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Abstract
We describe an approach to tensor decomposi-
tion that involves extracting a set of observable
matrices from the tensor and applying an approx-
imate joint Schur decomposition on those ma-
trices, and we establish the corresponding first-
order perturbation bounds. We develop a novel
iterative Gauss-Newton algorithm for joint ma-
trix Schur decomposition, which minimizes a
nonconvex objective over the manifold of orthog-
onal matrices, and which is guaranteed to con-
verge to a global optimum under certain condi-
tions. We empirically demonstrate that our algo-
rithm is faster and at least as accurate and robust
than state-of-the-art algorithms for this problem.

1. Introduction
Tensors are ubiquitous in the mathematical sciences, with
important applications in physics, signal processing, and
machine learning (Comon, 2014). The fundamental prob-
lem of tensor decomposition amounts to writing a given
tensor as a sum of simpler tensors that can carry useful in-
terpretation. For instance, the classical CP decomposition
of an order-3 tensor reads

T =

R∑
r=1

wr xr ◦ yr ◦ zr, (1)

where wr are scalar weights and the vectors xr, yr, zr are
the factors of the decomposition (◦ denotes outer product).
The smallest R for which (1) holds is the rank of the ten-
sor. Tensors enjoy widespread use because of their capacity
to model higher-order statistics but also their identifiability
properties: Contrary to the matrix case, tensor decomposi-
tion is unique under mild conditions, for instance when R
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in (1) is not too large (Kruskal, 1977; Sidiropoulos & Bro,
2000; Comon, 2014).

In machine learning we are typically dealing with tensors
that are noisy versions of (1), corresponding to empirical
high-order moments (Anandkumar et al., 2014b). In that
case a problem of interest is approximate tensor decom-
position under a low-rank constraint: Given an ‘empirical’
tensor T̂ , and a desired rank R, find a CP-decomposable
‘ground-truth’ tensor T that approximates T̂ in a certain
sense. Our approach belongs to the class of semi-algebraic
methods, in which an estimation of T is obtained by ex-
ploiting a series of algebraic conditions that are satisfied
exactly by T but only hold approximately for T̂ . Specif-
ically, we build on a line of research that reduces ten-
sor decomposition to a (joint) matrix diagonalization prob-
lem (Harshman, 1970; Leurgans et al., 1993; Chang, 1996;
Mossel & Roch, 2006; De Lathauwer, 2006; Anandku-
mar et al., 2014b; Montanari & Richard, 2014; Vempala &
Xiao, 2015; Kuleshov et al., 2015). The underlying idea of
this ‘matricization’ approach to tensor decomposition is to
extract a set of ‘observable’ matrices from the tensor, and
then estimate the tensor factors through the eigenstructure
of this set. The observable matrices are typically obtained
by random contractions of the tensor slices, followed by an
approximate joint matrix diagonalization step. For the lat-
ter, first-order perturbation bounds are available (Cardoso,
1994; Afsari, 2008; Kuleshov et al., 2015), which reveal
a much milder dependence on the eigengaps that plagued
earlier analyses (Mossel & Roch, 2006).

We depart from the above literature in three key aspects:
(1) We describe a way to extract observable matrices
from the tensor that does not involve random contractions.
(2) We propose an approach for diagonalizing the set of
observable matrices via an approximate joint Schur decom-
position, and we establish a first-order perturbation bound
drawing on the proof technique of Cardoso (1994). (3) We
describe a novel Gauss-Newton algorithm for approximate
joint Schur decomposition that minimizes a nonconvex ob-
jective on the manifold of orthogonal matrices. The fact
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that optimization is over a ‘nice’ manifold overcomes usual
problems of methods involving nonorthogonal joint matrix
decomposition (Afsari, 2008). Our matrix-manifold algo-
rithm is at least one order of magnitude faster than state-of-
the-art Jacobi algorithms (Haardt & Nossek, 1998; Abed-
Meraim & Hua, 1998; De Lathauwer, 2006), and it is guar-
anteed to converge to a globally optimal solution under cer-
tain conditions.

Notation. Given a matrix A, λi(A) is its ith eigenvalue,
vec(A) is its column-wise vectorization, mat is defined by
mat(vec(A)) = A, low(A) is the strictly lower-diagonal
part of A defined by [low (A)]ij = Aij if i > j and 0
otherwise, Low is defined by vec(low(A)) = Low vec(A),
and κ(A) is the condition number ofA. The identity matrix
is I , the Frobenius norm is ‖A‖, the tensor norm is defined
by ‖T‖2 =

∑
ijk T

2
ijk, and ⊗ is the Kronecker product.

