
Convolutional Rectifier Networks as Generalized Tensor Decompositions

Nadav Cohen COHENNADAV@CS.HUJI.AC.IL
Amnon Shashua SHASHUA@CS.HUJI.AC.IL

The Hebrew University of Jerusalem

Abstract
Convolutional rectifier networks, i.e. convolu-
tional neural networks with rectified linear acti-
vation and max or average pooling, are the cor-
nerstone of modern deep learning. However, de-
spite their wide use and success, our theoretical
understanding of the expressive properties that
drive these networks is partial at best. On the
other hand, we have a much firmer grasp of these
issues in the world of arithmetic circuits. Specif-
ically, it is known that convolutional arithmetic
circuits possess the property of ”complete depth
efficiency”, meaning that besides a negligible set,
all functions realizable by a deep network of
polynomial size, require exponential size in or-
der to be realized (or approximated) by a shallow
network. In this paper we describe a construc-
tion based on generalized tensor decompositions,
that transforms convolutional arithmetic circuits
into convolutional rectifier networks. We then
use mathematical tools available from the world
of arithmetic circuits to prove new results. First,
we show that convolutional rectifier networks are
universal with max pooling but not with aver-
age pooling. Second, and more importantly, we
show that depth efficiency is weaker with convo-
lutional rectifier networks than it is with convo-
lutional arithmetic circuits. This leads us to be-
lieve that developing effective methods for train-
ing convolutional arithmetic circuits, thereby ful-
filling their expressive potential, may give rise to
a deep learning architecture that is provably su-
perior to convolutional rectifier networks but has
so far been overlooked by practitioners.

1. Introduction
Deep neural networks are repeatedly proving themselves
to be extremely effective machine learning models, provid-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ing state of the art accuracies on a wide range of tasks.
Arguably, the most successful deep learning architecture
to date is that of convolutional neural networks (Con-
vNets, (LeCun and Bengio, 1995)), which prevails in the
field of computer vision, and is recently being harnessed
for many other application domains as well (e.g. (Shen
et al., 2014; Wallach et al., 2015)). Modern ConvNets
are formed by stacking layers one after the other, where
each layer consists of a linear convolutional operator fol-
lowed by Rectified Linear Unit (ReLU) activation (σ(z) =
max{0, z}), which in turn is followed by max or average
pooling (P{cj} = max{cj} or P{cj} = mean{cj} re-
spectively). Such models, which we refer to as convolu-
tional rectifier networks, have driven the resurgence of deep
learning (Krizhevsky et al., 2012), and represent the cutting
edge of the ConvNet architecture.

Despite their empirical success, and the vast attention they
are receiving, our theoretical understanding of convolu-
tional rectifier networks is limited. It is believed that they
enjoy depth efficiency, i.e. that when allowed to go deep,
such networks can implement with polynomial size com-
putations that would require super-polynomial size if the
networks were shallow. However, formal arguments that
support this are scarce. It is unclear to what extent con-
volutional rectifier networks leverage depth efficiency, or
more formally, what is the proportion of weight settings
that would lead a deep network to implement a computation
that cannot be efficiently realized by a shallow network. We
refer to the most optimistic situation, where this takes place
for all weight settings but a negligible (zero measure) set,
as complete depth efficiency.

Compared to convolutional rectifier networks, our theoret-
ical understanding of depth efficiency for arithmetic cir-
cuits, and in particular for convolutional arithmetic circuits,
is much more developed. Arithmetic circuits (also known
as Sum-Product Networks, (Poon and Domingos, 2011))
are networks with two types of nodes: sum nodes, which
compute a weighted sum of their inputs, and product nodes,
computing the product of their inputs. The depth efficiency
of arithmetic circuits has been studied by the theoretical
computer science community for the last five decades, long



Convolutional Rectifier Networks as Generalized Tensor Decompositions

before the resurgence of deep learning. Although many
problems in the area remain open, significant progress has
been made over the years, making use of various mathemat-
ical tools. Convolutional arithmetic circuits form a specific
sub-class of arithmetic circuits. Namely, these are Con-
vNets with linear activation (σ(z) = z) and product pool-
ing (P{cj} =

∏
cj). Recently, (Cohen et al., 2016b) an-

alyzed convolutional arithmetic circuits through tensor de-
compositions, essentially proving, for the type of networks
considered, that depth efficiency holds completely. Al-
though convolutional arithmetic circuits are known to be
equivalent to SimNets (Cohen and Shashua, 2014), a new
deep learning architecture that has recently demonstrated
promising empirical performance (Cohen et al., 2016a),
they are fundamentally different from convolutional recti-
fier networks. Accordingly, the result established in (Cohen
et al., 2016b) does not apply to the models most commonly
used in practice.

