used to control the “budget of random-
ness”’; m = 1 reduces to a completely unstructured matrix.

4. Theoretical results

In this section we provide concentration results regarding
P-model for Gaussian and arc-cosine kernels, showing in
particular that the variance of the computed structured ap-
proximation of the kernel is close to the unstructured one.

We also present results targeting specifically low displace-
ment rank structured matrices, and show how the displace-
ment rank knob can be used to increase the budget of ran-
domness and reduce the variance.

Let us denote by Kp(x,z) the approximation of the ker-
nel for two vectors x,z € R™ if the P-model is used. By
K (x,z) we denote the approximation of the kernel for
two vectors x, z € R"™ if the fully unstructured setting with
truly random Gaussian matrix G is applied. All the proofs
are in the Appendix. We start with the following result.

Lemma 4.1 (Unbiasedness of the P-model). Presented
‘P-model mechanism gives an unbiased estimation of the
Gaussian and b"-order arc-cosine kernels for b € {0,1}
if for every P; any two different columns P; ;,P; ;. of P;
satisfy P P; . = 0. Thus, E[Kp(x,2)] = K(x,2).

The orthogonality condition PZjPi,k = 0 is trivially sat-
isfied by Hankel, circulant or Toeplitz structured matrices
produced by the PP-model as well as Toeplitz-like semi-
Gaussian matrices, where each h* has one nonzero entry. It
is also satisfied in expectation (which in practice suffices)
for all presented Toeplitz-like semi-Gaussian matrices.

For a P-model, where matrices P; were chosen randomly
we denote as 77[P] the maximum possible value that a ran-
dom variable (P}, P;,,)? can take for 1 < i < j <
m, 1 < ny < n. Without loss of generality we will assume
that data vectors are drawn from the ball B(0, 1) centered
at 0 of unit I, norm. Below we state results regarding d*"
moments of the obtained kernel’s approximation via the P-

model that lead to the concentration results.

Theorem 4.1. Let x,z € B(0,1) and let d € N. As-
sume that each structured block of a matrix A (see: Sec-
tion 3.3) produced according to the P-model has m rows
and [P] = o(ﬁ). If matrices P; of the P-model
are chosen randomly then assume furthermore that for any
1 <i<j<mandl < ny < ny < n the n} col-
umn of P; is chosen independently from the nt" column of
P;. If matrices P; are chosen deterministically then for
any T, e > 0 the following is true for n large enough:

E[KD (x,2)]~E[KE (x,2)]] < O(pgen(T)+pstruce (T)+de),

where:

_ log%(n)

+ 4ne R ©)]

m
Pstruct (T) =4 Z X(Z, i)e_m 10g;64(n)
=1
o (10)
2 > X, j)e PRI
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and expectations are taken in respect to random choice for
a Gaussian vector g. If P;s are chosen from the proba-
bilistic model then the above holds with probability at least
1 — Pwrong in respect to random choices of P;s, where

Pwrong = 2 Z

1<i<j<m

~ SToaS (myn TPl

Let us comment on the result above. The upper bound is
built from two main components: pgep and Pgiyyee. The
first one depends on the general parameters of the setting:
dimensionality of the data n and order of the computed
moment d. The second one is crucial to understand how
the structure of the matrix influences the quality of the
model. We can immediately see that low chromatic num-
bers x(i,7) (see: Section 3.1) improve quality since they
decrease computed upper bound. Furthermore, low values
of the coherence 11[P] and chromatic number x[P] also lead
to stronger concentration results. Both observations were
noticed by us before, but now we see how they are implied
by general theoretical results. Finally, for all considered
settings, where matrices P; are constructed randomly pa-
rameter n[P] is of order O(1) thus pyyrong in negligibly
small.

In particular, if both the chromatic number x[P] and the co-
herence u[P] are of the order O(poly(log(n))) then pstryct
if inversely proportional to the superpolynomial function of
n thus is negligible in practice. That, as we will see soon,
will be the case for proposed Toeplitz-like semi-Gaussian
matrices with sparse vectors h?.

Let us also note that Theorem 4.1 can be straightforwardly
applied to the structured matrix from the Fastfood model
since the condition regarding fi[P] is satisfied and so is
the independence condition. Since all the chromatic num-
bers are equal to zero (because corresponding graphs are
empty), Pstruct = 0 and thus the theorem holds.

Theorem 4.1 implies also that variances of the kernel ap-
proximation for the structured P-model case and unstruc-
tured setting are very similar (we borrow denotation from
Theorem 4.1).

Theorem 4.2. Consider the setting as in Theorem 4.1.
If matrices P; are chosen deterministically then for any
T, e > 0 the following is true for n large enough:

m —

Var(Kg(x,2))| = O(——

Var(Kp(x,2)) - 5%

A), (11)
where Var stands for the variance and A = pge,(T) +
Dstruct + €. If P;s are chosen from the probabilistic model
then the above holds with probability at least 1
where pyrong is as in Theorem 4.1.
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Note that in practice it means that the variance in the struc-
tured and unstructured setting is similar. In particular,

choosing € = O(513), T > 7log(m), one can deduce that
the variance in the structured setting is of the order O( )
for n large enough (the well known fact is that the unstruc-
tured variance is of the order O(-)). Note also that as
expected, for m = 1 the structured setting becomes an un-
structured one, since each structured block consists of just
one row and different blocks are constructed independently.

Toeplitz-like semi-Gaussian Low-displacement rank
matrices: Note that the structure of a matrix affects only
the psiruer factor in the statements above. Thus, we will
focus on the structured parameters of the P-model. We
will show that Toeplitz-like semi-Gaussian matrices can be
set up so that the above parameters are of required order.