2. Tensor decomposition as a joint matrix
diagonalization problem

Consider an order-3 tensor of the form1

T̂ = T + σE, Tijk =

R∑
r=1

ZirZjrZkr, (2)

where i, j, k = 1, . . . d, σ > 0 and E is an arbitrary (not
necessary symmetric) noise term satisfying ‖E‖ ≤ ε. The
problem involves recovering the factors Z from the empir-
ical tensor T̂ . Assume R = d, and define the observable
matrices M̂k, for k = 1, . . . d as

M̂k = m̂k(m̂)−1, [m̂k]ij = T̂ijk, m̂ =

d∑
k=1

m̂k. (3)

Note that each matrix m̂k is just a slice of the empirical
tensor T̂ . It is easy to show the following:

Lemma 1. If Z is invertible and [1TZ]r 6= 0 for all r =
1, . . . , R, the observable matrices M̂k defined in (3) can be
expanded as follows, for k = 1, . . . , d

M̂k = Mk + σWk +O(σ2) (4)

Mk = Zdiag(eTk Z)
(
diag(1TZ)

)−1
Z−1 (5)

Wk = ekm
−1 +mkm

−1em−1 (6)

where ek is the k-basis vector and the ground-truth matri-
ces are defined by [ek]ij = Eijk, e =

∑
k ek, [mk]ij =

Tijk and m =
∑
kmk.

The lemma implies that, up to a normalization constant, the
tensor decomposition problem is equivalent to an (approx-
imate) joint eigenvalues estimation problem. The tensor

1Our analysis and algorithm apply also to nonsymmetric T .

factors can be estimated from the joint eigenvalue matrices

λ̂r(M̂k) =
Z∗kr

[1TZ∗]r
, (7)

since for all r = 1, . . . , R and all k = 1, . . . , d, one has
λ̂r(M̂k) = Zkr

[1TZ]r
+O(σ).

2.1. The joint Schur decomposition approach

We propose a way to estimate the joint eigenvalues λ̂r(M̂k)
of the observable matrices in (3) via an approximate joint
Schur decomposition. The Schur decomposition of a sin-
gle matrix A involves finding an orthogonal matrix U such
that UTAU is upper triangular, i.e., low(UTAU) = 0.
Such a decomposition is always possible (Horn & Johnson,
2012). A key property of the Schur decomposition is that
the eigenvalues of A appear on the diagonal of the trian-
gularized matrix UTAU , i.e., λi(A) = [UTAU ]ii. When
σ = 0, and under certain conditions on their eigenvalues
(Colombo & Vlassis, 2016), the matrices M̂k admit a fi-
nite number of exact joint triangularizers and the estima-
tion of the joint eigenvalues is trivial. For σ > 0, an exact
joint triangularizer of the matrices M̂k may not exist, but
an approximate joint triangularizer can be computed by the
following optimization problem over the manifold of or-
thogonal matrices O(d)

min
U∈O(d)

L (U,Mσ) =

d∑
k=1

‖low(UT M̂kU)‖2, (8)

with Mσ = {M̂k}dk=1. This problem has always a globally
optimal solution, due to the compactness of O(d).

Let U∗ be a (local) minimizer of (8). Due to the continuity
of (8) in σ, the approximate triangularizer U∗ is expected
to be located in a neighbourhood of one of the (exact) trian-
gularizers of the unperturbed matricesMk. More precisely,
there exists an orthogonal matrix U◦, which is an exact tri-
angularizer of the unperturbed matrices Mk, such that

U∗ = U◦e
α∗X∗ , X∗ = −XT

∗ , ‖X∗‖ = 1, α∗ > 0, (9)

where the parameter α can be interpreted as the ‘distance’
between U∗ and the ground-truth triangularizer U◦. Then
the estimation of Z is obtained from the approximate joint
triangularizer U∗ via (7) and the following relation

λ̂r(M̂k) = [UT∗ M̂kU∗]rr = λr(Mk) +O(α∗ + σ) (10)

for all k = 1, . . . , d and r = 1, . . . , R. Intuitively, the
estimation error is due to the noise σ and the perturbation
parameter α∗ that measures the distance between U∗ and
U◦. In practice, the tensor decomposition problem (2) is
reduced to (8), which is a matrix optimization problem on
the manifold of orthogonal matrices. Under the conditions
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that Z is invertible and [1TZ]r 6= 0 for all r = 1, . . . , R,
we can bound the difference between the estimated tensor
components (7) and the ground-truth tensor components Z,
as we describe next.

