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Abstract
An algorithm for stochastic (convex or noncon-
vex) optimization is presented. The algorithm is
variable-metric in the sense that, in each itera-
tion, the step is computed through the product of
a symmetric positive definite scaling matrix and a
stochastic (mini-batch) gradient of the objective
function, where the sequence of scaling matrices
is updated dynamically by the algorithm. A key
feature of the algorithm is that it does not overly
restrict the manner in which the scaling matri-
ces are updated. Rather, the algorithm exploits
fundamental self-correcting properties of BFGS-
type updating—properties that have been over-
looked in other attempts to devise quasi-Newton
methods for stochastic optimization. Numerical
experiments illustrate that the method and a lim-
ited memory variant of it are stable and outper-
form (mini-batch) stochastic gradient and other
quasi-Newton methods when employed to solve
a few machine learning problems.

1. Introduction
Practical gradient-based algorithms for minimizing a
smooth deterministic objective function can be character-
ized as falling between two extremes. At one extreme are
steepest descent methods, i.e., algorithms in which each
step is computed as a scalar times a negative gradient of
the objective function. Such methods represent the extreme
of incurring relatively cheap per-iteration costs while only
being able to guarantee a linear rate of convergence. At
the other extreme are Newton methods in which each step
is computed by minimizing a local second-order Taylor se-
ries model of the objective function. Such methods incur
the extra costs of having to compute second-order deriva-
tives and solve linear systems of equations of dimension
equal to the number of variables, but at the benefit of be-
ing able to guarantee a quadratic rate of convergence to a
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strong local minimizer. More detailed information can be
found, e.g., in (Nocedal & Wright, 2006).

These extremes are magnified when one considers algo-
rithms for solving smooth stochastic optimization prob-
lems, where one finds an even wider expanse between
stochastic gradient (SG) (Robbins & Monro, 1951) and
batch-Newton methods. For various reasons, such as its su-
perior asymptotic large-scale learning trade-off (Bottou &
Bousquet, 2008; Bottou, 2010), many algorithms for solv-
ing optimization problems for large-scale machine learn-
ing (ML) have historically been based on SG technology.
However, this baseline promises to change. After all, for
a variety of applications, no extreme offers the most com-
putationally efficient form of algorithm. Classical SG ap-
proaches are relatively easy to implement and often per-
form well in practice after sufficient tuning, but recent ad-
vances have illustrated various benefits of moving beyond
classical SG techniques. One such avenue has been the
investigation of noise reduction methods, such as those
in (Johnson & Zhang, 2013) and (Defazio et al., 2014),
to name a couple. Another has been the investigation of
second-order-type methods, the focus of this paper.

Such a shift away from simple gradient techniques oc-
curred in the literature for large-scale, smooth, determin-
istic optimization with the advent of variable-metric al-
gorithms in the 1960s, by far one of the most impor-
tant developments in that field over the past few decades.
This class of methods, which includes quasi-Newton meth-
ods such as those of the widely successful and celebrated
Broyden-Fletcher-Goldfarb-Shanno (BFGS) variety (Broy-
den, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970),
often offers a satisfactory compromise between extremes.
Such methods often perform well in practice, which many
attribute to their strong theoretical guarantees. In particu-
lar, a marvelous feature of BFGS updating when solving
smooth deterministic optimization problems is its ability
to ensure a superlinear rate of convergence with only first-
order derivative information and without the need for any
linear system solves (Dennis & Moré, 1974).

A variety of attempts have been made to carry BFGS-type
methods from the deterministic to the stochastic regime;
e.g., one finds online (limited memory) BFGS (oBFGS and
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oLBFGS) (Schraudolph et al., 2007), stochastic gradient
descent quasi-Newton (SGD-QN) (Bordes et al., 2009),
regularized stochastic BFGS (RES) (Mokhtari & Ribeiro,
2014), stochastic quasi-Newton (SQN) (Byrd et al., 2015),
and stochastic damped BFGS (SDBFGS) (Wang et al.,
2015). However, issues arise for these methods, especially
when one aims to solve nonconvex problems, say for the
training of deep neural networks (DNNs). The methods
oBFGS, oLBFGS, and SGD-QN avoid differencing noisy
gradient estimates by ensuring that the same random seed
is used for both terms in the gradient difference. This re-
quires two stochastic gradient estimates per iteration (rather
than only one, as in SG) and relies on the objective func-
tion to be convex in order to ensure that only positive def-
inite scaling matrices will be produced. The methods RES
and SDBFGS employ regularization to ensure that the Hes-
sian approximations are sufficiently positive definite (even
for nonconvex problems in the case of SDBFGS), but this
may lead to over-regularization that does not respect the
true curvature of the objective function. As for SQN, it
requires sub-sampled Hessian approximations, which re-
quires some exact second-order information that must be
handled carefully when the objective function is noncon-
vex. Each of these issues for each of these methods can
be overcome to some extent, but there remains room for
improvement in the design of effective quasi-Newton algo-
rithms for stochastic optimization problems.

