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Abstract
We propose the group knockoff filter, a method
for false discovery rate control in a linear regres-
sion setting where the features are grouped, and
we would like to select a set of relevant groups
which have a nonzero effect on the response. By
considering the set of true and false discoveries
at the group level, this method gains power rela-
tive to sparse regression methods. We also apply
our method to the multitask regression problem
where multiple response variables share similar
sparsity patterns across the set of possible fea-
tures. Empirically, the group knockoff filter suc-
cessfully controls false discoveries at the group
level in both settings, with substantially more
discoveries made by leveraging the group struc-
ture.

1. Introduction
In a high-dimensional regression setting, we are faced with
many potential explanatory variables (features), often with
most of these features having zero or little true effect on the
response. Model selection methods can be applied to find
a small submodel containing the most relevant features, for
instance, via sparse model fitting methods such as the lasso
(Tibshirani, 1996), or in a setting where the sparsity re-
spects a grouping of the features, the group lasso (Yuan
& Lin, 2006). In practice, however, we may not be able to
determine whether the set of features (or set of groups of
features) selected might contain many false positives. For
the (non-grouped) sparse setting, the knockoff filter (Bar-
ber & Candès, 2015) creates “knockoff copies” of each
variable to act as a control group, detecting whether the
lasso (or another model selection method) is successfully
controlling the false discovery rate (FDR), and tuning this
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method to find a model as large as possible while bounding
FDR. In this work, we will extend the knockoff filter to the
group sparse setting, and will find that by considering fea-
tures, and constructing knockoff copies, at the group-wise
level, we are able to improve the power of this method at
detecting true signals. Our method can also extend to the
multitask regression setting (Obozinski et al., 2006), where
multiple responses exhibit a shared sparsity pattern when
regressed on a common set of features. As for the knockoff
method, our work applies to the setting where n ≥ p.

2. Background
We begin by giving background on several models and
methods underlying our work.

2.1. Group sparse linear regression

We consider a linear regression model, Y = Xβ+z, where
y ∈ Rn is a vector of responses and X ∈ Rn×p is a
known design matrix. In a grouped setting, the p features
are partitioned into m groups of variables, G1, . . . , Gm ⊆
{1, . . . , p}, with group sizes p1, · · · , pm. The noise dis-
tribution is assumed to be z ∼ N (0, σ2In). We assume
sparsity structure in that only a small portion of βGi

’s are
nonzero, where βGi

∈ Rpi is the subvector of β corre-
sponding to the ith group of features. When not taking
group into consideration, a commonly used method to find
a sparse vector of coefficients β is the lasso (Tibshirani,
1996), an `1-penalized linear regression, which minimizes
the following objective: function

β̂(λ) = arg min
β

{
‖y −Xβ‖22 + λ‖β‖1

}
. (1)

To utilize the feature grouping, so that an entire group of
features is selected simultaneously, Yuan & Lin (2006) pro-
posed following grouped lasso penalties:

β̂(λ) = arg min
β

{
‖y −Xβ‖22 + λ‖β‖group

}
. (2)

where ‖β‖group =
∑m
i=1‖βGi‖2. This penalty promotes

sparsity at the group level; for large λ, few groups will
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be selected (i.e. βGi
will be zero for many groups), but

within any selected group, the coefficients will be dense
(all nonzero). The `2 norm penalty on βGi may sometimes
be rescaled relative to the size of the group.

2.2. Multitask learning

In a multitask learning problem with a linear regression
model, we consider the model

Y = XB + E (3)

where the response Y ∈ Rn×r contains r many response
variables measured for n individuals, X ∈ Rn×p is the
design matrix, B ∈ Rp×r is the coefficient matrix, and
E ∈ Rn×r is the error matrix, with rows ei

iid∼ N (0,Σ)
for some unknown covariance structure Σ ∈ Rr×r. If the
number of features p is large, we may believe that only a
few of the features are relevant; in that case, most rows of
B will be zero—that is, B is row-sparse.

In a low-dimensional setting, we may consider the multi-
variate normal model, with likelihood determined by both
the coefficient matrix B and the covariance matrix Σ. in
a high-dimensional setting, combining this likelihood with
a sparsity-promoting penalty may be computationally chal-
lenging, and so a common approach is to ignore the covari-
ance structure of the noise and to simply use a least-squares
loss together with a penalty,

B̂ = arg min
B

{
1

2
‖Y −XB‖2Fro + λ‖B‖`1/`2

}
, (4)

where ‖·‖Fro is the Frobenius norm,and where the `1/`2
norm in the penalty is given by ‖B‖`1/`2 =

∑
i

√∑
j B

2
ij .