2.2. Perturbation theorem

Our main result is the following

Theorem 1. Let T̂ be the tensor defined in (2) and assume
that R = d and Z is invertible, and [1TZ]r 6= 0 for all
r = 1, . . . R. Then the estimated Z∗ from (7) and (10),
with U∗ being a critical point of (8), satisfy∣∣∣∣ Z∗kr

[1TZ∗]r
− Zkr

[1TZ]r

∣∣∣∣ ≤
σ

(
4
√
R(R− 1)

γ
κ(Z)4µ2 + 1

)
ρ+O(σ2), (11)

where γ = 1
d minr<r′

∑
k(Zkr − Zkr′)2 and

µ = dκ(Z)2
max |Z|

min |1TZ|
, (12)

ρ = ε
κ(Z)2

‖Z‖2

√
d

min |1TZ|

(
1 + dκ(Z)2

max |Z|
min |1TZ|

)
. (13)

Remarks. The proof of Theorem 1 is based on a linear
perturbation analysis of the simultaneous triangularizers of
a set of nearly commuting matrices. This is a general-
ization of the analysis carried out by Cardoso (1994) for
the simultaneous diagonalization of symmetric nearly joint
diagonalizable matrices. In the approach followed here,
the matrices Mk in (3) are symmetric only if the tensor
(2) has orthogonal factors, i.e., Z is an orthogonal ma-
trix. The orthogonal problem is known to be simpler than
the nonorthogonal one addressed here, see, e.g., Kuleshov
et al. (2015). The procedure described here is completely
general and can be straightforwardly applied also to the or-
thogonal setting, in which case the error bound (11) will be
improved.

We note that Theorem 1 only proves the existence of a ma-
trix Z∗ with bounded error. Due to the nonconvexity of
(8), finding such a Z∗ may not be straightforward. How-
ever, since Theorem 1 is obtained from a linear expansion
of the stationary condition for (8), it holds for all critical
points that admit a bounded first order approximation when
expanded around the ground truth solution. More specifi-
cally, the bound in Theorem 1 is obtained from an inequal-
ity that can be established for the parameter α∗ associated
to a given critical point of (8). The bound on α∗ is given
in terms of the ground-truth matrices Mk, the noise param-
eter σ, and the noise matrices Wk, and it is obtained by
expanding the stationarity equation ∇L = 0, where ∇L
is the gradient of the objective function (8). In a first order

approximation, the stationarity equation can be written as a
linear operator T acting on the projection on the subspace
of strictly lower-diagonal matrices of the skew-symmetric
matrix X∗ defined in (9). Schematically,

α∗T Plowvec(X∗) = σA+O((α∗ + σ)2), (14)

where A is a linear function of the ground-truth matrices
Mk and the noise matrices Wk, the operator Plow is the
projector on the subspace of strictly lower-diagonal matri-
ces defined by PTlowPlow = Low and PlowP

T
low = I , and

the operator T is defined by

T =

d∑
k=1

tTk tk (15)

tk = Plow

(
I ⊗ UT◦ MT

k U◦ − UT◦ MkU◦ ⊗ I
)
PTlow, (16)

where U◦ is the exact joint triangularizer in (9). Under cer-
tain conditions, the operator T can be shown to be invert-
ible, in which case an inequality on the perturbation param-
eter α∗ can be obtained, up to nonlinear terms, by taking
the norm in both sides of α∗Plowvec(X∗) = T −1σA.

The bound provided by Theorem 1 appears to be less tight
that related bounds (Song et al., 2015; Azizzadenesheli
et al., 2016) due to the high dependence on the condition
number of Z (although our setting is different). In practice,
one may consider other types of error estimation techniques
such as, for example, a posteriori bounds in which the error
is computed from a function of the current solution and ob-
served quantities only (Colombo & Vlassis, 2016). These
bounds are usually much tighter, and they also overcome
the need for global guarantees for the specific algorithm
(as those discussed in Section 3).

