
Preconditioning Kernel Matrices

A. Other results not included in the paper
In fig. 3 we report some of the runs that we did not include
in the main text for lack of space. The figure reports plots
on the error vs. time for the same regression cases con-
sidered in the main text but with an isotropic kernel, and
results on the concrete dataset with isotropic and ARD ker-
nels.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
18

0.
20

0.
22

0.
24

0.
26

Credit − ARD kernel

log10(seconds)

Er
ro

r R
at

e

−2 −1 0 1 2

16
18

20
22

Credit − ARD kernel

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

−1.0 0.0 0.5 1.0 1.5 2.0 2.5

0.
3

0.
4

0.
5

0.
6

Concrete − ARD kernel

log10(seconds)

R
M
SE

−2 −1 0 1 2

10
15

20
25

30

Concrete − ARD kernel

log10(seconds)

N
eg

at
ive

 T
es

t L
og
−L

ik

PCG CG CHOL FITC PITC VAR

Figure 3. RMSE and negative log of the likelihood on
p
n held

out test data over time. GP models employ the ARD kernel in
eq. 1. GP classification: Credi dataset (n = 1000, d = 24). GP
regression: Concrete dataset (n = 1029, d = 8). Curves are
averaged over multiple repetitions.

B. Gaussian Processes with non-Gaussian
likelihood functions

In this section we report the derivations of the quanti-
ties needed to compute an unbiased estimate of the log-
marginal likelihood given by the Laplace approximation
for GP models with non-Gaussian likelihood functions.
Throughout this section, we assume a factorizing likeli-
hood

p(y|f) =
nY

i=1

p(yi|fi).

and we specialize the equations to the probit likelihood

p(yi | fi) = �(yifi). (3)

where � denotes the cumulative function of the Gaussian
density. The latent variables f are given a zero mean GP
prior f ⇠ N (f |0,K).

For a given value of the hyperparameters ✓, define

 (f) = log[p(y | f)] + log[p(f | ✓)] + const. (4)

as the logarithm of the posterior density over f . Performing
a Laplace approximation amounts in defining a Gaussian
q(f | y,✓) = N (f | ˆf , ˆ⌃), such that

ˆ

f = argmax

f
 (f) and

ˆ

⌃

�1

= �rfrf (
ˆ

f).

(5)
As it is not possible to directly solve the maximization
problem in equation 5, an iterative procedure based on the
following Newton-Raphson formula is usually employed,

f

new

= f � (rfrf (f))
�1rf (f), (6)

starting from some initial f until convergence. The gradient
and the Hessian of the log of the target density are

rf (f) = rf log[p(y | f)] � K�1

f and (7)

rfrf (f) = rfrf log[p(y | f)] � K�1

= �W � K�1,
(8)

where we have defined W = �rfrf log[p(y | f)], which
is diagonal because the likelihood factorizes over observa-
tions. Note that if log[p(y | f)] is concave, such as in probit
classification, (f) has a unique maximum.

Standard manipulations lead to

f

new

= (K�1

+W)

�1

(W f + rf log[p(y | f)]).

We can rewrite the inverse of the negative Hessian using
the matrix inversion lemma:

�
K�1

+W
��1

= K � KW
1
2B�1W

1
2K,

where
B = I +W

1
2KW

1
2 .

This means that each iteration becomes:

f

new

= (K �KW
1
2B�1W

1
2K)(W f +rf log[p(y | f)]).

We can define b = (W f + rf log[p(y | f)]) and rewrite
this expression as:

f

new

= K(b � W
1
2B�1W

1
2Kb).

From this, we see that at convergence

a = K�1

ˆ

f = (b � W
1
2B�1W

1
2Kb).

As we will see later, the definition of a is useful for the
calculation of the gradient and for predictions.

Proceeding with the calculations from right to left we see
that in order to complete a Newton-Raphson iteration the
expensive operations are: (i) carry out one matrix-vector
multiplication Kb, (ii) solve a linear system involving the

Preconditioning Kernel Matrices

Algorithm 2 Laplace approximation for GPs
1: Input: data X , labels y, likelihood function p(y | f)
2: f = 0

3: repeat
4: Compute diag(W), b, W 1

2Kb

5: solve(B,W
1
2Kb)

6: Compute a, Ka

7: Compute f

new

8: until convergence
9: return ˆ

f , a

B matrix, and (iii) carry out one matrix-vector multiplica-
tion involving K and the vector in the parenthesis. Calcu-
lating b and performing any multiplications of W

1
2 with

vectors cost O(n).

All these operations can be carried out without the need to
store K or any other n ⇥ n matrices. The linear system
in (ii) can be solved using the CG algorithm that involves
repeatedly multiplying B (and therefore K) with vectors.