This penalty promotes row-wise sparsity of B.

It is common to reformulate this `1-penalized multitask lin-
ear regression as a group lasso problem. We form a vector
response y ∈ Rnr by stacking the columns of Y :

y = vec(Y ) = (Y11, . . . , Yn1, . . . , Y1r, . . . , Ynr)
> ∈ Rnr,

and a new larger design matrix by repeating X in blocks:

X = Ir ⊗X =


X 0 . . . 0
0 X . . . 0

. . .
0 0 . . . X

 ∈ Rnr×pr.

(Here ⊗ is the Kronecker product.) Define the coefficient
vector β = vec(B) ∈ Rpr and noise vector ε = vec(E) ∈
Rnr. Then the multitask model (3) can be rewritten as

y = Xβ + ε, (5)

where ε follows a Gaussian model, ε ∼ N (0,Σ1Σ), for

Σ1Σ = Σ⊗ In =

 Σ11In . . . Σ1rIn
. . . . . . . . .

Σr1In . . . ΣrrIn

 .

The group sparse structure of β is determined by groups

Gj = {j, j + p, . . . , j + (r − 1)p}

for j = 1, . . . , p; this corresponds to the row sparsity of B
in the original formulation (3). Then, the multitask learning
problem has been reformulated into a group-sparse regres-
sion problem—and so, the multitask lasso (4) can equiva-
lently be solved by the group lasso optimization problem

β̂ = arg min
β

{
1

2
‖y − Xβ‖22 + λ‖β‖group

}
. (6)

2.3. The group false discovery rate

The original definition of false discovery rate (FDR) is the
expected proportion of incorrectly selected features among
all selected features. When the group rather than individual
feature is of interest, we prefer to control the false discov-
ery rate at the group level. Mathematically, we define the
group false discovery rate (FDRgroup) as

FDRgroup = E

[
#{i : βi = 0, i ∈ Ŝ}

#{i : i ∈ Ŝ} ∨ 1

]
(7)

the expected proportion of selected groups which are ac-
tually false discoveries. Here Ŝ = {i : β̂i 6= 0} is the
set of all selected group of features, while a ∨ b denotes
max{a, b}.

2.4. The knockoff filter for sparse linear regression

In the sparse (rather than group-sparse) setting, the lasso (1)
provides an accurate estimate for the coefficients in a sparse
linear model, but performing inference on the results, for
testing the accuracy of these estimates or the set of fea-
tures selected, remains a challenging problem. The knock-
off filter (Barber & Candès, 2015) addresses this ques-
tion, and provides a method controlling the false discov-
ery rate (FDR) of the selected set at some desired level q
(e.g. q = 0.2).

To run this method, there are two main steps: constructing
knockoffs, and filtering the results. First a set of p knockoff
features is constructed: for each featureXj , j = 1, . . . , p, it
is given a knockoff copy X̃j , where the matrix of knockoffs
X̃ = [X̃1 . . . X̃p] satisfies, for some vector s ≥ 0,

X̃>X̃ = X>X, X̃>X = X>X − diag{s}. (8)

Next, the lasso is run on an augmented data set with re-
sponse y and 2p many features X1, . . . , Xp, X̃1, . . . , X̃p:

β̂(λ) = arg min
b∈R2p

{
‖y − [X X̃]b‖22 + λ‖β‖1

}
.

This is run over a range of λ values decreasing from +∞
(a fully sparse model) to 0 (a fully dense model). If Xj is a
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true signal—that is, it has a nonzero effect on the response
y—then this should be evident in the lasso: Xj should enter
the model earlier (for larger λ) than its knockoff copy X̃j .
However, if Xj is null—that is, βj = 0 in the true model—
then it is equally likely to enter before or after X̃j .

Next, to filter the results, let λj and λ̃j be the time of entry
into the lasso path for each feature and knockoff:

λj = sup{λ : β̂(λ)j 6= 0}, λ̃j = sup{λ : β̂(λ)j+p 6= 0},

and let Ŝ(λ), S̃(λ) ⊆ {1, . . . , p} be the sets of original fea-
tures, and knockoff features, which have entered the lasso
path before time λ, and before their counterparts:

Ŝ(λ) = {j : λj > λ̃j ∨ λ} and S̃(λ) = {j : λ̃j > λj ∨ λ}.