Finally, a tighter bound can be obtained by considering the
spectral norm of the operator T (we thank a referee for this
suggestion). Specifically,

α∗ ≤
√

2‖T −1‖2 ‖
d∑
k=1

tTk vec(UT◦ WkU◦)‖, (17)

where ‖·‖2 denotes spectral norm. The corresponding error
in the tensor components estimation is then (Colombo &
Vlassis, 2016)∣∣∣∣ Z∗kr

[1TZ∗]r
− Zkr

[1TZ]r

∣∣∣∣ ≤ 2α∗µ+ σρ, (18)

with µ and ρ given in Theorem 1. Although (18) is ex-
pected to be tighter than (11), it lacks an intuitive interpre-
tation in terms of the objects appearing in (2). It would be
interesting to compute an upper bound of (17) in which the
dependence on the joint triangularizer U◦ is replaced by an
explicit function of the tensor components matrix Z. We
leave this for future work.
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2.3. Comparison with related results

The generalized Schur decomposition approach of
De Lathauwer et al. (2004). The perturbation analysis of
the generalized joint Schur decomposition problem used in
the method of De Lathauwer et al. (2004) does not provide
any bound for the estimation of the tensor components. De-
spite the state-of-the-art performance of that method, the
optimization problem associated to the tensor decomposi-
tion is harder than the one in (8), and providing a complete
error analysis seems to be a more challenging task. This
would require the generalization to the multiple matrices
case of the single matrix perturbation analysis for the gen-
eralized Schur decomposition given by Sun (1995), but we
are not aware of such an extension in the literature.

The matrix-based approach of Kuleshov et al. (2015).
Error bounds for the estimation of the tensor components
Z have been proposed by Kuleshov et al. (2015). Those
perturbation results follow naturally from the perturbation
analysis of Cardoso (1994) and Afsari (2008) for the or-
thogonal and nonorthogonal cases respectively. Our The-
orem 1 and the bounds of Kuleshov et al. (2015) share
the same general idea of reducing the tensor decomposition
problem to a simultaneous matrix decomposition problem,
however our result is different from (Kuleshov et al., 2015)
in the following three aspects:

(i) The technique of Kuleshov et al. (2015) is based on ran-
dom projections and the resulting bounds are probabilistic
bounds and depend on some failure probability δ. More
precisely, the error depends on the logarithm of the inverse
of the failure probability, i.e., ε ∼ log( 1

δ ). Our approach
does not involve any random projections and (11) depends
only on the noise and the condition number of Z (see also
Section 4.2).

(ii) The bound of Kuleshov et al. (2015) for the nonorthog-
onal setting includes a parameter describing the ‘closeness
to orthogonality’ of the tensor components, that prescribes
how far Z is from an orthogonal matrix. Our approach is
designed for the nonorthogonal case, and does not rely on
how close to orthogonality the matrix Z is, but only on its
conditioning properties.

(iii) Our analysis provides a precise first order expansion,
while the bound of Kuleshov et al. (2015) does not specify
the form of the term linear in σ, i.e., it reads ‖zr − zr′‖ ≤
O(x)σ+O(σ2) where x is a function of various parameters
involved in the perturbation analysis.

The tensor power method of Anandkumar et al.
(2014a). Another technique for which precise error bounds
are available is the tensor power method of Anandkumar
et al. (2014a). In this case, quite involved theoretical
bounds are obtained from a convergence analysis of the
tensor power iterations and a perturbation bound on the de-

flation technique that must be applied after the recovery of
each tensor component. In practice, comparisons with the
tensor decomposition techniques of De Lathauwer et al.
(2004) and Kuleshov et al. (2015) show that this method
can be less accurate in the recovery of the tensor factors
Z. In the nonorthogonal setting, suboptimal performance
can often be due to the whitening technique used to ap-
proximately transform the nonorthogonal problem into an
orthogonal optimization problem (Souloumiac, 2009). Our
method can be regarded as a non-approximate alternative
to such a whitening technique, where the nonorthogonal
decomposition problem, i.e., the simultaneous diagonaliza-
tion of the nonsymmetric matrices Mk in (3), is mapped
into a (slightly more complicated) orthogonal optimization
problem, i.e., the simultaneous Schur decomposition (8).

3. A Gauss-Newton algorithm for
approximate joint Schur decomposition

In the method proposed here the non-convex optimization
problem (8) is solved via an iterative Gauss-Newton algo-
rithm on the manifold of orthogonal matrices. The Gauss-
Newton algorithm can be initialized by the triangularizer of
a random linear combination of the input matrices in Mσ .
The computation of each update consists of two steps:

(i) the descent Gauss-Newton direction is computed in the
tangent space of O(d) (extrinsic step)

(ii) a line search is performed on the manifold (intrinsic
step) to find the best step size at each iteration.

Compared to the more popular Jacobi approach for joint
Schur decomposition, one of the main advantages of
Gauss-Newton is its speed. This is mainly due to the fact
that no polynomial rooting is required. The second impor-
tant feature of the Gauss-Newton procedure is its provable
convergence to local optima (Absil et al., 2009). Moreover,
global guarantees on the obtained solutions can be obtained
under certain condition on the initialization (see next).