In this paper we present a construction, based on the notion
of generalized tensor decompositions, that transforms con-
volutional arithmetic circuits of the type considered in (Co-
hen et al., 2016b) into convolutional rectifier networks. We
then use the available mathematical tools from the world of
arithmetic circuits to prove new results concerning the ex-
pressive power and depth efficiency of convolutional recti-
fier networks. Namely, we show that with ReLU activation,
average pooling leads to loss of universality, whereas max
pooling is universal but enjoys depth efficiency to a lesser
extent than product pooling with linear activation (convolu-
tional arithmetic circuits). These results indicate that from
the point of view of expressive power and depth efficiency,
convolutional arithmetic circuits (SimNets) have an advan-
tage over the prevalent convolutional rectifier networks.
This leads us to believe that developing effective methods
for training convolutional arithmetic circuits, thereby ful-
filling their expressive potential, may give rise to a deep
learning architecture that is provably superior to convolu-
tional rectifier networks but has so far been overlooked by
practitioners. 1

2. Related Work
The literature on the computational complexity of arith-
metic circuits is far too wide to cover here, dating back
over five decades. Although many of the fundamental ques-
tions in the field remain open, significant progress has been
made over the years, developing and employing a vast share
of mathematical tools from branches of geometry, algebra,
analysis, combinatorics, and more. We refer the interested
reader to (Shpilka and Yehudayoff, 2010) for a survey writ-

1 Due to lack of space, a significant portion of the paper is
deferred to the appendices. We refer the reader to (Cohen and
Shashua, 2016) for a self-contained version of this manuscript.

ten in 2010, and mention here the more recent works (De-
lalleau and Bengio, 2011) and (Martens and Medabalimi,
2014) studying depth efficiency of arithmetic circuits in the
context of deep learning (Sum-Product Networks). Com-
pared to arithmetic circuits, the literature on depth effi-
ciency of neural networks with ReLU activation is far less
developed, primarily since these models were only intro-
duced several years ago (Nair and Hinton, 2010). There
have been some notable works on this line, but these em-
ploy dedicated mathematical machinery, not making use of
the plurality of tools available in the world of arithmetic cir-
cuits. (Pascanu et al., 2013) and (Montufar et al., 2014) use
combinatorial arguments to characterize the maximal num-
ber of linear regions in functions generated by ReLU net-
works, thereby establishing existence of depth efficiency.
(Telgarsky, 2016) uses semi-algebraic geometry to analyze
the number of oscillations in functions realized by neural
networks with semi-algebraic activations, ReLU in partic-
ular. The fundamental result proven in this work is the ex-
istence, for every k ∈ N, of functions realizable by net-
works with Θ(k3) layers and Θ(1) nodes per layer, which
cannot be approximated by networks with O(k) layers un-
less these are exponentially large (have Ω(2k) nodes). The
work of (Eldan and Shamir, 2015) makes use of Fourier
analysis to show existence of functions that are efficiently
computable by depth-3 networks, yet require exponential
size in order to be approximated by depth-2 networks. The
result applies to various activations, including ReLU. (Pog-
gio et al., 2015) also compares the computational abili-
ties of deep vs. shallow networks under different activa-
tions that include ReLU. However, the complexity measure
considered in (Poggio et al., 2015) is the VC dimension,
whereas our interest lies in network size.

None of the analyses above account for convolutional net-
works 2, thus they do not apply to the deep learning archi-
tecture most commonly used in practice. Recently, (Cohen
et al., 2016b) introduced convolutional arithmetic circuits,
which may be viewed as ConvNets with linear activation
and product pooling. These networks were shown to cor-
respond to hierarchical tensor decompositions (see (Hack-
busch, 2012)). Tools from linear algebra, functional anal-
ysis and measure theory were then employed to prove that
the networks are universal, and exhibit complete depth effi-
ciency. Although similar in structure, convolutional arith-
metic circuits are inherently different from convolutional
rectifier networks (ConvNets with ReLU activation and
max or average pooling). Accordingly, the analysis carried
out in (Cohen et al., 2016b) does not apply to the networks
at the forefront of deep learning.

Closing the gap between the networks analyzed in (Cohen

2 By this we mean that in all analyses, the deep networks
shown to benefit from depth (i.e. to realize functions that require
super-polynomial size from shallow networks) are not ConvNets.



Convolutional Rectifier Networks as Generalized Tensor Decompositions

et al., 2016b) and convolutional rectifier networks is the
topic of this paper. We achieve this by generalizing tensor
decompositions, thereby opening the door to mathematical
machinery as used in (Cohen et al., 2016b), harnessing it to
analyze, for the first time, the depth efficiency of convolu-
tional rectifier networks.

3. Generalized Tensor Decompositions
We begin by establishing basic tensor-related terminology
and notations 3. For our purposes, a tensor is simply a
multi-dimensional array. The order of a tensor is defined
to be the number of indexing entries in the array, which are
referred to as modes. The dimension of a tensor in a par-
ticular mode is defined as the number of values that may
be taken by the index in that mode. For example, a 4-by-3
matrix is a tensor of order 2, i.e. it has two modes, with
dimension 4 in mode 1 and dimension 3 in mode 2. If A
is a tensor of order N and dimension Mi in each mode
i ∈ [N ] := {1, . . . , N}, the space of all configurations it
can take is denoted, quite naturally, by RM1×···×MN .