Estimate the proportion of false discoveries in Ŝ(λ) as

FDP(λ) ≈ F̂DP(λ) =
|S̃(λ)|
|Ŝ(λ)| ∨ 1

. (9)

To understand why, note that since Xj and X̃j are equally
likely to enter in either order if Xj is null (no real ef-
fect), then j is equally likely to fall into either Ŝ(λ)

or S̃(λ). Therefore, the numerator |S̃(λ)| should be an
(over)estimate of the number of nulls in Ŝ(λ)—thus, the
ratio estimates the FDP. Alternately, we can choose a more
conservative definition

FDP(λ) ≈ F̂DP+(λ) =
1 + |S̃(λ)|
|Ŝ(λ)| ∨ 1

. (10)

Finally, the knockoff filter selects λ̂ = min{λ : F̂DP(λ) ≤
q}, where q is the desired bound on FDR level, and then
outputs the set Ŝ(λ̂) as the set of “discoveries”. The
knockoff+ variant does the same with F̂DP+(λ). Theo-
rems 1 and 2 of (Barber & Candès, 2015) prove that the
knockoff procedure bounds a modified form of the FDR,
mFDR = E

[
(# of false discoveries)
(# of discoveries)+q−1

]
, while the knockoff+ pro-

cedure bounds the FDR.

3. The knockoff filter for group sparsity
In this section, we extend the knockoff method to the group
sparse setting. This involves two key modifications: the
construction of the knockoffs at a group-wise level rather
than for individual features, and the “filter” step where the
knockoffs are used to select a set of discoveries. Through-
out the remainder of the paper, “knockoff” refers to the
original knockoff method, while “group knockoff’ (or, later
on, “multitask knockoff”) refers to our new method.

3.1. Group knockoff construction

The original knockoff construction requires that X̃>X =
X>X − diag{s}, that is, all off-diagonal entries are equal.
When the features are highly correlated, this construction
is only possible for vectors s with extremely small entries;
that is, X̃j andXj are themselves highly correlated, and the
knockoff filter then loses power as it is hard to distinguish
between a real signal Xj and its knockoff copy X̃j .

In a group-sparse setting, we will see that we can relax this
requirement on X̃>X , thereby improving our power. In
particular, the best gain will be in situations where within-
group correlations are high but between-group correlations
are low; this may arise in many applications, for exam-
ple, when genes related to the same biological pathways
are grouped together, we expect to see the largest correla-
tions occuring within groups rather than between genes in
different groups.

To construct the group knockoffs, we require the following
condition on the matrix X̃ ∈ Rn×p:

X̃>X̃ = Σ := X>X, and X̃>X = Σ− S,
where S � 0 is group-block-diagonal, (11)

meaning that SGi,Gj
= 0 for any two distinct groups i 6= j.

Abusing notation, write S = diag{S1, . . . , Sm} where
Si � 0 is the pi × pi matrix for the ith group block,
meaning that SGi,Gi

= Si for each i while SGi,Gj
= 0

for each i 6= j. Extending the construction of (Barber
& Candès, 2015),1 we construct these knockoffs by first
selecting S = diag{S1, . . . , Sm} that satisfies the condi-
tion S � 2Σ, then setting X̃ = X(Ip − Σ−1S) + ŨC,
where Ũ is a n × p orthonormal matrix orthogonal to the
span of X , while C>C = 2S − SΣ−1S is a Cholesky
decomposition. Now, we still need to choose the matrix
S � 0, which has group-block-diagonal structure, so that
the condition S � 2Σ is satisfied (this condition ensures
the existence of the Cholesky decomposition defining C).
To do this, we choose the following construction: we set
S = diag{S1, . . . , Sm} where we choose Si = γ ·ΣGi,Gi ;
the scalar γ ∈ [0, 1] is chosen to be as large as possible so
that S � 2Σ still holds, which amounts to choosing

γ = min {1, 2 · λmin (DΣD)}

where D = diag{Σ−1/2
G1,G1

, . . . ,Σ
−1/2
Gm,Gm

}. This construc-
tion can be viewed as an extension of the “equivariant”
knockoff construction of Barber & Candès (2015); their
SDP construction, which gains a slight power increase
in the non-grouped setting, may also be extended to the
grouped setting but we do not explore this here.