3.1. The Gauss-Newton algorithm

Let f : O(d) → R be a function of the form f = 1
2 〈g, g〉,

where g : O(d)→ Rd×d and 〈A,B〉 = Tr(ATB) is the in-
ner product on Rd×d. Its Taylor expansion along the curve
γ(t) = UetX , where the tangent space element X obeys
X = −XT , is given by

f(t) = f(0) + tḟ(0) +
t2

2
f̈(0) +O(t3) (19)

= 〈g(0), g(0)〉+ t〈ġ(0), g(0)〉 +

t2

2
(〈ġ(0), ġ(0)〉+ 〈g̈(0), g(0)〉) +O(t3), (20)

where f(t) = f(γ(t)) = f(UetX). In particular, the dif-
ference f(t)−f(0) can be written as an explicit function of
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the tangent space elementX and maximized to find an opti-
mal descent direction. In a gradient descent approach only
the first order term 〈ġ(0), g(0)〉 is considered, while in the
Gauss-Newton scheme only the term containing the second
order derivative g̈(0) is neglected. It can be shown that this
is equivalent to iteratively minimize a simplified quadratic
objective f̃(t) = 〈g(0) + tġ(0), g(0) + tġ(0)〉. The second
term speeds up the convergence in the region where ḟ is
small, while preserving the descent properties of the simple
gradient updates. (It can be proven that the Gauss-Newton
direction is always a descent direction since 〈ġ(0), ġ(0)〉 is
positive definite.) The damped Gauss-Newton algorithm is
defined by the update

Um+1 = Ume
αmXm , (21)

where Xm and αm are obtained by the extrinsic and intrin-
sic optimization as explained below and Um=0 is a suitable
initialization.

Tangent space optimization (extrinsic step). Let Um
be the previous update, then the objective function (8) is
rewritten as

L (Um) =
1

2

∑
k

〈gk(Um), gk(Um)〉, (22)

where gk(Um) = low(UTmMkUm) and the Gauss-Newton
approximate loss is

δL (tX) = t
∑
r

〈ġk(Ume
tX), gk(Ume

tX)〉|t=0

+
t2

2

∑
r

〈ġk(Ume
tX), ġk(Ume

tX)〉|t=0 (23)

with ġk(Ume
tX)|t=0 = low(XM̃k − M̃kX) and where

M̃k = UTmMkUm. The tangent space direction Xm is the
solution of

min
x

xTAx+ bTx (24)

s.t. Cx = 0 (25)

where x = vec(tX), A =
∑
k T

T
M̃k

LowTM̃k
, and b =∑

k T
T
M̃k

Low vec(M̃k), and TM̃k
= I ⊗ M̃k − M̃T

k ⊗ I ,
and C = (1 + Transp) with Transp being defined by
Transp(vec(A)) = vec(AT ). This is a convex quadratic
optimization problem with an equality constraint, whose
solution is

Xm = −mat(Y TAY )−1Y b, (26)

where Y is defined by CY = 0.

Exhaustive line search (intrinsic step). Given Xm, the
optimal scaling is the solution of

min
α

L (Ume
αXm) (27)

s.t. 0 ≤ α ≤ 1 (28)

which is obtained by direct search on the discretized [0, 1].

3.2. Global guarantees

In this section we argue how to combine the convergence
properties of the GN algorithm and the perturbation theo-
rem (1) to obtain certain global guarantees on tensor de-
composition obtained by our approach. Due to its itera-
tive nature, the GN algorithm is not expect to converge to
the global optimum of (8) and the solution can depend on
the particular initialization. However, our experiments have
shown that the quality of the solution, in terms of the value
of the objective function at convergence, is almost insensi-
tive to the choice of the initialization. Moreover, it is possi-
ble to define convex relaxations to show that the final value
is often ‘close’ to the global optimum (see Section (4.3)).
These features seem to be shared by various optimization
problems involving orthogonal matrices and may be related
to the particular landscape defined by the quartic objective
involved in simultaneous matrix decompositions.