B.1. Stochastic gradients

The Laplace approximation yields an approximate log-
marginal likelihood in the following form:

log[p̂(y | ✓, X)] = �1

2

log |B|�1

2

ˆ

f

>K�1

ˆ

f+log[p(y | ˆf)]
(9)

Handy relationships that we will be using in the remainder
of this section are:

log |B| = log |I +W
1
2KW

1
2 | = log |I +KW |;

(I +KW)

�1

= W� 1
2B�1W

1
2 .

The gradient of the log-marginal likelihood with respect to
the kernel parameters ✓ requires differentiating the terms
that explicitly depend on ✓ and those that implicitly depend
on it because a change in the parameters reflects in a change
in ˆ

f . Denoting by gi the ith component of the gradient of
@ log[p̂(y|✓)]

@✓i
, we obtain

gi = �1

2

Tr

✓
B�1

@B

@✓i

◆

+

1

2

ˆ

f

>K�1

@K

@✓i
K�1

ˆ

f

+

⇥r
ˆf log[p̂(y|✓)]⇤> @ˆf

@✓i
(10)

The trace term cannot be computed exactly for large n so
we propose a stochastic estimate:

�1

2

g
Tr

✓
B�1

@B

@✓i

◆�
= � 1

2Nr

NrX

i=1

(r

(i)
)

>B�1

@B

@✓i
r

(i).

Algorithm 3 Stochastic gradients for GPs

1: Input: data X , labels y, ˆf , a
2: solve(B, r(i)) for i = 1, . . . , Nr

3: Compute first term of g̃i
4: Compute second term of g̃i
5: solve(B,W

1
2Kr

(i)
) for i = 1, . . . , Nr

6: Compute ˜

u

7: solve(B,W
1
2
@K
@✓i

r
ˆf log[p(y | ˆf)])

8: Compute third term of g̃i
9: return ˜

g

By noticing that the derivative of B is W
1
2
@K
@✓i

W
1
2 , this

simplifies to

� 1

2Nr

NrX

i=1

(r

(i)
)

>B�1W
1
2
@K

@✓i
W

1
2
r

(i),

so we need to solve Nr linear systems involving B.

The second term contains the linear system K�1

ˆ

f that we
already have from the Laplace approximation and is a.

The third term is slightly more involved and will be dealt
with in the next sub-section.

B.1.1. IMPLICIT DERIVATIVES

The last (implicit) term in the last equation can be simpli-
fied by noticing that:

log[p̂(y | ✓)] = (ˆf) � 1

2

log |B|

and that the derivative of the first term wrt ˆf is zero because
ˆ

f maximizes (ˆf). Therefore:

⇥r
ˆf log[p̂(y | ✓)]⇤> @ˆf

@✓i
= �1

2

⇥r
ˆf log |B|⇤> @ˆf

@✓i

The components of
⇥r

ˆf log |B|⇤ can be obtained by con-
sidering the identity log |B| = log |I +KW |, so differen-
tiating log |B| wrt the components of ˆf becomes:

@ log |I +KW |
@(ˆf)j

= Tr

(I +KW)

�1K
@W

@(ˆf)j

!

We can rewrite this by gathering K inside the inverse and,
due to the inversion of the matrix product, K cancels out:

@ log |I +KW |
@(ˆf)j

= Tr

(K�1

+W)

�1

@W

@(ˆf)j

!

We notice here that the resulting trace contains the inverse
of the same matrix needed in the iterations of the Laplace
approximation and that the matrix @W

@(ˆf)j
is zero everywhere

Preconditioning Kernel Matrices

except in the jth diagonal element where it attains the
value:

@W

@(ˆf)j
=

@3

log[p(y | ˆf)]
@(ˆf)3j

For this reason, it would be possible to simplify the trace
term as the product between the jth diagonal element of
(K�1

+W)

�1 and @3
log[p(y|ˆf)]
@(ˆf)3j

. Bearing in mind that we

need n of these quantities, we could define

D = diag

⇥
diag

⇥
(K�1

+W)

�1

⇤⇤

(d)j =
@3

log[p(y | ˆf)]
@(ˆf)3j

and rewrite

�1

2

⇥r
ˆf log |B|⇤ = �1

2

Dd

which is the standard way to proceed when computing the
gradient of the approximate log-marginal likelihood using
the Laplace approximation (Rasmussen & Williams, 2006).
However, this would be difficult to compute exactly for
large n, as this would require inverting K�1

+ W first
and then compute its diagonal. Using the matrix inversion
lemma would not simplify things as there would still be an
inverse of B to compute explicitly. We therefore aim for a
stochastic estimate of this term starting from:

@ log |I +KW |
@(ˆf)j

= Tr

(K�1

+W)

�1

@W

@(ˆf)j

!