1This construction is for the setting n ≥ 2p; see (Barber &
Candès, 2015) for a simple trick to extend to n ≥ p.
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Looking back at the group knockoff matrix condition (11),
we see that any knockoff matrix X̃ satisfying (8) would
necessarily also satisfy this group-level condition. How-
ever, the group-level condition is weaker; it allows more
flexibility in constructing X̃ , and therefore, will enable
more separation between a feature Xj and its knockoff X̃j ,
which in turn can increase power to detect the true signals.

3.2. Filter step

After constructing the group knockoff matrix, we then se-
lect a set of discoveries (at the group level) as follows. First,
we apply the group lasso (2) to the augmented data set,

β̂ = arg min
b∈R2p

{
‖y − [X X̃]b‖22 + λ‖b‖group

}
.

Here, with the augmented design matrix [X X̃], we now
have 2m many groups: one group Gi for each group in the
original design matrix, and one group G̃i = {j + p : j ∈
Gi} corresponding to the same group within the knock-
off matrix; the penalty norm is then defined as ‖b‖group =∑m
i=1‖bGi

‖2 +
∑m
i=1‖bG̃i

‖2.

The filter process then proceeds exactly as for the original
knockoff method, with groups of features in place of indi-
vidual features. First we record the time when each group
or knockoff group enters the lasso path,

λi = sup{λ : β̂(λ)Gi
6= 0}, λ̃i = sup{λ : β̂(λ)G̃i

6= 0},

then define the selected groups and knockoff groups as

Ŝ(λ) = {i : λi > λ̃i ∨ λ} and S̃(λ) = {i : λ̃i > λi ∨ λ}

(note that these sets are subsets of {1, . . . ,m}, the list of
groups, rather than counting individual features). Finally,
estimate the proportion of false discoveries in Ŝ(λ) exactly
as in (9), and define λ̂ = min{λ : F̂DP(λ) ≤ q} as before;
the final set of discovered groups is given by Ŝ(λ̂). (For
group knockoff+, we use the more conservative estimate of
the group FDP, as for the knockoff.)

3.3. Theoretical Results

Here we turn to a more general framework for the group
knockoff, working with the setup introduced in Barber &
Candès (2015). Let W ∈ Rm be a vector of statistics, one
for each group, with large positive values for Wi indicat-
ing strong evidence that group i may have a nonzero effect
(i.e. βGi

6= 0). W is defined as a function of the augmented
design matrix [X X̃] and the response y, which we write
as W = w([X X̃], y). In the group lasso setting described
above, the statistic is given byWi = (λi∨λ̃i)·sign(λi−λ̃i).
In general, we require two properties for this statistic: suf-
ficiency and group-antisymmetry. The first is exactly as for

(non-group) knockoffs; the second is a modification mov-
ing to the group sparse setting.
Definition 1. The statisticW is said to obey the sufficiency
property if it only depends on the Gram matrix and feature-
response inner products, that is, for any X, X̃, y,

w([X X̃], y) = f([X X̃]>[X X̃], [X X̃]>y) (12)

for some function f .

Before defining the group-antisymmetry property, we in-
troduce some notation. For any group i = 1, . . . ,m, let
[X X̃]swap(i) be the matrix with(

[X X̃]swap(i)

)
j

=

{
Xj , if 1 ≤ j ≤ p and j 6∈ Gi,
X̃j , if 1 ≤ j ≤ p and j ∈ Gi,

and(
[X X̃]swap(i)

)
j+p

=

{
X̃j , if 1 ≤ j ≤ p and j 6∈ Gi,
Xj , if 1 ≤ j ≤ p and j ∈ Gi,

for each j = 1, . . . , p. In other words, the columns corre-
sponding to Gi in the original component X , are swapped
with the same columns of X̃ .
Definition 2. The statistic W is said to obey the group-
antisymmetry property if swapping two groups Xi and X̃i

has the effect of switching the sign of Wi with no other
change to W , that is,

w([X X̃]swap(i), y) = I±i · w([X X̃], y),

where I±i is the diagonal matrix with a −1 in entry (i, i)
and +1 in all other diagonal entries.