However, we can provide a stronger and more quantitative
argument pertaining to the convergence of the algorithm.
The local convergence properties of the damped GN algo-
rithm are easy to prove for the case of scalar variables and
can be extended to the matrix manifold framework (see,
for example, Absil et al. (2009)). This implies that the con-
vergence to a given local optimum U∗ is guaranteed if the
algorithm is started in the basin of attraction of U∗. In par-
ticular, such a basin of attraction always includes a convex
region containing U∗, i.e., a neighbourhood of U∗ where
the Hessian is positive definite. Thanks to the perturbation
bounds obtained in Section 2.2, it is possible to characterize
such a convex region via an upper bound on the perturba-
tion parameter α∗ defined in (9).

In particular, if the noise parameter σ is small enough, one
can use a linear expansion of L (U) around U◦. A con-
dition on σ is necessary at this point to guarantee that U◦
belongs to the convex region of U∗. The convergence of
the algorithm to U∗ is then ensured if it is possible to con-
struct an initial solution inside the convex region. Since a
good initialization can always be chosen by computing the
single-matrix Schur decomposition of a linear combination
of the input matrices M̂k, an initialization in the convex
region is available if the noise σ is not too big. By combin-
ing the condition defining the basin of attraction of U∗ and
the initialization condition, one obtains a bound on σ that
guarantees the algorithm to converge to the U∗ that is the
closest minimum to the ground truth triangularizer U◦. In
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this case, the corresponding estimation of the tensor com-
ponents satisfies the bound in Theorem 1 and the existence
statement of Theorem 1 is converted to a success guarantee
for the recovered components. We refer to a forthcoming
article (Colombo & Vlassis, 2016) for an explicit form of
the sufficient condition on the noise level σ for guaranteed
convergence to bounded solutions and a detailed proof.

Here we provide an informal sketch of the construction de-
scribed above. An important point is the following: Un-
der certain conditions on the joint eigenvalues of the ma-
trices Mk ∈ M0 = {M̂k|σ=0}dk=1, it can be shown that
L (U,M0) has isolated minima for which the value of the
objective is zero. Due to the continuity of L (U,Mσ) in the
parameter σ, one can expect that there exists a local min-
imum U∗ of L (U,Mσ) for each such isolated minimum
of L (U,M0). Let U◦ be the exact joint triangularizer of
M0 associated to U∗, then U∗ = U◦e

α∗X∗ , withX∗ and α∗
characterized by Theorem 1. By definition, each U∗ defines
a convex region in which the Hessian of (8) is positive def-
inite. If σ is small enough, U◦ belongs to the same convex
region and it makes sense to consider a linear expansion
around it. This is equivalent to assuming that σ is such that
the Hessian of L (U,Mσ) at U◦ is positive definite. Then
the global guarantees on the convergence of the algorithm
can be obtained as follows:

1. Find the local convexity condition H(U) > 0, or
equivalently 〈X,H(U)X〉 > 0 for all X , where
H(U) is the Hessian at the point U and 〈A,B〉 =
Tr(ATB).

2. Given σ, find an αmax = αmax(σ,M0) such that
H(U◦e

αY ) > 0 for all (α, Y ) such that ‖Y ‖ = 1
and all α ≤ αmax. This is possible by expanding
H(U) in a neighbourhood of U◦ and using the fact
that, under certain conditions on the joint eigenvalues
ofMk, the Hessian of L (U,M0) atU◦ is positive def-
inite. In particular, given the Schur decomposition of a
ground-truth matrix Mk, it can be shown that the dis-
tance in norm between the unperturbed triangularizers
U◦ and the triangularizers U∗ of M̂k is proportional to
the perturbation level σ and the inverse of the eigen-
gap γ = mini 6=j |λi(Mk) − λj(Mk)| of the unper-
turbed matrix Mk. Now, given a set of nearly joint di-
agonalizable matrices this non-degeneracy condition
generalizes to

∀r 6= r′ ∃ k ∈ 1, . . . , d s.t. [Λk]rr 6= [Λk]r′r′ .
(29)

It can be shown that in this case the operator T de-
fined in (15) and the Hessian of L (U,M0) at U =
U◦, whereU◦ is an exact joint triangularizer of allMk,
are both positive definite.

3. Let Uinit = U◦e
αinitXinit , where ‖Xinit‖ = 1 and

αinit > 0, and find ᾱinit = ᾱinit(σ,M0) such that
αinit ≤ ᾱinit, up to second order terms. This is possi-
ble by assuming that Uinit is obtained from the Schur
decomposition of a linear combination of the matri-
ces M̂n that has real-separated eigenvalues. Perturba-
tion bounds on single matrix Schur decomposition are
known (Konstantinov et al., 1994).

4. Finally, require that Uinit belongs to the local convex-
ity region of U◦ by imposing αinit ≤ αmax. This
condition is satisfied if σ is small enough to satisfy
ᾱinit ≤ αmax.