The fundamental operator in tensor analysis is the tensor
product, denoted by ⊗. It is an operator that intakes two
tensors A ∈ RM1×···×MP and B ∈ RMP+1×···×MP+Q (or-
ders P and Q respectively), and returns a tensor A ⊗ B ∈
RM1×···×MP+Q (order P +Q) defined by:

(A⊗ B)d1,...,dP+Q
= Ad1,...,dP · BdP+1,...,dP+Q

(1)

Tensor decompositions (see (Kolda and Bader, 2009) for a
survey) may be viewed as schemes for expressing tensors
using tensor products and weighted sums. For example,
suppose we have a tensor A ∈ RM1×···×MN given by:

A =
∑J

j1...jN=1
cj1...jN · aj1,1 ⊗ · · · ⊗ ajN ,N

This expression is known as a Tucker decomposition, pa-
rameterized by the coefficients {cj1...jN ∈ R}j1...jN∈[J]
and vectors {aj,i ∈ RMi}i∈[N ],j∈[J]. It is different from
the CP and Hierarchical Tucker decompositions our anal-
ysis will rely upon (see sec. 4), yet all decompositions are
closely related, specifically in the fact that they are based
on iterating between tensor products and weighted sums.

Our construction and analysis are facilitated by general-
izing the tensor product, which in turn generalizes ten-
sor decompositions. For an associative and commuta-
tive binary operator g, i.e. a function g : R × R →
R such that ∀a, b, c ∈ R : g(g(a, b), c) = g(a, g(b, c))
and ∀a, b ∈ R : g(a, b) = g(b, a), the generalized

3 The definitions we give are actually concrete special cases of
more abstract algebraic definitions as given in (Hackbusch, 2012).
We limit the discussion to these special cases since they suffice for
our needs and are easier to grasp.

tensor product ⊗g , an operator intaking tensors A ∈
RM1×···×MP ,B ∈ RMP+1×···×MP+Q and returning tensor
A⊗g B ∈ RM1×···×MP+Q , is defined as follows:

(A⊗g B)d1,...,dP+Q
= g(Ad1,...,dP ,BdP+1,...,dP+Q

) (2)

Generalized tensor decompositions are simply obtained by
plugging in the generalized tensor product ⊗g in place of
the standard tensor product ⊗.

4. From Networks to Tensors
The ConvNet architecture analyzed in this paper is pre-
sented in fig. 1. The input to a network, denoted X , is
composed of N patches x1 . . .xN ∈ Rs. For example,
X could represent a 32-by-32 RGB image through 5×5 re-
gions crossing the three color bands, in which case, assum-
ing a patch is taken for every pixel (boundaries padded),
we have N = 1024 and s = 75. The first layer in a net-
work is referred to as representation, and may be thought
of as a generalized convolution. Namely, it consists of ap-
plying M representation functions fθ1 . . .fθM : Rs → R
to all patches of the input, thereby creating M feature
maps. In the case where representation functions are stan-
dard neurons, i.e. fθd(x) = σ(w>d x + bd) for parameters
θd = (wd, bd) ∈ Rs × R and some chosen activation σ(·),
we obtain a conventional convolutional layer.

Following the representation, a network includes L hidden
layers indexed by l = 0. . .L−1. Each hidden layer l begins
with a 1× 1 conv operator, which is simply a 3D convolu-
tion with rl channels and receptive field 1 × 1 followed
by point-wise activation σ(·). We allow the convolution
to operate without weight sharing, in which case the filters
that generate feature maps by sliding across the previous
layer may have different coefficients at different spatial lo-
cations. This is often referred to in the deep learning com-
munity as a locally-connected layer (see (Taigman et al.,
2014)). We refer to it as the unshared case, in contrast to
the shared case that gives rise to a standard 1× 1 convolu-
tion. The second (last) operator in a hidden layer is spatial
pooling. Feature maps generated by 1 × 1 conv are dec-
imated, by applying the pooling operator P (·) (e.g. max
or average) to non-overlapping 2D windows that cover the
spatial extent. The last of the L hidden layers (l = L − 1)
reduces feature maps to singletons (global pooling), creat-
ing a vector of dimension rL−1. This vector is mapped into
Y network outputs through a final dense linear layer.

Altogether, the architectural parameters of a ConvNet are
the type of representation functions (fθd ), the pooling win-
dow sizes (which in turn determine the number of hidden
layersL), the setting of conv weights as shared or unshared,
the number of channels in each layer (M for representation,
r0. . .rL−1 for hidden layers, Y for output), and the choice
of activation and pooling operators (σ(·) and P (·) respec-



Convolutional Rectifier Networks as Generalized Tensor Decompositions

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

    0, ,

0 , , ,:jconv j rep j  a

    0 0 '
, ',

j window j
pool j P conv j 




    1 1 ' covers space
',L L j

pool P conv j  

   ,1,

1, :L y

Lout y pool  a

X

Figure 1. ConvNet architecture analyzed in this paper (see description in sec. 4). Best viewed in color.

tively). Given these architectural parameters, the learn-
able parameters of a network are the representation weights
(θd), the conv weights (al,j,γ for hidden layer l, location j
and channel γ in unshared case; al,γ for hidden layer l and
channel γ in shared case), and the output weights (aL,1,y).

The choice of activation and pooling operators determines
the type of network we arrive at. For linear activation
(σ(z) = z) and product pooling (P{cj} =

∏
cj) we get

a convolutional arithmetic circuit as analyzed in (Cohen
et al., 2016b). For ReLU activation (σ(z) = max{0, z})
and max or average pooling (P{cj} = max{cj} or
P{cj} = mean{cj}) we get the commonly used convo-
lutional rectifier networks, on which we focus in this paper.