Next, to run the group knockoff or group knockoff+
method, we proceed exactly as in (Barber & Candès, 2015);
we change notation here for better agreement with the
group lasso setting. Define

Ŝ(t) = {i : Wi ≥ t} and S̃(t) = {i : Wi ≤ −t}.

Then estimate the FDP as in (9) for the knockoff method,
or as in (10) for knockoff+ (with parameter t in place of the
lasso penalty path parameter λ); then find t̂, the minimum
t ≥ 0 with F̂DP(t) (or F̂DP+(t)) no larger than q, and
output the set Ŝ = Ŝ(t̂) of discovered groups.

This procedure offers the following theoretical guarantee:
Theorem 1. If the vector of statistics W satisfies the suffi-
ciency and group-antisymmetry assumption, then the group
knockoff procedure controls a modified group FDR,

mFDRgroup = E

[
#{i : βi = 0, i ∈ Ŝ}
#{i : i ∈ Ŝ}+ q−1

]
≤ q,

while the group knockoff+ procedure controls the group
FDR, FDRgroup ≤ q.
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The proof of this result follows the original knockoff proof
of Barber & Candès (2015), and we do not reproduce it
here; the result is an immediate consequence of their main
lemma, moved into the grouped setting:

Lemma 1. Let ε ∈ {±1}m be a sign sequence independent
of W , with εi = 1 for all non-null groups i and εi ∼ {±1}
independently with equal probability for all null groups i.
Then we have

(W1, · · · ,Wm) =d (W1ε1, · · · ,Wmεm), (13)

where =d denotes equality in distribution.

This lemma can be proved via the sufficiency and group-
antisymmetry properties, exactly as for the individual-
feature-level result of Barber & Candès (2015).

4. Knockoffs for multitask learning
For the multitask learning problem, the reformulation as
a group lasso problem (6) suggests that we can apply the
group-wise knockoffs to this problem as well. However,
there is one immediate difficulty: the model for the noise
ε in (6) has changed—the entries of ε are not independent,
but instead follow a multivariate Gaussian model with co-
variance Σ1Σ. In fact, we will see shortly that we can work
even in this more general setting. Reshaping the data to
form a group lasso problem as in (5), we will work with the
vectorized response y ∈ Rnr and the repeated-block design
matrix X ∈ Rnr×pr. We will also construct a repeated-
block knockoff matrix,

X̃ = Ir ⊗ X̃ =


X̃ 0 . . . 0

0 X̃ . . . 0
. . .

0 0 . . . X̃

 ,

where X̃ ∈ Rn×p is any matrix satisfying the original
knockoff construction conditions (8) with respect to the
original design matrix X . Applying the group knockoff
methodology with this data (X, y) and knockoff matrix X̃,
we obtain the following result:

Theorem 2. For the multitask learning setting with an ar-
bitrary covariance structure Σ ∈ Rr×r, the knockoff or
knockoff+ methods control the modified group FDR or the
group FDR, respectively, at the level q.

Proof. In order to apply the result for the group-sparse set-
ting to this multitask scenario, we need to address two ques-
tions: first, whether X̃ satisfies the group knockoff matrix
conditions (11), and second, how to handle the issue of the
non-i.i.d. structure of the noise ε.

We first check the conditions (11) for X̃. let X̃ ∈ Rn×p be
a knockoff matrix forX , satisfying (8), and let Σ = X>X .

Then we see that

X̃>X̃ = Ir ⊗ (X̃>X̃) = Ir ⊗ Σ = X>X, and

X̃>X = Ir ⊗ (X̃>X) = Ir ⊗ (Σ− diag{s})
= X>X− Ir ⊗ diag{s}

where s is defined as in (8). Since the difference Ir ⊗
diag{s} is a diagonal matrix, we see that X̃ satisfies the
group knockoff condition (11); in fact, it satisfies the
stronger (ungrouped) knockoff condition (8).