4. Experiments
We have compared our method with two other methods
for tensor decomposition, the cpd3-sgsd algorithm of
De Lathauwer et al. (2004) and the no-tenfact algo-
rithm of Kuleshov et al. (2015). For both methods, we
have used the Matlab codes available online with default
settings, except for the option options.Symmetry =
{[123]} in the cpd3-sgsd algorithm. In the following
‘GN’ denotes the proposed Gauss-Newton algorithm.

4.1. Comparison on synthetic data

We first tested the algorithms on synthetic data with known
ground truth. For two sets of dimensionality-rank settings,
namely d = {10, 20} and p = {d2 , d}, we have randomly
generated 10 distinct ground-truth models

Tijk =

p∑
r=1

wrZirZjrZkr, (30)

where wr > 0 for all r = 1, . . . , p, 1Tw = 1 and∑d
i=1 Z

2
ir = 1 for all r, and the corresponding noise ten-

sors E such that Eijk = N (0, 1), for all i, j, k = 1, . . . , d.
The input tensor for a given experiment was given by

T̂ = T + ε
‖T‖
‖E‖

E, (31)

where ε ∈ [0, 10−2]. The distance in norm between
the (rescaled) recovered matrix Z∗ = [z∗1 , . . . z

∗
p ] and the

ground-truth Z = [z1, . . . zp] has been used to evaluated
the quality of the decomposition via the score function

error =
‖Z − Z∗‖
‖Z + Z∗‖

. (32)

Since all algorithms can estimate Z up to permutations of
the columns, a reordering step was performed before the
evaluation. In Figure 1 we show the average performance
over the 10 experiments for different amounts of noise. For
all the considered levels of noise and all dimensionality-
rank settings our algorithms obtained results that are statis-
tically equivalent to cpd3-sgsd.
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Figure 1. Decomposition of a symmetric nonorthogonal tensor.
On the y axis, the logarithm of the recovery error defined by
s = ‖Z−Z∗‖

‖Z+Z∗‖ . On the x axis, the logarithm noise parameter
ε ∈ [0, 10−2] (see (31)). For each algorithm and each considered
noise level, a point represents the average s̄ over 10 experiments.
The corresponding errorbars define the range log(s̄)± σ

s̄
where σ

is the standard deviation over the distinct experiments.

4.2. Random Projections

Unlike most matrix-based tensor decomposition algorithms
(Chang, 1996; Mossel & Roch, 2006; Anandkumar et al.,
2014b; Hsu & Kakade, 2013; Kuleshov et al., 2015) the
proposed method does not make use of random projections
of the tensor slides. Single matrix perturbation bounds
usually depend inversely on the eigenvalues spacing of the
ground-truth matrix and the contraction to random vectors
has been used to prove, via usual concentration bounds on
the normal distribution, that a minimum eigengap can be
guaranteed. In the tensor decomposition via a single ma-
trix decomposition, as for example in Chang (1996) and
Mossel & Roch (2006), the random projection is a sta-
tistically natural choice for compressing the information
of all the tensor slides into a single matrix diagonaliza-
tion problem. For a simultaneous matrix decomposition
approach this is not required, since all unprojected slices
can be decomposed simultaneously as described in Section
2.1. Moreover, the inverse dependence on the eigengap is
replaced by the softer dependence on averaging factors as
γ = 1

d minr<r′
∑
k(Zkr − Zkr′)

2. In the framework of
matrix-based approaches, methods with (Kuleshov et al.,
2015) or without (Cardoso, 1991; De Lathauwer et al.,
2004) random projections have been proposed.

To test the effect of random projections in a simultaneous
decomposition approach, we have modified our algorithm
in order to allow for an arbitrary number Nθ of random
projections, and we have tested the performance for dif-
ferent Nθ = [0, 500]. Figure 2 shows the performance of

Figure 2. Performance of a modified version of our algorithm sup-
porting an arbitrary numberNθ of random projections. The x-axis
represents the noise level and the y-axis the recovery error as de-
fined in Figure 1, points indicate the average score over 10 exper-
iments.

the algorithm on a set of synthetic experiments analogous
to the ones described in the previous section. It is clear
that increasing the number of random projections does not
improve the accuracy of the output while it increases its
runtime (data not shown). A visual comparison between
the result of the no-tenfact algorithm (Kuleshov et al.,
2015) in the previous set of experiments and the perfor-
mance of our algorithm for Nθ > 200 seems to suggest
that a high number of random projection can even reduce
the quality of the output when the noise is small.