In terms of pooling window sizes and network depth, we
direct our attention to two special cases representing the
extremes. The first is a shallow network that includes
global pooling in its single hidden layer – see illustration
in fig. 2. The second is the deepest possible network, in
which all pooling windows cover only two entries, result-
ing in L = log2N hidden layers. These ConvNets, which
we refer to as shallow and deep respectively, will be shown
to correspond to canonical tensor decompositions. It is
for this reason, and for simplicity of presentation, that we
focus on these special cases. One may just as well con-
sider networks of intermediate depths with different pool-
ing window sizes, and that would correspond to other, non-
standard, tensor decompositions. The analysis carried out
in sec. 5 can easily be adapted to such networks.

In a classification setting, the Y outputs of a network cor-
respond to different categories, and prediction follows the
output with highest activation. Specifically, if we denote by
hy(·) the mapping from network input to output y, the pre-
dicted label for the instance X = (x1, . . . ,xN ) ∈ (Rs)N
is determined by the following classification rule:

ŷ = argmaxy∈[Y ] hy(X)

We refer to hy as the score function of category y. Score
functions are studied in this paper through the notion of

grid tensors. Given fixed vectors x(1) . . .x(M) ∈ Rs, re-
ferred to as templates, the grid tensor of hy , denotedA(hy),
is defined to be the tensor of order N and dimension M in
each mode given by:

A(hy)d1...dN = hy(x(d1), . . . ,x(dN )) (3)

That is to say, the grid tensor of a score function un-
der M templates x(1) . . .x(M), is a tensor of order N
and dimension M in each mode, holding score values
on the exponentially large grid of instances {Xd1...dN :=
(x(d1), . . . ,x(dN )) : d1. . .dN ∈ [M ]}. Before heading on
to our analysis of grid tensors generated by ConvNets, to
simplify notation, we define F ∈ RM×M to be the ma-
trix holding the values taken by the representation func-
tions fθ1 . . .fθM : Rs → R on the selected templates
x(1) . . .x(M) ∈ Rs:

F :=

 fθ1(x(1)) · · · fθM (x(1))
...

. . .
...

fθ1(x(M)) · · · fθM (x(M))

 (4)

To express the grid tensor of a ConvNet’s score function us-
ing generalized tensor decompositions (see sec. 3), we set
the underlying function g : R×R→ R to be the activation-
pooling operator defined by:

g(a, b) = P (σ(a), σ(b)) (5)

where σ(·) and P (·) are the network’s activation and pool-
ing functions, respectively. Notice that the activation-
pooling operator meets the associativity and commutativity
requirements under product pooling with linear activation
(g(a, b) = a·b), and under max pooling with ReLU activa-
tion (g(a, b) = max{a, b, 0}). To account for the case of
average pooling with ReLU activation, which a-priori leads
to a non-associative activation-pooling operator, we sim-
ply replace average by sum, i.e. we analyze sum pooling
with ReLU activation (g(a, b) = max{a, 0}+ max{b, 0}),



Convolutional Rectifier Networks as Generalized Tensor Decompositions

which from the point of view of expressiveness is com-
pletely equivalent to average pooling with ReLU activation
(linear weights that follow pooling absorb scaling factors).

With the activation-pooling operator g in place, it is
straightforward to see that the grid tensor of hSy – a score
function generated by the shallow ConvNet (fig. 2), is given
by the following generalized tensor decomposition:

A
(
hSy
)

=

Z∑
z=1

ayz · (Faz,1)⊗g · · · ⊗g (Faz,N ) (6)

Z here is the number of channels in the network’s hidden
layer, {az,i ∈ RM}z∈[Z],i∈[N ] are the weights in the hid-
den conv, and ay ∈ RZ are the weights of output y. The
factorization in eq. 6 generalizes the classic CP decompo-
sition (see (Kolda and Bader, 2009)), and we accordingly
refer to it as the generalized CP decomposition.

Turning to the deep ConvNet (fig. 1 with size-2 pooling
windows and L = log2N hidden layers), the grid tensor of
its score function hDy is given by the hierarchical general-
ized tensor decomposition below:

φ1,j,γ =

r0∑
α=1

a1,j,γα (Fa0,2j−1,α)⊗g (Fa0,2j,α)

· · ·

φl,j,γ =

rl−1∑
α=1

al,j,γα φl−1,2j−1,α︸ ︷︷ ︸
order 2l−1

⊗g φl−1,2j,α︸ ︷︷ ︸
order 2l−1

· · ·

φL−1,j,γ =

rL−2∑
α=1

aL−1,j,γα φL−2,2j−1,α︸ ︷︷ ︸
order N4

⊗g φL−2,2j,α︸ ︷︷ ︸
order N4

A
(
hDy
)

=

rL−1∑
α=1

aL,1,yα φL−1,1,α︸ ︷︷ ︸
order N2

⊗g φL−1,2,α︸ ︷︷ ︸
order N2

(7)

r0. . .rL−1 ∈ N here are the number of channels in
the network’s hidden layers, {a0,j,γ ∈ RM}j∈[N ],γ∈[r0]
are the weights in the first hidden conv, {al,j,γ ∈
Rrl−1}l∈[L−1],j∈[N/2l],γ∈[rl] are the weights in the follow-
ing hidden convs, and aL,1,y ∈ RrL−1 are the weights of
output y. The factorization in eq. 7 generalizes the Hier-
archical Tucker decomposition introduced in (Hackbusch
and Kühn, 2009), and is accordingly referred to as the gen-
eralized HT decomposition.