Next we turn to the issue of the non-identity covariance
structure Σ1Σ for the noise term ε ∈ Rnr. First, write

Σ1Σ−
1/2 = Σ−

1/2 ⊗ In

to denote an inverse square root for Σ1Σ. Note also that

Σ1Σ−
1/2 · X = (Σ−

1/2 ⊗ In) · (Ir ⊗X) = Σ−
1/2 ⊗X

= (Ir ⊗X) · (Σ−1/2 ⊗ Ip) = X · Σ1Σ−1/2
∗ , (14)

for Σ1Σ∗ = Σ ⊗ Ip. Taking our vectorized multitask regres-
sion model (5), multiplying both sides by Σ1Σ−1/2 on the left,
and applying (14), we obtain a “whitened” reformulation of
our model,

ywh = X · (Σ1Σ−1/2
∗ β) + εwh for

{
ywh = Σ1Σ−1/2y,

εwh = Σ1Σ−1/2ε,
(15)

where εwh ∼ N (0, Inm) is the “whitened” noise. Now we
are back in a standard linear regression setting, and can ap-
ply the knockoff method—note that we are working with a
new setup: while the design matrix X is the same as in (5),
we now work with response vector ywh and coefficient vec-
tor Σ1Σ

−1/2
∗ β. The group sparsity of the coefficient vector has

not changed, due to the block structure of Σ1Σ−1/2; we have

(Σ1Σ
−1/2
∗ β)Gj

= Σ1Σ
−1/2
Gj ,Gj

βGj

for each j = 1, . . . , p, and so the “null groups” for the
original coefficient vector β (i.e. groups j with βGj = 0)
are preserved in this reformulated model.

We need to check only that the group lasso output, namely
β̂, depends on the data only through the sufficient statistics
X>X and X>ywh; here we use the “whitened” response ywh

rather than the original response vector y since the knock-
off theory applies to linear regression with i.i.d. Gaussian
noise, as in the model (15) for ywh. When we apply the
group lasso, as in the optimization problem (6), it is clear
that the minimizer β̂ depends on the data X, y only through
X>X and X>y. Furthermore, we can write

X>y = X>Σ1Σ
1/2ywh = Σ1Σ

1/2
∗ · (X>ywh),
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Figure 1. Results for the group-sparse regression simulation, comparing group knockoff and knockoff+ against the original knockoff and
knockoff+ methods.

where we can show Σ1Σ1/2 · X = X · Σ1Σ1/2
∗ exactly as in (14)

before. Therefore, β̂, depends on the data only through the
sufficient statistics X>X and X>ywh, as desired.

Our statistics for the knockoff filter therefore will satisfy
the sufficiency property. The group-antisymmetry property
is obvious from the definition of the method. Therefore,
applying our main result Theorem 1 for the group-sparse
setting to the whitened model (15), we see that the (modi-
fied or unmodified) group FDR control result holds for this
setting.

5. Simulated data experiments
We test our methods in the group sparse and multitask set-
tings. All experiments were carried out in Matlab (MAT-
LAB, 2015) and R (R Core Team, 2015), including the
grpreg package in R (Breheny & Huang, 2015).

5.1. Group sparse setting

To evaluate the performance of our method in the group
sparse setting, we compare it empirically with the (non-
group) knockoff using simulated data from a group sparse
linear regression, and examine the effects of sparsity level
and feature correlations within and between groups.

5.1.1. DATA

To generate the simulation data, we use the sample size
n = 3000 with number of features p = 1000. In our basic
setting, the number of groups ism = 200 with correspond-
ing number of features per group set as pi = 5 for each
group i. To generate features, as a default we use an uncor-
related setting, drawing the entries of X as i.i.d. standard
normals, then normalize the columns of X . Our default
sparsity level is k = 20 (that is, 20 groups with nonzero
signal); βj , for each j inside a signal group, i.i.d. chosen
randomly from {±3.5}.

To study the effects of sparsity level and feature correla-
tion, we then vary these default settings as follows (in each
experiment, one setting is varied while the others remain at
their default level):

• Sparsity level: we vary the number of groups with
nonzero effects, k ∈ {10, 12, 14, . . . , 50}.

• Between-group correlation: we fix within-group cor-
relation ρ = 0.5, and set the between-group corre-
lation to be γρ, with γ ∈ {0, 0.1, 0.2, . . . , 0.9}. We
then draw the rows of X ∈ Rn×p independently from
a multivariate normal distribution with mean 0 and co-
variance matrix Σ, with diagonal entries Σjj = 1,
within-group correlations Σjk = ρ for j 6= k in the
same group, and between-group correlations Σjk =
γρ for j, k in different groups. Afterwards, we nor-
malize the columns of X .

• Within-group correlation: as above, but we fix
γ = 0 (so that between-group correlation is always
zero) and vary within-group correlation, with ρ ∈
{0, 0.1, . . . , 0.9}.