1.1. Contributions

This paper presents a new stochastic quasi-Newton method.
The approach is based on a new strategy for devising such
methods for ML, as explained in the following bullets.

• Previously proposed stochastic quasi-Newton meth-
ods have focused on the choice of secant equation
to employ when only noisy gradient estimates are
available. However, too much emphasis has been
placed on this equation. After all, not all quasi-
Newton methods for deterministic optimization pos-
sess the same features, despite the fact that they are
all based on the classical secant equation. The most
successful quasi-Newton scheme for deterministic op-
timization has been BFGS. As is known in the op-
timization literature, an explanation for its superior
performance is that BFGS-type updating results in
critical self-correcting properties not possessed by all
quasi-Newton schemes; e.g., they are not possessed by
the classical Davidon-Fletcher-Powell (DFP) scheme
(Davidon, 1991; Fletcher & Powell, 1963; Byrd et al.,
1987). A signifying feature of the algorithm proposed
in this paper is that it has explicitly been designed to
maintain these properties in stochastic settings.

• The key effects of the attained self-correcting prop-
erties of the proposed method are two fold. First,

these properties ensure that the resulting Hessian and
inverse Hessian approximation matrices remain suffi-
ciently positive definite and bounded, which are key
for ensuring theoretical convergence guarantees. Sec-
ond, as demonstrated in the numerical results in this
paper, these properties have a stabilizing effect on the
method that allow it to perform well even when small
batch sizes are used to compute the gradient estimates.

• In order to handle nonconvex problems, the traditional
approaches in the quasi-Newton literature have been
skipping and damping (Powell, 1978), with practi-
cal experience typically resulting in a preference for
the latter. However, some damping approaches (such
as those in RES and SDBFGS) might ruin the self-
correcting properties of BFGS-type updating. The
method proposed in this paper involves a damping
procedure designed to maintain these properties.

• The method proposed in this paper is supported by
a motivating convergence theory based on relatively
loose assumptions about the objective function, which
in particular is allowed to be nonconvex. In turn, this
theory motivates a novel procedure that may be used
to refine the stochastic gradient computation when
one finds a lack of consistency between a subsequent
search direction and an independent stochastic gradi-
ent estimate. When employed, this procedure leads to
even more stability in the iteration, and suggests gen-
eral conditions for adaptive gradient noise reduction.

• A limited memory variant of the proposed method is
readily devised. The numerical experiments in this pa-
per illustrate that this approach quickly yields lower
training and testing losses while having a per-iteration
cost that can be made comparable to that of SG.

2. Fundamentals
The problem of interest is to minimize a continuously dif-
ferentiable objective f : Rd → R defined by the expec-
tation, in terms of the distribution of a random variable ξ
with domain Ξ, of a stochastic function F : Rd × Ξ→ R:

min
w∈Rd

f(w), where f(w) := E[F (w, ξ)]. (1)

Given an initial point w1 ∈ Rd, the proposed algorithm is
iterative in that, for all k ∈ N := {1, 2, . . . }, it computes a
sequence of iterates by the recursion

sk ← −αkMkgk (2)
then wk+1 ← wk + sk,

where αk ∈ R++ is a scalar stepsize, Mk ∈ Rd×d is a
symmetric positive definite scaling matrix, and gk ∈ Rd
is a stochastic gradient for f at wk. A fundamental aspect
of the algorithm is that the sequence {Mk} is also updated
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recursively; specifically, during iteration k ∈ N, the algo-
rithm chooses vk ∈ Rd such that sTk vk > 0, then sets

Mk+1 ←
(
I− vks

T
k

sTk vk

)T
Mk

(
I− vks

T
k

sTk vk

)
+
sks

T
k

sTk vk
. (3)

As is well known (Nocedal & Wright, 2006), applying the
Sherman-Morrison-Woodbury formula to (3) yields the fol-
lowing formula for {Hk} where Hk = M−1k for all k ∈ N:

Hk+1←
(
I− sks

T
kHk

sTkHksk

)T
Hk

(
I− sks

T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk
. (4)

As is typical for a quasi-Newton method, {Hk} and {Mk}
are refered to as sequences of Hessian and inverse Hessian
approximations, respectively. If one were to choose

vk ← yk := gk+1 − gk (5)

(assuming sTk yk > 0), then one obtains a standard BFGS
update, but instead the proposed algorithm chooses

vk ← βksk + (1− βk)αkyk, (6)

where βk is the smallest value in the interval [0, 1] such that
crucial bounds (introduced in §3) are satisfied.

