
Group Equivariant Convolutional Networks
supplementary material

Taco S. Cohen T.S.COHEN@UVA.NL

University of Amsterdam

Max Welling M.WELLING@UVA.NL

University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

This document contains supplementary material for the pa-
per “T.S. Cohen, M. Welling, Group Equivariant Convolu-
tional Networks. Proceedings of the International Confer-
ence on Machine Learning (ICML), 2016”.

1. Equivariance Derivations
We claim in the paper that planar correlation is not equiv-
ariant to rotations. Let f : R2 → RK be an image with K
channels, and let ψ : R2 → RK be a filter. Take a rotation
r about the origin. The ordinary planar correlation ? is not
equivariant to rotations, i.e., [Lrf ]?ψ 6= Lr[f ?ψ]. Instead
we have:

[[Lrf ] ? ψ](x) =
∑
y∈Z2

∑
k

Lrfk(y)ψk(y − x)

=
∑
y∈Z2

∑
k

fk(r
−1y)ψk(y − x)

=
∑
y∈Z2

∑
k

fk(y)ψk(ry − x)

=
∑
y∈Z2

∑
k

fk(y)ψk(r(y − r−1x))

=
∑
y∈Z2

∑
k

fk(y)Lr−1ψ(y − r−1x))

= f ? [Lr−1ψ](r−1x)

= Lr[f ? [Lr−1ψ]](x)

(1)

Line by line, we used the following definitions, facts and
manipulations:

1. The definition of the correlation ?.

2. The definition of Lr, i.e. Lrf(x) = f(r−1x).

3. The substitution y → ry, which does not change the
summation bounds since rotation is a symmetry of the
sampling grid Z2.

4. Distributivity.

5. The definition of Lr.

6. The definition of the correlation ?.

7. The definition of Lr.

A visual proof can be found in (Dieleman et al., 2016).

Using a similar line of reasoning, we can show that pooling
commutes with the group action:

PLhf(g) = max
k∈gU

Lhf(k)

= max
k∈gU

f(h−1k)

= max
hk∈gU

f(k)

= max
k∈h−1gU

f(k)

= Pf(h−1g)

= LhPf(g)

(2)



Group Equivariant Convolutional Networks

2. Gradients
To train a G-CNN, we need to compute gradients of a loss
function with respect to the parameters of the filters. If we
use the fast algorithm explained in section 7 of the main pa-
per, we only have to implement the gradient of the indexing
operation (section 7.1, “filter transformation”), because the
2D convolution routine and its gradient are given.

This gradient is computed as follows. The gradient of the
loss with respect to cell i in the input of the indexing oper-
ation is the sum of the gradients of the output cells j that
index cell i. On current GPU hardware, this can be im-
plemented efficiently using a kernel that is instantiated for
each cell j in the output array. The kernel adds the value
of the gradient of the loss with respect to cell j to cell i
of array that holds the gradient of the loss with respect to
the input of the indexing operation (this array is to be ini-
tialized at zero). Since multiple kernels write to the same
cell i, the additions must be done using atomic operations
to avoid concurrency problems.

Alternatively, one could implement the filter transforma-
tion using a precomputed permutation matrix. This is not
as efficient, but the gradient is trivial, and most computa-
tion graph / deep learning packages will have implemented
the matrix multiplication and its gradient.

3. G-conv calculus
Although the gradient of the filter transformation operation
is all that is needed to do backpropagation in a G-CNN
for a split group G, it is instructive to derive the analytical
gradients of the G-correlation operation. This leads to an
elegant “G-conv calculus”, included here for the interested
reader.

Let feature map k at layer l be denoted f lk = f l−1 ? ψlk,
where f l−1 is the stack of feature maps in the previous
layer. At some point in the backprop algorithm, we will
have computed the derivative ∂L/∂f lk for all k, and we
need to compute ∂L/∂f l−1j (to backpropagate to lower lay-
ers) as well as ∂L/∂ψlk

j (to update the parameters). We
find that,

∂L

∂f l−1j (g)
=
∑
h,k

∂L

∂f lk(h)

∂f lk(h)

∂f l−1j (g)

=
∑
h,k

∂L

∂f lk(h)

∑
h′,k′

∂f l−1k′ (h′)

∂f l−1j (g)
ψlk
k′ (h

−1h′)


=
∑
h,k

∂L

∂f lk(g)
ψlk
j (h−1g)

=

[
∂L

∂f l
? ψl∗

j

]
(g)

(3)

where the superscript ∗ denotes the involution

ψ∗(g) = ψ(g−1), (4)

and ψl
j is the set of filter components applied to input fea-

ture map j at layer l:

ψl
j(g) = (ψl1

j (g), . . . , ψlKl
j (g)) (5)

To compute the gradient with respect to component j of
filter k, we have to G-convolve the j-th input feature map
with the k-th output feature map:

∂L

∂ψlk
j (g)

=
∑
h

∂L

∂f lk(h)

∂f lk(h)

∂ψlk
j (g)

=
∑
h

∂L

∂f lk(h)

∑
h′,k′

f l−1k′ (h′)
∂ψlk

k′ (h
−1h′)

∂ψlk
j (g)


=
∑
h

∂L

∂f lk(h)
f l−1j (hg)

=

[
∂L

∂f lk
∗ f l−1j

]
(g)

(6)

So we see that both the forward and backward passes in-
volve convolution or correlation operations, as is the case
in standard convnets.

References
Dieleman, Sander, De Fauw, Jeffrey, and Kavukcuoglu,

Koray. Exploiting Cyclic Symmetry in Convolutional
Neural Networks. In International Conference on Ma-
chine Learning, 2016.