To conclude this section, we presented a ConvNet architec-
ture (fig. 1) whose activation and pooling operators may be
chosen to realize convolutional arithmetic circuits (linear
activation, product pooling) or convolutional rectifier net-
works (ReLU activation, max/average pooling). We then
defined the grid tensor of a network’s score function as a
tensor holding function values on an exponentially large

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M Z Z Y

    ,, , ,:z iconv i z rep i a

    
covers space

,
i

pool z P conv i z

   , :yout y pool a

X

Figure 2. Shallow ConvNet with global pooling in its single hid-
den layer. Best viewed in color.

grid whose points are sequences with elements chosen from
a finite set of templates. Then, we saw that the grid tensor
of a shallow ConvNet (fig. 2) is given by the generalized CP
decomposition (eq. 6), and a grid tensor of a deep ConvNet
(fig. 1 with L = log2N ) is given by the generalized HT
decomposition (eq. 7). In the next section we utilize the
connection between ConvNets and generalized tensor de-
compositions for an analysis of the expressive power and
depth efficiency of convolutional rectifier networks.

5. Capacity Analysis
In this section we study score functions expressible by
the shallow and deep ConvNets (fig. 2, and fig. 1 with
L = log2N , respectively) under ReLU activation with max
or average pooling (convolutional rectifier networks), com-
paring these settings against linear activation with product
pooling (convolutional arithmetic circuits). Due to lack of
space, the proofs of our claims are all given in app. E. In
these proofs, score functions are analyzed through grid ten-
sors (eq. 3), represented by the generalized tensor decom-
positions established in the previous section: the general-
ized CP decomposition (eq. 6) corresponding to the shal-
low network, and the generalized HT decomposition (eq. 7)
corresponding to the deep network.

5.1. Templates and Representation Functions

The expressiveness of our ConvNets obviously depends on
the possible forms that may be taken by the representation
functions fθ1 . . .fθM : Rs → R. For example, if represen-
tation functions are limited to be constant, the ConvNets
can only realize constant score functions. We denote by
F := {fθ : Rs → R : θ ∈ Θ} the parametric family from
which representation functions are chosen, and make two
mild assumptions on this family:

• Continuity: fθ(x) is continuous w.r.t. both θ and x.

• Non-degeneracy: For any x(1) . . .x(M) ∈ Rs such
that xi 6= xj ∀i6=j, there exist fθ1 . . .fθM ∈ F for
which the matrix F defined in eq. 4 is non-singular.



Convolutional Rectifier Networks as Generalized Tensor Decompositions

Both of the assumptions above are met for most reasonable
choices of F . In particular, non-degeneracy holds when
representation functions are standard neurons:

Claim 1. The parametric family:

F =
{
fθ(x) = σ(w>x + b) : θ = (w, b) ∈ Rs × R

}
where σ(·) is any sigmoidal activation 4 or the ReLU ac-
tivation, meets the non-degeneracy condition (i.e. for any
distinct x(1) . . .x(M) ∈ Rs there exist fθ1 . . .fθM ∈ F such
that the matrix F defined in eq. 4 is non-singular).

Non-degeneracy means that given distinct templates, one
may choose representation functions for which F is non-
singular. We may as well consider the opposite situation,
where we are given representation functions, and would
like to choose templates leading to a non-singular F . Ap-
parently, so long as the representation functions are linearly
independent, this is always possible:

Claim 2. Let fθ1 . . .fθM : Rs → R be any lin-
early independent continuous functions. Then, there exist
x(1) . . .x(M) ∈ Rs such that F (eq. 4) is non-singular.

As stated previously, in this paper we study score functions
expressible by ConvNets through the notion of grid ten-
sors. The translation of score functions into grid tensors
is facilitated by the choice of templates x(1) . . .x(M) ∈
Rs (eq. 3). For general templates, the correspondence
between score functions and grid tensors is not injec-
tive – a score function corresponds to a single grid ten-
sor, but a grid tensor may correspond to more than one
score function. We use the term covering to refer to
templates leading to an injective correspondence, i.e. to
a situation where two score functions associated with
the same grid tensor are effectively identical. In other
words, the templates x(1) . . .x(M) are covering if the
value of score functions outside the exponentially large
grid

{
Xd1...dN := (x(d1), . . . ,x(dN )) : d1. . .dN ∈ [M ]

}
is

irrelevant for classification. Some of the claims in our
analysis will assume existence of covering templates (it
will be stated explicitly when so). We argue in app. A
that for structured compositional data (e.g.natural images),
M ∈ Ω(100) suffices in order for this assumption to hold.

5.2. Universality

Universality refers to the ability of a network to realize (or
approximate) any function of choice when its size is unlim-
ited. It is well-known that fully-connected neural networks
are universal under all types of non-linear activations typi-
cally used in practice, even if the number of hidden layers
is restricted to one (Cybenko, 1989; Hornik et al., 1989).

4 σ(·) is sigmoidal if it is monotonic with limz→−∞ σ(z) = c
and limz→+∞ σ(z) = C for some c6=C in R.

To the best of our knowledge universality has never been
studied in the context of convolutional rectifier networks.
This is the purpose of the current subsection. Specifically,
we analyze the universality of our shallow and deep Con-
vNets (fig. 2, and fig. 1 with L = log2N , respectively)
under ReLU activation and max or average pooling.