The formula (6) is unique among stochastic quasi-Newton
methods and is central in allowing the method to main-
tain the self-correcting properties of BFGS-type updating
(see §3). For one thing, it differs from traditional damping
formulas (e.g., see (Powell, 1978)) as it involves the step sk
as opposed to the product Hksk. In addition, it differs in
the presence of the weight αk applied to the stochastic gra-
dient displacement. This choice has been made due to the
fact that, if allowed, the choice vk ← αkyk normalizes the
appearance of αk in the definition of sk, namely (2). (Em-
pirical evidence has demonstrated that this has a stabilizing
effect.) Most importantly, however, is the choice of βk,
which, as shown in the next section, is what leads to the
attainment of self-correcting properties of the method.

3. Self-Correcting Properties of BFGS
It is well known that the update (3) corresponds to a combi-
nation of a projection and a correction of the corresponding
Hessian approximation. However, as these updates build
upon one another from one iteration to the next, it is im-
portant to characterize properties of the resulting matrices
and their effects on the computed steps after a sequence
of updates have been performed. The purpose of this sec-
tion is to show that as long as vk is chosen to satisfy two
critical inequalities (see (9)), then despite the successive
projections that completely replace curvature information
along span(sk) with each update, the corrections will be
sufficient to ensure that the sequence of inverse Hessian ap-
proximations satisfy inequalities (see (11)) that are useful
for ensuring global convergence guarantees.

Early work on convergence properties of quasi-Newton
methods by Powell (1976) and others (Ritter, 1979; 1981;
Werner, 1978) involved analyses that bound the growth
of the traces and the determinants of {Hk}. The subse-
quent discussion follows (Byrd & Nocedal, 1989), which
involves a simplified approach in which one bounds the
growth of a combination of these quantities.

Given H � 0, consider γ : Rd×d → R defined by

γ(H) = trace(H)− ln(det(H)).

It can be shown that γ(H) is positive (in fact, at least d)
and represents a measure of closeness between H and the
identity matrix I (for which γ(I) = d); in particular, γ(H)
is an upper bound for the natural logarithm of the condition
number of H . In addition, (4) implies that, for all k ∈ N,

trace(Hk+1) = trace(Hk)− ‖Hksk‖22
sTkHksk

+
‖vk‖22
sTk vk

and det(Hk+1) = det(Hk)

(
sTk vk

sTkHksk

)
, (7)

(Pearson, 1969) with which one can relate γ(Hk+1) and
γ(Hk). Specifically, assuming that Hk � 0 and the iterate
displacement is nonzero, i.e., sk 6= 0, then by defining

cos δk :=
sTkHksk

‖sk‖2‖Hksk‖2
and εk :=

sTkHksk
‖sk‖22

,

it follows from (7) that

γ(Hk+1) = γ(Hk) +
‖vk‖22
sTk vk

− 1− ln

(
sTk vk
‖sk‖22

)
+ ln(cos2 δk)︸ ︷︷ ︸

≤0

+

(
1− εk

cos2 δk
+ ln

(
εk

cos2 δk

))
︸ ︷︷ ︸

≤0

. (8)

Nonpositivity of the latter two terms follows since sk 6= 0
and Hk � 0 imply that cos2 δk ∈ (0, 1] and εk > 0 for
all k ∈ N, since ln(ζ) ≤ 0 for all ζ ∈ (0, 1], and since
1− ζ + ln(ζ) ≤ 0 for all ζ > 0.

By bounding the growth of γ over {Hk} and determining
that there must exist certain iterations in which the latter
terms in (8) are not too negative, one can prove the follow-
ing theorem showing self-correcting properties of (4); e.g.,
see Thm. 2.1 in (Byrd & Nocedal, 1989).

Theorem 1. Let the sequence of Hessian approximations
{Hk} be defined by (4), and suppose that, for all k ∈ N,
there exist η ∈ (0, 1) and θ ∈ (1,∞) such that

η ≤ sTk vk
‖sk‖22

and
‖vk‖22
sTk vk

≤ θ. (9)

Then, for any p ∈ (0, 1), there exist constants {ι, κ, λ} ⊂



A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization

R++ such that, for any K ∈ {2, 3, . . . }, the following re-
lations hold for at least dpKe values of k ∈ {1, . . . ,K}:

ι ≤ sTkHksk
‖sk‖2‖Hksk‖2

and κ ≤ ‖Hksk‖2
‖sk‖2

≤ λ. (10)

This theorem leads to the following corollary that provides
useful bounds about the inverse Hessian approximations.