= Tr

(K�1

+W)

�1

@W

@(ˆf)j
E[rr

>
]

!

(11)

where we have introduced the r vectors with the property
E[rr

>
] = I . So an unbiased estimate of the trace for each

component of ˆf is:

(

˜

u)j =

g"
@ log |I +KW |

@(ˆf)j

#

=

1

Nr

NrX

i=1

(r

(i)
)

>
(K�1

+W)

�1

@W

@(ˆf)j
r

(i)

(12)

which requires solving Nr linear systems involving the B
matrix:

(K�1

+W)

�1

r

(i)
= K(r

(i) � W
1
2B�1W

1
2Kr

(i)
)

The derivative of ˆf wrt ✓i can be obtained by differentiating
the expression ˆ

f = Kr
ˆf log[p(y | ˆf)]:

@ˆf

@✓i
=

@K

@✓i
r

ˆf log[p(y | ˆf)] +Kr
ˆfrˆf log[p(y | ˆf)] @

ˆ

f

@✓i

Algorithm 4 Prediction for GPs with Laplace approxima-
tion without Cholesky decompositions

1: Input: data X , labels y, test input x⇤, ˆf , a
2: Compute µ⇤
3: solve(B,W

1
2
k⇤)

4: Compute s2⇤, �
✓

m⇤p
1+s2⇤

◆

5: return �

✓
m⇤p
1+s2⇤

◆

Given that r
ˆfrˆf log[p(y | ˆf)] = �W we can rewrite:

(I +KW)

@ˆf

@✓i
=

@K

@✓i
r

ˆf log[p(y | ˆf)]

which yields:

@ˆf

@✓i
= (I +KW)

�1

@K

@✓i
r

ˆf log[p(y | ˆf)]

So an unbiased estimate of the implicit term in the gradient
of the approximate log-marginal likelihood becomes:

�1

2

˜

u

>
(I +KW)

�1

@K

@✓i
r

ˆf log[p(y | ˆf)]

Rewriting the inverse in terms of B yields:

�1

2

˜

u

>W� 1
2B�1W

1
2
@K

@✓i
r

ˆf log[p(y | ˆf)]

Putting everything together, the components of the stochas-
tic gradient are:

g̃i = � 1

2Nr

NrX

i=1

(r

(i)
)

>B�1W
1
2
@K

@✓i
W

1
2
r

(i)

+

1

2

a

> @K

@✓i
a

�1

2

˜

u

>W� 1
2B�1W

1
2
@K

@✓i
r

ˆf log[p(y|ˆf)](13)

B.2. Predictions

To obtain an approximate predictive distribution, condi-
tioned on a value of the hyperparameters ✓, we can com-
pute:

p(y⇤ | y,✓) =
Z

p(y⇤ | f⇤)p(f⇤ | f ,✓)q(f | y,✓)df⇤df .
(14)

Given the properties of multivariate normal variables, f⇤
is distributed as N (f⇤ | µ⇤,�2

⇤) with µ⇤ = k

>
⇤ K

�1

f and
�2

⇤ = k⇤⇤ � k

>
⇤ K

�1

k⇤. Approximating p(f | y,✓) with

Preconditioning Kernel Matrices

a Gaussian q(f | y,✓) = N (f | µq,⌃q) makes it possible
to analytically perform integration with respect to f in eq.
14. In particular, the integration with respect to f yields
N (f⇤ | m⇤, s2⇤) with

m⇤ = k

>
⇤ K

�1

ˆ

f

and
s2⇤ = k⇤⇤ � k

>
⇤ (K +W�1

)

�1

k⇤

These quantities can be rewritten as:

m⇤ = k

>
⇤ a

and
s2⇤ = k⇤⇤ � k

>
⇤ W

1
2B�1W

1
2
k⇤

This shows that the mean is cheap to compute, whereas the
variance requires solving another linear system involving
B for each test point.

The univariate integration with respect to f⇤ follows ex-
actly in the case of a probit likelihood, as it is a convolution
of a Gaussian and a cumulative Gaussian
Z

p(y⇤ | f⇤)N (f⇤ | m⇤, s
2

⇤)df⇤ = �

m⇤p
1 + s2⇤

!
.

(15)

B.3. Low rank preconditioning

When a low rank approximation of the matrix K is avail-
able, say ˆK = ��

>, the inverse of the preconditioner can
be rewritten as:

(I +W
1
2 ˆKW

1
2
)

�1

= (I +W
1
2
��

>W
1
2
)

�1

By using the matrix inversion lemma we obtain:

(I+W
1
2
��

>W
1
2
)

�1

= I�W
1
2
�(I+�

>W�)

�1

�

>W
1
2

Similarly to the GP regression case, the application of this
preconditioner is in O(m3

), where m is the rank of �.