We begin by stating a result similar to that given in (Cohen
et al., 2016b), according to which convolutional arithmetic
circuits are universal:

Claim 3. Assuming covering templates exist, with linear
activation and product pooling the shallow ConvNet is uni-
versal (hence so is the deep).

Heading on to convolutional rectifier networks, the follow-
ing claim tells us that max pooling leads to universality:

Claim 4. Assuming covering templates exist, with ReLU
activation and max pooling the shallow ConvNet is univer-
sal (hence so is the deep).

At this point we encounter the first somewhat surprising
result, according to which convolutional rectifier networks
are not universal with average pooling:

Claim 5. With ReLU activation and average pooling, both
the shallow and deep ConvNets are not universal.

One may wonder if perhaps the non-universality of ReLU
activation and average pooling is merely an artifact of the
conv operator in our networks having 1× 1 receptive field.
Apparently, as the following claim shows, expanding the
receptive field does not remedy the situation, and indeed
non-universality is an inherent property of convolutional
rectifier networks with average pooling:

Claim 6. Consider the network obtained by expanding the
conv receptive field in the shallow ConvNet from 1 × 1 to
w×h, wherew·h < N/2+1−logM N (conv windows cover
less than half the feature maps that precede them). Such a
network, when equipped with ReLU activation and average
pooling, is not universal.

We conclude this subsection by noting that the non-
universality result in claim 6 does not contradict the
known universality of shallow (single hidden layer) fully-
connected neural networks – see app. B for a discussion on
the matter.

5.3. Depth Efficiency

The driving force behind deep learning is the expressive
power that comes with depth. It is generally believed that
deep networks with non-linear layers efficiently express
functions that cannot be efficiently expressed by shallow
networks, i.e. that would require the latter to have super-
polynomial size. We refer to such scenario as depth effi-
ciency. Being concerned with the minimal size required



Convolutional Rectifier Networks as Generalized Tensor Decompositions

by a shallow network in order to realize (or approximate) a
given function, the question of depth efficiency implicitly
assumes universality, i.e. that there exists some (possibly
exponential) size with which the shallow network is capa-
ble of expressing the target function 5.

To the best of our knowledge, at the time of this writing
the only work to formally analyze depth efficiency in the
context of ConvNets is (Cohen et al., 2016b). This work
focused on convolutional arithmetic circuits, showing that
with such networks depth efficiency is complete, i.e. be-
sides a negligible set, all functions realizable by a deep net-
work are depth efficient. Framing this result in our setup:

Claim 7 (adaptation of theorem 1 in (Cohen et al., 2016b)).
Let fθ1 . . .fθM be any set of linearly independent repre-
sentation functions for a deep ConvNet (fig. 1 with L =
log2N ) with linear activation and product pooling. Sup-
pose we randomize the linear weights (al,j,γ) of the net-
work by some continuous distribution. Then, with proba-
bility 1, we obtain score functions that cannot be realized
by a shallow ConvNet (fig. 2) with linear activation and
product pooling if the number of hidden channels in the
latter (Z) is less than min{r0,M}N/2.

We now turn to convolutional rectifier networks, for which
depth efficiency has yet to be analyzed. In sec. 5.2 we saw
that convolutional rectifier networks are universal with max
pooling, and non-universal with average pooling. Since
depth efficiency is only applicable to universal architec-
tures, we focus on the former setting. The following claim
establishes existence of depth efficiency for ConvNets with
ReLU activation and max pooling:

Claim 8. There exist weight settings for a deep Con-
vNet with ReLU activation and max pooling, giving rise
to score functions that cannot be realized by a shallow
ConvNet with ReLU activation and max pooling if the
number of hidden channels in the latter (Z) is less than
min{r0,M}N/2 · 2

M ·N .

Nearly all results in the literature that relate to depth effi-
ciency merely show its existence, and claim 8 is no differ-
ent in that respect. From a practical perspective, the impli-
cations of such results are slight, as a-priori, it may be that
only a small fraction of the functions realizable by a deep
network enjoy depth efficiency, and for all the rest shallow
networks suffice. In app. F we extend claim 8, arguing that
with ReLU activation and max pooling, depth efficiency
becomes more and more prevalent as the number of hidden
channels in the deep ConvNet grows. However, no matter

5 While technically it is possible to consider depth efficiency
with a non-universal shallow network, in the majority of the cases,
particularly in our framework, the shallow network would simply
not be able to express a function generated by a deep network, no
matter how large we allow it to be. Arguably, this provides little
insight into the complexity of functions brought forth by depth.

how large the deep ConvNet is, with ReLU activation and
max pooling depth efficiency is never complete – there is
always positive measure to the set of weight configurations
that lead the deep ConvNet to generate score functions ef-
ficiently realizable by the shallow ConvNet:

Claim 9. Suppose we randomize the weights of a deep
ConvNet with ReLU activation and max pooling by some
continuous distribution with non-vanishing continuous
probability density function. Then, assuming covering tem-
plates exist, with positive probability, we obtain score func-
tions that can be realized by a shallow ConvNet with ReLU
activation and max pooling having only a single hidden
channel (Z = 1).