For each setting, we use target FDR level q = 0.2 and re-
peat each experiment 100 times.

5.1.2. RESULTS

Our results are displayed in Figure 1, which displays power
(the proportion of true signals which were discovered) and
FDR at the group level, averaged over all trials. We see that
all four methods successfully control FDR at the desired
level. Across all settings, the group knockoff is more pow-
erful than the knockoff, showing the benefit of leveraging
the group structure. The group knockoff+ and knockoff+
are each slightly more conservative than their respective
methods without the “+” correction. From the experiments
with zero between-group correlation and increasing within-
group correlation ρ, we see that knockoff has rapidly de-
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Figure 2. Results for the multitask regression simulation, comparing multitask knockoff with the pooled and parallel knockoff methods.

creasing power as ρ increases, while group knockoff does
not show much power loss. This highlights the benefit of
the group-wise construction of the knockoff matrix; for the
original knockoff, high within-group correlation forces the
knockoff features X̃j to be nearly equal to the Xj’s, but
this is not the case for the group knockoff construction and
the greater separation allows high power to be maintained.

5.2. Multitask regression setting

To evaluate the performance of our method in the multi-
task regression setting, we next perform a simulation to
compare the multitask knockoff with the knockoff. (For
clarity in the figures, we do not present results for the
knockoff+ versions of these methods; the outcome is pre-
dictable, with knockoff+ giving slightly better FDR control
but lower power.) For the multitask knockoff, we imple-
ment the method exactly as described in Section 4. The
jth feature is considered a discovery if the corresponding
group is selected. For the knockoff, we use reformula-
tion (5) of the multitask model, and apply the knockoff
method to the reshaped data set (X, y); we call this the
“pooled” knockoff. We also run the knockoff separately
on each of the r responses (that is, we run the knockoff
with data (X,Yj) where Yj is the jth column of Y , sepa-
rately for j = 1, . . . , r). We then combine the results: the
jth feature is considered a discovery if it is selected in any
of the r individual regressions; this version is the “parallel”
knockoff.

5.2.1. DATA

To generate the data, our default settings for the multitask
model given in (3) are as follows: we set the sample size
n = 150, the number of features p = 50, with m = 5 re-
sponses. The true matrix of coefficients B has its k = 10
rows nonzero, which are chosen as 2

√
m times a random

unit vector. The design matrix X is generated by draw-
ing i.i.d. standard normal entries and then normalizing the
columns, and the entries of the error matrix E are also i.i.d.
standard normal. We set the target FDR level at q = 0.2
and repeat all experiments 100 times. These default set-
tings will then be varied in our experiments to examine the
roles of the various parameters (only one parameter is var-

ied at a time, with all other settings at their defaults):

• Sparsity level: the number of nonzero rows of B is
varied, with k ∈ {2, 4, 6, . . . , 20}.

• Number of responses: the number of responses r is
varied, with r ∈ {1, 2, 3, 4, 5}.

• Feature correlation: the rows of X are i.i.d. draws
from a N(0,ΣX) distribution, with a tapered covari-
ance matrix which has entries (ΣX)jk = (ρX)|j−k|,
with ρX ∈ {0, 0.1, 0.2, . . . , 0.9}. (The columns of X
are then normalized.)

• Response correlation: the rows of the noise E are
i.i.d. draws from a N(0,ΣY ) distribution, with a
equivariant correlation structure which has entries
(ΣY )jj = 1 for all j, and (ΣY )jk = ρY for all j 6= k,
with ρY ∈ {0, 0.1, 0.2, . . . , 0.9}.

5.2.2. RESULTS

Our results are displayed in Figure 2. For each method, we
display the resulting FDR and power for selecting features
with true effects in the model. The parallel knockoff is not
able to control the FDR. This may be due to the fact that this
method combines discoveries across multiple responses; if
the true positives selected for each response tend to over-
lap, while the false positives tend to be different (as they are
more random), then the false discovery proportion in the
combined results may be high even though it should be low
for each individual responses’ selections. Therefore, while
it is more powerful than the other methods, it does not lead
to reliable FDR control. Turning to the other methods, both
multitask knockoff and pooled knockoff generally control
FDR at or near q = 0.2 except in the most challenging
(lowest power) settings, where as expected from the the-
ory, the FDR exceeds its target level. Across all settings,
multitask knockoff is more powerful than pooled knockoff.
Overall we see the advantage in the multitask formulation,
with which we are able to identify a larger number of dis-
coveries while maintaining FDR control.