Corollary 2. Let the sequence of inverse Hessian approxi-
mations {Mk} be defined by (3) and suppose that the con-
ditions of Theorem 1 hold. Then, for any p ∈ (0, 1),
there exist constants {µ, ν} ⊂ R++ such that, for any
K ∈ {2, 3, . . . }, the following relations hold for at least
dpKe values of k ∈ {1, . . . ,K}:

µ‖gk‖22 ≤ gTkMkgk and ‖Mkgk‖22 ≤ ν‖gk‖22. (11)

Theorem 1 and Corollary 2 show that as long as (9) holds
for all k ∈ N, then, for any p ∈ (0, 1), the BFGS updates
(3)–(4) ensure that for a fraction p of iterates the bounds
(10)–(11) will hold for sufficiently small/large constants.
Since p can be chosen as close to 1 as desired, the results
show that for any number of iterations, these bounds hold
for all iterations for sufficiently small/large constants. It
is these bounds that are referred to as the self-correcting
properties of the updating scheme. With stochastic gradient
estimates, the choice (5) for vk does not always ensure (9).
However, these bounds are guaranteed to hold with (6) for
sufficiently large βk ∈ [0, 1]; e.g., they hold with βk = 1.

4. Proposed Algorithm
A preliminary instance of the proposed algorithm is stated
as Algorithm SC-BFGS. For simplicity, the algorithm is
written with full (dense) inverse Hessian approximations.
This is reasonable when d is not prohibitively large. Note,
however, that a limited memory variant of the approach can
readily be devised. This and other potential practical en-
hancements are the subject of §4.2.

4.1. Global Convergence

Global convergence and rate guarantees for Algorithm SC-
BFGS can be proved under the following assumption. For
the assumption, one should have in mind that, given wk,
one generates gk ≈ ∇f(wk) according to an indepen-
dently generated random seed ξk taking values in a set Ξ
that does not depend on {wj}k−1j=1 . In what follows, Eξk [·]
denotes expectation taken with respect to the distribution
of ξk while E[·] denotes total expectation taken with re-
spect to all random quantities in a run of the algorithm.
It is worthwhile to note that the assumption should not be
taken lightly since each stochastic gradient influences the
value of the corresponding inverse Hessian approximation,
meaning that the quantities in each product of the sequence

Algorithm SC-BFGS : Self-Correcting BFGS
1: Choose w1 ∈ Rd.
2: Set g1 ≈ ∇f(w1).
3: Choose a symmetric positive definite M1 ∈ Rd×d.
4: Choose a positive scalar sequence {αk}.
5: for k = 1, 2, . . . do
6: Set sk ← −αkMkgk.
7: Set wk+1 ← wk + sk.
8: Set gk+1 ≈ ∇f(wk+1).
9: Set yk ← gk+1 − gk.

10: With vk(β) := βsk + (1− β)αkyk, set

βk ← min{β ∈ [0, 1] : vk(β) satisfies (9)}.

11: Set Mk+1 by the formula (3) with vk := vk(βk).
12: end for

{Mkgk} are not independent. This complication is ad-
dressed further in §4.2. (For the moment, it is worthwhile
to observe the similarity between (11) and (13)–(14).)

Assumption 3. The objective function f : Rd → R is con-
tinuously differentiable and the sequence of iterates {wk}
generated by Algorithm SC-BFGS is contained in an open
setW ⊆ Rd over which f is bounded below by fmin ∈ R
and ∇f : Rd → Rd is Lipschitz continuous with Lipschitz
constant L > 0, i.e., for all {w,w} ⊂ W ,

‖∇f(w)−∇f(w)‖2 ≤ L‖w − w‖2. (12)

In addition, there exists a scalar ρ ∈ R++ such that

ρ‖∇f(wk)‖22 ≤ ∇f(wk)TEξk [Mkgk] (13)

and there exist scalars σ ∈ R++ and τ ∈ R++ such that

Eξk [‖Mkgk‖22] ≤ σ + τ‖∇f(wk)‖22 (14)

for each iteration index k ∈ N.

The following lemma highlights a critical upper bound—
due to the Lipschitz bound (12)—on the expected decrease
in the objective function attained in each iteration, as well
as the key roles played by the bounds (13) and (14).

Lemma 4. Under Assumption 3, the sequence of iterates
{wk} generated by Algorithm SC-BFGS satisfies the fol-
lowing upper bounds for all k ∈ N:

Eξk [f(wk+1)]− f(wk)

≤ − αk∇f(wk)TEξk [Mkgk] + 1
2α

2
kLEξk [‖Mkgk‖22]

≤ − αk(ρ− 1
2αkLτ)‖∇f(wk)‖22 + 1

2α
2
kLσ.