4.3. Jacobi vs Gauss-Newton

The most popular algorithm for solving the problem of ap-
proximate joint Schur decomposition in (8) is the Jacobi
algorithm by Haardt & Nossek (1998). A related method
has been proposed by Abed-Meraim & Hua (1998). The
Jacobi algorithm was first proposed for the problem of si-
multaneous diagonalization of symmetric matrices (Car-
doso & Souloumiac, 1996). In the framework of simul-
taneous diagonalization, various alternative methods have
been proposed. An interesting matrix manifold approach
is the gradient-based method proposed by Afsari & Krish-
naprasad (2004), but we are not aware of any alternative to
the Jacobi algorithm for simultaneous Schur Decomposi-
tion.

We have compared the performance of the Jacobi algo-
rithm of Haardt & Nossek (1998) (our implementation) and
the Gauss-Newton algorithm proposed here on the simulta-
neous triangularization of 100 randomly generated nearly
commuting matrices. The nearly commuting matrices have
been generated by choosing a random eigenvector matrix
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Figure 3. Comparison of the Jacobi algorithm described by
Haardt & Nossek (1998) (our implementation) and the Gauss-
Newton presented in this work on an approximate join Schur de-
composition task. 100 nearly commuting matrices have been gen-
erated and approximately triangularized by the two algorithms.
For five random initializations, the plot shows the value of the ob-
jective function at each iteration. The flat line is a lower bound on
the global optimum, computed via the relaxation (34).

V ∈ Rd×d, d = 10 and letting

M̂k = V ΛkV
−1 + ε

Ek
‖Ek‖

, (33)

k = 1, . . . 100, and where Λk were 100 random diagonal
matrices. In Figure 3 we show the objective value as a func-
tion of the number of iteration for five different initializa-
tions, and in Figure 4 we show a scatterplot of the obtained
final values against runtime. The large runtime of the Ja-
cobi algorithm is not due to a larger number of iterations
but to the higher computational complexity per iteration.
To show that optimality is almost attained, we also plot in
Figure 3 the objective value of the relaxed objective

L(V,Mε) =

100∑
k=1

‖PlowV vec(M̂k)‖2. (34)

The global optimum of (34) can be computed from the sin-
gular value decomposition of a d2 × d2 matrix formed by
stacking together the 100 vectorized matrices M̂k. This re-
laxation is based on the observation that L(U ⊗ U,Mε) =
L (U,Mε), where L is the objective function defined in
(8).

4.4. Real data experiment

To test the performance of our algorithm on real-world data
we have chosen a label prediction problem from crowd-
sourcing data. The problem and the dataset are described

Figure 4. Quality of the output and runtime of the Jacobi algo-
rithm of Haardt & Nossek (1998) (our implementation) and the
Gauss-Newton on the approximate joint triangularization prob-
lem described in Section 4.3. The algorithms were randomly ini-
tialized five times and each dot represents the corresponding final
objective value (y-axis) and the total runtime (x-axis). For an es-
sentially equivalent quality of the result, the Gauss-Newton algo-
rithm turns out to be much faster. The larger runtime of the Jacobi
algorithm seems not to be due to a larger number of iterations but
to the higher computational complexity per iteration.

by Zhang et al. (2014) where an estimator based on order-
three moments is also proposed. This technique allows
one to solve the label prediction problem by means of a
canonical nonorthogonal tensor decomposition, via the in-
ference of suitable confusion matrices. We have integrated
the above three algorithms in this estimator and have com-
puted the corresponding scores in predicting the label of the
‘birds’ and ‘dog’ datasets considered in Zhang et al. (2014).
We report the average score over 10 prediction trials, since
the spectral estimator seems to depend on the choice of the
random partition of ‘workers’ used for the inference. The
following table shows that the three algorithms on this task
are statistically equivalent.

GN cpd3-sgsd no-tenfact
birds dataset 0.70 ± 0.08 0.70 ± 0.08 0.66 ±0.10
dogs dataset 0.64 ± 0.28 0.64 ± 0.28 0.64 ±0.27

5. Conclusions
We presented a new algorithm for tensor decomposition
that performs joint matrix Schur decomposition on a set of
nearly-commuting observable matrices extracted from the
slices of the tensor, and we carried out a first-order per-
turbation analysis. Our algorithm is faster and at least as
accurate and robust than existing tensor decomposition al-
gorithms. Ongoing work involves extending our algorithm
and analysis to the case of nonnegative tensors.
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