Knockoffs for group-sparse and multitask regression

6. Real data experiment
We next apply the knockoff for multitask regression to a
real data problem. We study a data set that seeks to iden-
itify drug resistant mutations in HIV-1 (Rhee et al., 2006).
This data set was analyzed by (Barber & Candès, 2015) us-
ing the knockoff method. Each observation, sampled from
a single individual, identifies mutations along various posi-
tions in the protease or reverse transcriptase (two key pro-
teins) of the virus, and measures resistance against a range
of different drugs from three classes: protease inhibitors
(PIs), nucleoside reverse transcriptase inhibitors (NRTIs),
and nonnucleoside reverse transcriptase inhibitors (NNR-
TIs). In (Barber & Candès, 2015) the data for each drug
was analyzed separately; the response y was the resistance
level to the drug while the features Xj were markers for
the presence or absence of the jth mutation. Here, we
apply the multitask knockoff to this problem: for each
class of drugs, since the drugs within the class have re-
lated biological mechanisms, we expect the sparsity pattern
(i.e. which mutations confer resistance to that drug) to be
similar across each class. We therefore have a matrix of re-
sponses, Y ∈ Rn×r, where n is the number of individuals
and r is the number of drugs for that class. We compare our
results to those obtained with the knockoff method where
drugs are analyzed one at a time (the “parallel” knockoff
from the multitask simulation).

6.1. Data

Data is analyzed separately for each of the three drug types.
To combine the data across different drugs, we first remove
any drug with a high proportion of missing drug resistance
measurements; this results in two PI drugs and one NRTI
drug being removed (each with over 35% missing data).
The remaining drugs all have < 10% missing data; many
drugs have only 1 − 2% missing data. Next we remove
data from any individual that is missing drug resistance in-
formation from any of the (remaining) drugs. Finally, we
keep only those mutations which appear ≥ 3 times in the
sample. The resulting data set sizes are:

Class # drugs (r) # observations (n) # mutations (p)
PI 5 701 198

NRTI 5 614 283
NNRTI 3 721 308

6.2. Methods

For each of the three drug types, we form the n × r re-
sponse matrix Y by taking the log-transformed drug resis-
tance measurement for the n individuals and the r drugs,
and the n × p feature matrix X recording which of the p
mutations are present in each of the n individuals. We then
apply the multitask knockoff as described in Section 4, with
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Figure 3. Results on the HIV-1 drug resistance data set. For each
drug class, we plot the number of protease positions (for PI) or
reverse transcriptase (RT) positions (for NRTI or NNRTI) which
were selected by the multitask knockoff or knockoff method. The
color indicates whether or not the selected position appears in the
treatment selected mutation (TSM) panel, and the horizontal line
shows the total number of positions on the TSM panel.

target FDR level q = 0.2. We use the equivariant construc-
tion for the knockoff matrix for both methods. We perform
the analysis 100 times and we consider a mutant is selected
if it has been selected by more than 60 times.

6.3. Results

We report our results by comparing the discovered muta-
tions, within each drug class, against the treatment-selected
mutation (TSM) panel (Rhee et al., 2005), which gives mu-
tations associated with treatment by a drug from that class.
As in (Barber & Candès, 2015) we report the counts by
position rather than by mutation, i.e. combinining all muta-
tions discovered at a single position, since multiple muta-
tions at the same position are likely to have related effects.
To compare with the knockoff method, for each drug class
we consider mutation j to be a discovery for that drug class,
if it was selected for any of the drugs in that class. The re-
sults are displayed in Figure 3. In this experiment, we see
that the multitask knockoff seems to show slightly better
agreement with the TSM panel. As in the multitask simula-
tion, this may be due to the fact that the knockoff combines
discoveries across several drugs; a low false discovery pro-
portion for each drug individually can still lead to a high
false discovery proportion once the results are combined.

7. Discussion
We have presented a knockoff filter for the group sparse
regression and multitask regression problems, where shar-
ing information within each group or across the set of re-
sponse variables allows for a more powerful feature selec-
tion method. Extending the knockoff framework to other
structured estimation problems, such as non-linear regres-
sion or to low-dimensional latent structure other than spar-
sity, would be interesting directions for future work.
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