Using this critical lemma, global convergence and rate
guarantees for Algorithm SC-BFGS can be stated as The-
orems 5 and 6 below. Similar results are known to hold
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for SG methods; e.g., the proof of the first theorem mimics
the results leading to eq. (5.16) in (Bottou, 1998). See also
(Bottou et al., 2016). The results relate to convergence in
expectation; similar almost sure convergence results could
also be proved using standard martingale techniques.

Theorem 5. Under Assumption 3, suppose that the se-
quence of iterates {wk} is generated by Algorithm SC-
BFGS with a stepsize sequence satisfying

∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞. (15)

Then, {wk} converges to a stationary point for (1) in the
sense that the sequence of expected objective function val-
ues {E[f(wk)]} converges to a finite limit and

∞∑
k=1

αkE[‖∇f(wk)‖22] <∞, (16)

which, in particular, implies that

lim inf
k→∞

E[‖∇f(wk)‖2] = 0. (17)

The next result addresses the minimization of a strongly
convex objective, which is guaranteed to have a unique
minimizer, call it w∗ ∈ Rd. Two example stepsize se-
quences are considered, though results similar to the latter
can also be proved for related types of O( 1

k ) sequences.
Similar results have been proved for SG and other stochas-
tic quasi-Newton methods; e.g., see (Byrd et al., 2015).

Theorem 6. Suppose that Assumption 3 holds, the objec-
tive f is c-strongly convex, and the sequence of iterates
{wk} is generated by Algorithm SC-BFGS.

(a) If αk = α for some α ∈ (0,min{ ρ
Lτ ,

1
cρ}) for all

k ∈ N, then the expected optimality gap satisfies the
following for all k ∈ N:

E[f(wk)− f(w∗)]

≤ αLσ

2cρ
+ (1− αcρ)k

(
f(w1)− f(w∗)−

αLσ

2cρ

)
→ αLσ

2cρ
(as k →∞).

(b) If αk = α
k for some α ∈ ( 1

cρ ,∞) for all k ∈ N, then
the expected optimality gap satisfies the following for
all k ∈ N with k ≥ k(α) := αLτ/ρ:

E[f(wk)− f(w∗)] ≤
C(α)

k
, (18)

where the scalar C(α) ∈ R++ is defined as

max

{
α2Lσ

2(αcρ− 1)
, k(α)(f(wk(α))− f(w∗))

}
.

4.2. Practical Considerations

An important practical consideration related to the global
convergence theory provided in the previous subsection is
the fact that, without exact gradient evaluations, the in-
equalities (13) and (14) cannot be verified. In addition, one
cannot sidestep the issue merely by ensuring that Eξk [gk] =
∇f(wk) for all k ∈ N since each gk influences the choice
of Mk, meaning that these quantities are not independent.
On the other hand, it is comforting to note that Corollary 2
implies that if gk = ∇f(wk) for all k ∈ N, then for any
finite iterate sequence there exist constants {µ, ν} ⊂ R++

such that (13) and (14) hold with ρ = µ, σ = 0, and τ = ν.
Hence, while its conditions are not easily verified, Theo-
rem 5 provides a foundation upon which one can expect
good performance from Algorithm SC-BFGS.

Still, one might also consider variants of Algorithm SC-
BFGS that attempt to approximately verify the key inequal-
ities (13) and (14) when stochastic (mini-batch) gradients
are employed. One such algorithmic variant is obtained by
replacing Steps 8–11 in Algorithm SC-BFGS with the sub-
routine stated as Algorithm SC-BFGS-sub below. Within a
user-defined computational budget, the subroutine repeat-
edly generates stochastic gradient estimates until (13) and
(14) are satisfied with an auxiliary stochastic gradient esti-
mate acting as a surrogate for the true gradient.

Algorithm SC-BFGS-sub : Subroutine for Algorithm SC-
BFGS (replacing Steps 8–11)

1: Choose k̂max ∈ N and {ρ, σ, τ} ⊂ R++.
2: Set k̂ ← 1.
3: loop
4: Compute independent stochastic (mini-batch) gradi-

ents gk+1 ≈ ∇f(wk+1) and ĝk+1 ≈ ∇f(wk+1).
5: Set yk ← gk+1 − gk.
6: With vk(β) := βsk + (1− β)αkyk, set

βk ← min{β ∈ [0, 1] : vk(β) satisfies (9)}.