Comparing claims 7 and 9, we see that depth efficiency
is complete under linear activation with product pooling,
and incomplete under ReLU activation with max pooling.
We interpret this as indicating that convolutional arith-
metic circuits benefit from the expressive power of depth
more than convolutional rectifier networks do. This result
is rather surprising, particularly since convolutional recti-
fier networks are much more commonly used in practice.
We attribute the discrepancy primarily to historical reasons,
and conjecture that developing effective methods for train-
ing convolutional arithmetic circuits, thereby fulfilling their
expressive potential, may give rise to a deep learning archi-
tecture that is provably superior to convolutional rectifier
networks but has so far been overlooked by practitioners.

Loosely speaking, we have shown that the gap in expressive
power between the shallow and deep ConvNets is greater
with linear activation and product pooling than it is with
ReLU activation and max pooling. One may wonder at
this point if it is plausible to deduce from this which ar-
chitectural setting is more expressive, as a-priori, altering
the shallow vs. deep ConvNet comparisons such that one
network has linear activation with product pooling and the
other has ReLU activation with max pooling, may change
the expressive gaps in favor of the latter. Claims 10 and 11
below show that this is not the case. Specifically, they show
that the depth efficiency of the deep ConvNet with linear
activation and product pooling remains complete when the
shallow ConvNet has ReLU activation and max pooling
(claim 10), and on the other hand, the depth efficiency of
the deep ConvNet with ReLU activation and max pooling
remains incomplete when the shallow ConvNet has linear
activation and product pooling (claim 11). This affirms our
stand regarding the expressive advantage of convolutional
arithmetic circuits over convolutional rectifier networks.

Claim 10. Let fθ1 . . .fθM be any set of linearly indepen-
dent representation functions for a deep ConvNet with lin-
ear activation and product pooling. Suppose we randomize
the weights of the network by some continuous distribu-
tion. Then, with probability 1, we obtain score functions



Convolutional Rectifier Networks as Generalized Tensor Decompositions

that cannot be realized by a shallow ConvNet with ReLU
activation and max pooling if the number of hidden chan-
nels in the latter (Z) is less than min{r0,M}N/2 · 2

M ·N .

Claim 11. Suppose we randomize the weights of a deep
ConvNet with ReLU activation and max pooling by some
continuous distribution with non-vanishing continuous
probability density function. Then, assuming covering tem-
plates exist, with positive probability, we obtain score func-
tions that can be realized by a shallow ConvNet with linear
activation and product pooling having only a single hidden
channel (Z = 1).

5.3.1. APPROXIMATION

In their current form, the results in our analysis establishing
depth efficiency (claims 7, 8, 10 and the analogous ones in
app. D) relate to exact realization. Specifically, they pro-
vide a lower bound on the size of a shallow ConvNet re-
quired in order for it to realize exactly a grid tensor gen-
erated by a deep ConvNet. From a practical perspective,
a more interesting question would be the size required by
a shallow ConvNet in order to approximate the computa-
tion of a deep ConvNet. A-priori, it may be that although
the size required for exact realization is exponential, the
one required for approximation is only polynomial. As we
show in app. C, this is not the case, and in fact all of the
lower bounds we have provided apply not only to exact re-
alization, but also to arbitrarily-well approximation.

5.4. Shared Coefficients for Convolution

To this end, our analysis has focused on the unshared set-
ting, where the coefficients of the 1 × 1 conv filters may
vary across spatial locations. In practice, ConvNets typi-
cally enforce coefficient sharing, which in our framework
implies that in channel γ of hidden layer l, instead of hav-
ing a coefficient set al,j,γ for every location j, we have a
single set al,γ for all locations. Due to lack of space, we
defer our analysis of the shared setting to app. D, providing
here a summary of its results.

In terms of universality, introducing sharing is detrimental.
Under all possible choices of activation and pooling, shared
coefficients limit the shallow ConvNet to symmetric grid
tensors only. The deep ConvNet can go beyond symmetric
grid tensors, but is still not universal. Evaluation of depth
efficiency requires the shallow network to be universal, and
we accordingly compare deep ConvNets with shared coef-
ficients against shallow ConvNets that are not constrained
by coefficient sharing. In a nutshell, we find all results es-
tablished above for the unshared setting still applicable – a
deep ConvNet with shared coefficients is completely depth
efficient under linear activation with product pooling, and
incompletely depth efficient under ReLU activation with
max pooling.

6. Discussion
The contribution of this paper is twofold. First, we in-
troduce a construction in the form of generalized ten-
sor decompositions, that enables transforming convolu-
tional arithmetic circuits into convolutional rectifier net-
works (ConvNets with ReLU activation and max or aver-
age pooling). This opens the door to various mathematical
tools from the world of arithmetic circuits, now available
for analyzing convolutional rectifier networks. As a second
contribution, we make use of such tools to prove new re-
sults on the expressive properties that drive this important
class of networks.

Our analysis shows that convolutional rectifier networks
are universal with max pooling, but not with average pool-
ing. This implies that if non-linearity originates solely from
ReLU activation, increasing network size alone is not suf-
ficient for expressing arbitrary functions. More interest-
ingly, we analyze the behavior of convolutional rectifier
networks in terms of depth efficiency, i.e. of cases where
a function generated by a deep network of polynomial size
requires shallow networks to have super-polynomial size.
It is known that convolutional arithmetic circuits exhibit
complete depth efficiency, meaning that besides a negligi-
ble (zero measure) set, all functions generated by deep net-
works of this type are depth efficient. We show that this
is not the case with convolutional rectifier networks, for
which depth efficiency exists, but is weaker in the sense
that it is not complete (there is positive measure to the set
of functions generated by a deep network that may be effi-
ciently realized by shallow networks).