Theorem 4.3. Consider Toeplitz-like semi-Gaussian ma-
trices with sparse skew-Circulant factors (as in Subsection
3.2.4). Let K denote the number of dimensions that are
nonzero for at least one hi. Then forl < i< j<m
we have: x(i,j) < k? + 1. Furthermore, u[P] < k and
the bound on |E[K%(x,z)] — E[KE (x,2)]| derived in The-
orem 4.1 is valid also here if r > 3log®(n) and for pyrong
of the order o(+).

The richness of the low displacement rank mechanism
comes from the fact that the budget of randomness can be
controlled by the rank parameter r and increasing r leads
to better quality approximations. In particular, we have:

Theorem 4.4. Consider Toeplitz-like semi-Gaussian ma-
trices with sparse skew-Circulant factors and parameter k.
Assume that each h' has exactly o nonzero dimensions,
each nonzero dimensions taken independently at random

72067‘
from {—k-. 1), Then, Pl|u[P)| > 7] < 4n2e” 005

Note that increasing rank r leads to sharper upper bounds
on the coherence p[P] (in practice r polynomial in
log(n) suffices) and thus, from what we have said so
far, to better concentration results for the entire structured
scheme. Analogous variance bounds can also be derived
for Toeplitz-like semi-Gaussian matrices where the h? vec-
tors are chosen to be dense. But due to lack of space, these
results are included in our supplementary material.

5. Empirical Support

In this section, we compare feature maps obtained with
fully Gaussian, Fastfood, Circulant, and Toeplitz-like ma-
trices with increasing displacement rank. Our goal is to
lend support to the theoretical contributions of this paper by
showing that high-quality feature maps can be constructed
from a broad class of structured matrices as instantiations
of the proposed PP-model.

Kernel Approximation Quality: In Figure 5, we report

relative Frobenius error in reconstructing the Gram ma-
IK—K]||fro

KT, where K, K denote the exact and ap-

trix, i.e.
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Table 1. Kernel approximation (first row) and classification error (second row) in percentage for Complex Exponential (Gaussian Kernel).

Gaussian QMC (Halton) Fastfood Circulant ToeplitzLike(1) ToeplitzLike(5) ToeplitzLike(10) ToeplitzLike(20)
e 3% W[ en o mr e s e e
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DNA (k=80) 3104 3094 3104 2058 3135 082 3029 300
DNA (k = 900) 165 1501 o0 by 68 1634 1657 1657
TR 5 SR A - ¢ A
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proximate Gram matrices, as a function of the number of
random features. We use the g50c dataset which com-
prises of 550 examples drawn from multivariate Gaussians
in 50-dimensional space with means separated such that
the Bayes error is 5%. We see that Circulant matrices and
Toeplitz-like matrices with very low displacement rank (1
or 2) perform as well as Fastfood feature maps. In all exper-
iments, for Toeplitz-like matrices, we used skew-Circulant
parameters (the h vectors in Eqn. 5) with average sparsity
of 5. As the displacement rank is increased, the budget
of randomness increases and the reconstruction error ap-
proaches that of Gaussian Random features, as expected
based on our theoretical results. Results on publicly

—e— Gaussian
~ -=— - Fastfood 4
ToeplitzLike(1)
ToeplitzLike(2)
ToeplitzLike(4)
ToeplitzLike(8)
ToeplitzLike(16) | 4
ToeplitzLike(32)
ToeplitzLike(50)
Circulant

Gram Matrix Reconstruction Error

200 250

50 100

150
Number of Random Features

Figure 2. Lower blue curves (better reconstruction) correspond to
Toeplitz-like matrices with increasing displacement rank.

available real-world classification datasets, averaged over
100 runs, are reported in Table 1 for complex exponential
nonlinearity (Gaussian kernel). Results with ReLU (arc-
cosine) are similar but not shown for lack of space. As
observed in previous papers, better Gram matrix approxi-
mation is not often correlated with higher classification ac-
curacy. Nonetheless, it is clear that the design of space of
valid feature map constructions based on structured matri-
ces is much larger than what has so far been explored in
the literature: Circulant and Toeplitz-like matrices are very
competitive with Fastfood, and sometimes give better re-
sults particularly with increasing displacement rank. The
effectiveness of such feature maps for nonlinearities other
than the complex exponential also validates our theoretical

contributions. Among the unstructured baselines, we also
include Quasi-Monte Carlo (QMC) feature maps of (Yang
et al., 2014) using Halton low-discrepancy sequences. The
use of structured matrices to accelerate QMC techniques
building on (Dick et al., 2015) is of interest for future work.

Figure 3. Lower blue curves (smaller speedup) correspond to
Toeplitz-like matrices with increasing displacement rank.
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Speedups: Figure 3 shows the speedup obtained in fea-
turemap construction time using structured matrices rela-
tive to using unstructured Gaussian random matrices (on
a 6-core 32-GB Intel(R) Xeon(R) machine running Mat-
lab R2014a). The benefits of sub-quadratic matrix-vector
multiplication with FFT-variations tend to show up be-
yond 1024 dimensions. Circulant-based feature maps are
the fastest to compute. Fastfood (with DCT instead of
Hadamard matrices) is about as fast as Toeplitz-like ma-
trices with displacement rank 1 or 2. Higher displacement
rank matrices show speedups at higher dimensions as ex-
pected. Fastfood with inbuilt fwht routine in Matlab per-
formed poorly in our experiments.

6. Conclusions

We have theoretically justified and empirically validated
the use of a broad family of structured matrices for acceler-
ating the construction of random embeddings for approxi-
mating various kernel functions. In particular, the class of
Toeplitz-like semi-Gaussian matrices allows our construc-
tion to span highly compact to fully random matrices.
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