7: Set Mk+1 by the formula (3) with vk := vk(βk).
8: break if

ρ‖ĝk+1‖22 ≤ ĝTk+1Mk+1gk+1

and ‖Mk+1gk+1‖22 ≤ σ + τ‖ĝk+1‖22.

9: Set k̂ ← k̂ + 1.
10: break if k̂ > k̂max.
11: end loop
12: (Optional) if k̂ > k̂max then set Mk+1 ←Mk.

Algorithm SC-BFGS-sub requires at least two gradient
estimates per iteration (similar to oBFGS, oLBFGS, and
SGD-QN), and potentially many more. Thus, to be com-
petitive, the budget should be restricted (via k̂max) and one



A Self-Correcting Variable-Metric Algorithm for Stochastic Optimization

should consider the optional strategy of resetting (effec-
tively skipping, as in Step 11) the update if this budget
is exceeded without finding estimates satisfying the con-
ditions in Step 7 of the subroutine. However, it should be
noted that instead of computing new stochastic gradient es-
timates in each iteration of Algorithm SC-BFGS-sub, one
could instead take the average of estimates that may have
already been computed at wk+1 (as was done for the ex-
periments in §5). In this manner, the subroutine suggests
general conditions to be used in a dynamic noise reduction
strategy in the context of stochastic quasi-Newton methods.

A second important practical consideration is the fact that
Algorithm SC-BFGS, as it is stated, employs full (dense)
inverse Hessian approximations, which may be prohibitive
if d is large. For such contexts, a limited memory variant
of Algorithm SC-BFGS (with or without Algorithm SC-
BFGS-sub) is readily devised. In such a method, call it SC-
L-BFGS, rather than update {Mk} explicitly, one stores
{sj}kj=k−m+1 and {vj}kj=k−m+1 for some history length
m ∈ N, and can construct products with limited-memory
inverse Hessian approximations through a two-loop recur-
sion with a cost of O(d) (Nocedal, 1980). In this man-
ner, the per-iteration costs of SC-L-BFGS (with or without
Algorithm SC-BFGS-sub) can be made comparable to SG
and any of the stochastic limited memory quasi-Newton ap-
proaches cited in §1. For example, following the analysis
in (Byrd et al., 2015), the relative cost between an L-BFGS
and an SG iteration can be as small as 1 + 2m/b where b is
the batch size. With typical values for m, this value is very
close to 1 even for a modest batch size.

5. Numerical Experiments
Algorithms SC-BFGS and SC-L-BFGS were implemented
in Matlab, each with and without the subroutine stated in
Algorithm SC-BFGS-sub. For brevity, the implementa-
tions of Algorithm SC-BFGS are respectively referred to
as SC and SC-s (with s meaning stable) while the imple-
mentations of SC-L-BFGS are respectively referred to as
SC-L and SC-L-s. For comparison, implementations of
SG, oBFGS, and oLBFGS were also written in Matlab.

In this section, the results of experiments with a few ML
test problems are described, each with the objective

f(w) =
1

n

n∑
i=1

`(w;xi, yi), (19)

where {(xi, yi)}ni=1 represents training data and ` is a (not
necessarily convex) loss function. For each test problem,
algorithms were run with various input parameters and the
results provided are for the inputs that yielded the lowest fi-
nal testing loss, i.e., (19) evaluated with data from a testing
set, as opposed to the training set used in the optimiza-
tion. The algorithms were terminated after max{n, 6400}

accesses of a pair (xi, yi) from the training set. For all
algorithms, diminishing stepsize sequences of the form

αk = ω0/(ω1 + k) for all k ∈ N (20)

were tested for all combinations of ω0 ∈ {20, 22, 24} and
ω1 ∈ {20, 22, 24}, and sequences of fixed stepsizes, i.e.,

αk = ω2 for all k ∈ N, (21)

were tested for ω2 ∈ {2−4, 2−2, 20, 22, 24}. For all SC*
algorithms, all combinations of η ∈ {2−2, 2−4, 2−6} and
θ ∈ {20, 22} were tested. For SC*-s, all combinations
of ρ ∈ {2−2, 2−1} · η and τ ∈ {21, 22} · θ were tested,
though the choices k̂max = 2 and σ = 0 were fixed.
For oBFGS and oLBFGS, following (Schraudolph et al.,
2007), the stochastic gradient displacement vectors were
computed for the sample Sk in iteration k ∈ N as

1

|Sk|
∑
i∈Sk

(∇`(wk+1;xi, yi)−∇`(wk;xi, yi)) + ω3sk.

The values ω3 ∈ {2−6, 2−4, 2−2, 20} were tested. For all
limited memory methods, m = 5 was used. All stochastic
gradient estimates were computed by randomly selecting
64 samples uniformly from the training set.