Depth efficiency is believed to be the key factor behind
the success of deep learning. Our analysis indicates that
from this perspective, the widely used convolutional rec-
tifier networks are inferior to convolutional arithmetic cir-
cuits. This leads us to believe that convolutional arithmetic
circuits bear the potential to improve the performance of
deep learning beyond what is witnessed today. Of course,
a practical machine learning model is measured not only
by its expressive power, but also by our ability to train it.
Over the years, massive amounts of research have been de-
voted to training convolutional rectifier networks. Convo-
lutional arithmetic circuits on the other hand received far
less attention, although they have been successfully trained
in recent works on the SimNet architecture (Cohen and
Shashua, 2014; Cohen et al., 2016a), demonstrating how
the enhanced expressive power can lead to state of the art
performance in computationally limited settings.

We believe that developing effective methods for training
convolutional arithmetic circuits, thereby fulfilling their ex-
pressive potential, may give rise to a deep learning archi-
tecture that is provably superior to convolutional rectifier
networks but has so far been overlooked by practitioners.



Convolutional Rectifier Networks as Generalized Tensor Decompositions

Acknowledgments
This work is partly funded by Intel grant ICRI-CI no. 9-
2012-6133 and by ISF Center grant 1790/12. Nadav Cohen
is supported by a Google Fellowship in Machine Learning.

References
Richard Caron and Tim Traynor. The zero set of a polynomial.

WSMR Report 05-02, 2005.

Nadav Cohen and Amnon Shashua. Simnets: A generalization
of convolutional networks. Advances in Neural Information
Processing Systems (NIPS), Deep Learning Workshop, 2014.

Nadav Cohen and Amnon Shashua. Convolutional rectifier net-
works as generalized tensor decompositions. arXiv preprint
arXiv:1603.00162, 2016.

Nadav Cohen, Or Sharir, and Amnon Shashua. Deep simnets.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016a.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive
power of deep learning: A tensor analysis. Conference On
Learning Theory (COLT), 2016b.

G Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals and Systems, 2(4):
303–314, 1989.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-
product networks. In Advances in Neural Information Process-
ing Systems, pages 666–674, 2011.

Ronen Eldan and Ohad Shamir. The power of depth for feedfor-
ward neural networks. arXiv preprint arXiv:1512.03965, 2015.

W Hackbusch and S Kühn. A New Scheme for the Tensor Rep-
resentation. Journal of Fourier Analysis and Applications, 15
(5):706–722, 2009.

Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Cal-
culus, volume 42 of Springer Series in Computational Math-
ematics. Springer Science & Business Media, Berlin, Heidel-
berg, February 2012.

Kurt Hornik, Maxwell B Stinchcombe, and Halbert White. Multi-
layer feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Frank Jones. Lebesgue integration on Euclidean space. Jones &
Bartlett Learning, 2001.

Tamara G Kolda and Brett W Bader. Tensor Decompositions and
Applications. SIAM Review (), 51(3):455–500, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. Advances in Neural Information Processing Systems,
pages 1106–1114, 2012.

Yann LeCun and Yoshua Bengio. Convolutional networks for im-
ages, speech, and time series. The handbook of brain theory
and neural networks, 3361(10), 1995.

James Martens and Venkatesh Medabalimi. On the expres-
sive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua
Bengio. On the number of linear regions of deep neural net-
works. In Advances in Neural Information Processing Systems,
pages 2924–2932, 2014.

Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-
10), pages 807–814, 2010.

Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the
number of inference regions of deep feed forward networks
with piece-wise linear activations. arXiv preprint arXiv, 1312,
2013.

Tomaso Poggio, Fabio Anselmi, and Lorenzo Rosasco. I-theory
on depth vs width: hierarchical function composition. Techni-
cal report, Center for Brains, Minds and Machines (CBMM),
2015.

Hoifung Poon and Pedro Domingos. Sum-product networks: A
new deep architecture. In Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on, pages
689–690. IEEE, 2011.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire
Mesnil. Learning semantic representations using convolu-
tional neural networks for web search. In Proceedings of the
companion publication of the 23rd international conference
on World wide web companion, pages 373–374. International
World Wide Web Conferences Steering Committee, 2014.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A
survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5(3–4):207–388,
2010.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. DeepFace: Closing the Gap to Human-Level Perfor-
mance in Face Verification. In CVPR ’14: Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recog-
nition. IEEE Computer Society, June 2014.

Matus Telgarsky. Benefits of depth in neural networks. arXiv
preprint arXiv:1602.04485, 2016.

Izhar Wallach, Michael Dzamba, and Abraham Heifets. Atom-
net: A deep convolutional neural network for bioactivity pre-
diction in structure-based drug discovery. arXiv preprint
arXiv:1510.02855, 2015.

Daniel Zoran and Yair Weiss. ”Natural Images, Gaussian Mix-
tures and Dead Leaves”. Advances in Neural Information Pro-
cessing Systems, pages 1745–1753, 2012.