All experiments were run using Matlab R2014b on a Mac-
book Air with a 1.7 GHz Intel Core i7 processor and 8GB
of RAM. For each problem, all algorithms were run from
the same randomly chosen starting point. Code for running
SC, SC-s, SC-L, and SC-L-s is publicly available.1

5.1. Logistic Loss, Full (Dense) Matrices

As a first test, consider the training/testing data for a1a
from the LIBSVM website2 with (19) using a logistic loss
function. This convex problem has d = 123 and n = 1605.
Given this problem’s relatively small dimension d, the per-
formances of SG, SC, SC-s, and oBFGS are considered.

Considering stepsizes defined by (20), the lowest test-
ing losses were found with inputs (ω0, ω1) = (16, 1)
for SG, (ω0, ω1, η, θ, ρ, τ) = (16, 16, 14 , 4,

1
8 , 8) for SC,

(ω0, ω1, η, θ, ρ, τ) = (16, 1, 14 , 4,
1
8 , 16) for SC-s, and

(ω0, ω1, ω3) = (16, 16, 1
16 ) for oBFGS. Table 1 and Fig-

ure 1 illustrate the training and testing losses achieved.
Since SC-s and oBFGS compute at least two gradient es-
timates per iteration, they performed fewer iterations. SC
and SC-s achieved lower training and testing losses within
the computational budget. (In Figure 1, dashed lines indi-
cate the losses by SC-s and oBFGS at termination.)

Considering now the same methods with stepsizes defined
by (21), the lowest testing losses were found with in-
puts ω2 = 1 for SG, (ω2, η, θ, ρ, τ) = (4, 1

64 , 4,
1

128 , 8)

1http://coral.ise.lehigh.edu/frankecurtis/software/
2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

http://coral.ise.lehigh.edu/frankecurtis/software/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1. Training loss, testing loss, and CPU time (in seconds) for
a1a for SG, SC, SC-s, and oBFGS with diminishing stepsizes.

METHOD TRAINING TESTING CPU TIME (S)
SG 0.4305 0.4398 0.3405
SC 0.3588 0.3832 0.5389
SC-S 0.3614 0.3879 0.3705
OBFGS 0.3853 0.4096 0.4191

Figure 1. Training and testing losses over k for a1a for SG, SC,
SC-s, and oBFGS with diminishing stepsizes.

for SC, (ω2, η, θ, ρ, τ) = (1, 1
16 , 4,

1
64 , 16) for SC-s, and

(ω2, ω3) = (1, 14 ) for oBFGS. Table 2 and Figure 2 il-
lustrate the losses achieved. One again finds that SC and
SC-s terminated with low losses. The methods demon-
strate somewhat unstable behavior early on due to the fixed
stepsize, but ultimately still yield better results.

Table 2. Training loss, testing loss, and CPU time (in seconds) for
a1a for SG, SC, SC-s, and oBFGS with a fixed stepsize.

METHOD TRAINING TESTING CPU TIME (S)
SG 0.3744 0.3923 0.3355
SC 0.3383 0.3752 0.6424
SC-S 0.3650 0.3902 0.3132
OBFGS 0.3883 0.4028 0.3560

5.2. Logistic Loss, Limited-Memory Matrices

As a second test, consider again (19) with a logistic loss,
but now with the rcv1(.binary) data from LIBSVM.
This convex problem has d = 47236 and n = 20242.
Given the larger dimension d, it is of interest to consider
the performances of SG, SC-L, SC-L-s, and oLBFGS.

Considering stepsizes defined by (20), the lowest test-
ing losses were found with inputs (ω0, ω1) = (16, 1)
for SG, (ω0, ω1, η, θ, ρ, τ) = (16, 1, 1

64 , 4,
1

128 , 8) for SC,
(ω0, ω1, η, θ, ρ, τ) = (16, 1, 1

64 , 4,
1

128 , 16) for SC-s, and

Figure 2. Training and testing losses over k for a1a for SG, SC,
SC-s, and oBFGS with a fixed stepsize.

(ω0, ω1, ω3) = (16, 1, 1
64 ) for oBFGS. Table 3 and Fig-

ure 3 illustrate losses achieved. Again, better performance
is demonstrated by SC-L and SC-L-s.

Table 3. Training loss, testing loss, and CPU time for rcv1 for
SG, SC-L, SC-L-s, and oLBFGS with diminishing stepsizes.

METHOD TRAINING TESTING CPU TIME (S)
SG 0.7616 0.7642 25.7893
SC 0.2271 0.2403 34.4539
SC-S 0.3004 0.3068 22.5097
OBFGS 0.3108 0.3194 21.7649

Considering stepsizes defined by (21), the lowest test-
ing losses were achieved with inputs ω2 = 16 for SG,
(ω2, η, θ, ρ, τ) = (16, 14 , 4,

1
8 , 8) for SC, (ω2, η, θ, ρ, τ) =

(16, 1
16 , 4,

1
32 , 16) for SC-s, and (ω2, ω3) = (4, 1

64 ) for
oBFGS. Table 4 and Figure 4 illustrate the training and
testing losses achieved. Better performance is achieved by
SC-L and SC-L-s. In particular, even with a fixed step-
size, SC-L performs stably enough that it performs best.

Table 4. Training loss, testing loss, and CPU time for rcv1 for
SG, SC-L, SC-L-s, and oLBFGS with a fixed stepsize.

METHOD TRAINING TESTING CPU TIME (S)
SG 0.2005 0.2227 25.2829
SC 0.0902 0.1339 34.3699
SC-S 0.1077 0.1478 23.8892
OBFGS 0.1374 0.1636 23.2760

5.3. Neural Network, Limited-Memory Matrices

As a final test, consider a neural network with an `2-norm
loss and regularization term 1

n‖w‖
2
2 with data given by the

first 20000 elements from the 10-class mnist dataset. The
network is defined by x(j) = s(Wjx

(j−1) + bj) for j ∈
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Figure 3. Training and testing losses over k for rcv1 for SG,
SC-L, SC-L-s, and oLBFGS with diminishing stepsizes.

Figure 4. Training and testing losses over k for rcv1 for SG,
SC-L, SC-L-s, and oLBFGS with a fixed stepsize.

{1, 2, 3} with activation function s defined as a componen-
twise sigmoid and trainable parameters (composing the de-
cision vector w) contained in (W1,W2,W3) ∈ R30×780 ×
R100×30 × R10×100 and (b1, b2, b3) ∈ R30 × R100 × R10.
This nonconvex problem has d = 27540 and n = 20000.
The performances of SG, SC-L, SC-L-s, and oLBFGS
are of interest. While oLBFGS was not designed to solve
nonconvex problems, it is applicable as long as sTk vk > 0
for all k ∈ N; hence, oLBFGS was run in this experiment,
but was terminated if/when sTk vk ≤ 0 for some k ∈ N.

Considering stepsizes defined by (20), the lowest test-
ing losses were found with inputs (ω0, ω1) = (1, 16)
for SG, (ω0, ω1, η, θ, ρ, τ) = (1, 16, 1

16 , 4,
1
32 , 8) for SC,

(ω0, ω1, η, θ, ρ, τ) = (1, 16, 1
16 , 4,

1
32 , 16) for SC-s, and

(ω0, ω1, ω3) = (16, 16, 1
64 ) for oBFGS. Table 5 and Fig-

ure 5 illustrate the training and testing losses achieved. As
for the convex problems, SC-L and SC-L-s outperform

the other methods in terms of achieving low losses. The
differing initial behavior of oLBFGS can be explained by
the fact that it terminated early (due to sTk vk ≤ 0) for the
stepsize parameters that were best for the other methods;
it was only able to produce low losses with much larger
stepsizes that happened to slow overall performance.

Table 5. Training loss, testing loss, and CPU time for mnist for
SG, SC-L, SC-L-s, and oLBFGS with diminishing stepsizes.

METHOD TRAINING TESTING CPU TIME (S)
SG 1.6673 1.6682 164.5094
SC 1.3796 1.3862 179.4491
SC-S 1.4032 1.4072 150.7164
OBFGS 1.6550 1.6484 132.9992

Figure 5. Training and testing losses over k for mnist for SG,
SC-L, SC-L-s, and oLBFGS with diminishing stepsizes.

6. Conclusion
A quasi-Newton algorithm for stochastic optimization has
been presented. The algorithm capitalizes on fundamental
self-correcting properties of BFGS-type updating which,
before this work, have not been exploited in the design of
such an approach. The method is supported by a motivat-
ing convergence theory, which has also led to a proposed
dynamic noise reduction strategy that demonstrates some
practical benefits. The method with full (dense) Hessian
approximations performs well for small dimensional prob-
lems, whereas, on larger-scale problems, a limited mem-
ory variant outperforms SG and another stochastic quasi-
Newton method (namely, oLBFGS) while having compara-
ble per-iteration costs. Numerical experiments on machine
learning test problems—two convex and one nonconvex—
have demonstrated that the proposed variants of the method
are effective in terms of achieving low training and testing
losses, even within a first epoch.
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