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Abstract
We introduce an anytime algorithm for stochastic
multi-armed bandit with optimal distribution free
and distribution dependent bounds (for a specific
family of parameters). The performances of this
algorithm (as well as another one motivated by
the conjectured optimal bound) are evaluated em-
pirically. A similar analysis is provided with full
information, to serve as a benchmark.

1. INTRODUCTION
The classical sequential decision problem known as the
”multi-armed bandit problem” (Thompson, 1933; Robbins,
1985) has been widely used in operations research, com-
puter science and economics, in sequential clinical trials
or to construct policies maximizing the “click-through-
rate” (i.e., finding the ad with the highest probability of
click). At each stage t ∈ N, an agent takes a decision
πt ∈ {1, . . . ,K} (or “he pulls arm πt”) and gets a ran-
dom reward, the objective being to maximize the cumula-
tive reward. A popular class of algorithms designed for this
problem use the principle of “optimism under uncertainty”
(Auer et al., 2002; Audibert & Bubeck, 2010b).

There are several different frameworks that have been stud-
ied, depending on the feedbacks available to the algorithm
(bandit vs. full information), on the rewards generating pro-
cesses (stochastic vs. adversarial) and on the duration of
the problem (anytime vs. fixed horizon).

Feedbacks: In the bandit setting, the feedback is only the
reward of the pulled arm while with full information,
it is the rewards of all the arms.

Processes: In the stochastic case we consider, the succes-
sive rewards of an arm k ∈ {1, . . . ,K} are i.i.d. sam-
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ples from a distribution ν(k) with mean µ(k), such that

∀y ∈ R, logEν(k)

[
ey(X−µ(k))

]
≤ y2/8 ,

that is, they are 1
2 sub-Gaussian, up to the centering.

The main example of such rewards are distributions
with support in [0, 1]. In fact, while most papers on the
subject restrict themselves to such bounded rewards,
often only the more general sub-Gaussian assumption
is used. The results can be extended to other sub-
Gaussian variables by normalizing the constants in the
bounds accordingly.

Duration: With a fixed known horizon T , the performance
of an algorithm is only evaluated after T stages. On
the other hand, the performance of an anytime algo-
rithm is evaluated at all stages t ∈ N, up the appropri-
ate time renormalization.

The objectif is to define an anytime policy (πt)t≥1 that
maximizes the expected sum of rewards E[

∑t
s=1X

(πs)]
with X(πs) ∼ ν(πs), or equivalently that minimizes the
expected regret ERt, where

Rt =

t∑
s=1

(µ∗ − µ(πs)) .

Let us denote by µ∗ the mean of the best arm, ∆k =
µ∗ − µ(k) the gap between arm k and the optimal arm and
T (k)(t) the number of times arm k was pulled until time t.
The regret is then equivalently written as

Rt =

K∑
k=1

∆kT
(k)(t) .

In that setup, we can exhibit three main types of regret
bounds at some stage t:

Distribution free bound: This bound is independent of
the set of parameters ∆k and only depends on K .



Anytime optimal algorithms in stochastic multi-armed bandits

Distribution dependent: This bound depends explicitly
on the whole set of parameters {∆1, . . . ,∆k} .

Single parameter dependent: Intermediate concept, this
bounds depends solely on mink:∆k>0 ∆k and K .

We first prove that with full information, the simple follow-
the-leader algorithm (FTL), that pulls at each stage the arm
with the highest empirical mean, has explicit bounds of the
three types. Namely, ERt is simultaneously smaller, at all
stage t ∈ N and up to universal multiplicative constant,
than

√
log(K)t,

∑
k 1/∆k and log(K)/∆min .

In the bandit case, the algorithm MOSS (Audibert &
Bubeck, 2010b) have explicit optimal distribution free and
single parameter dependent bounds. Successive Elimina-
tion (SE) (Perchet & Rigollet, 2013; Perchet et al., 2015)
and Improved-UCB (Auer & Ortner, 2010) have explicit
distribution free and distribution dependent bounds. Unfor-
tunately, all those algorithms are not anytime (they require
prior knowledge of the horizon), and using the classic dou-
bling trick would only improve one or the other bounds, but
not all of them at all stages. The algorithm UCB2 (Auer
et al., 2002) is anytime with (slightly suboptimal) distribu-
tion free and distribution dependent bounds, but it is less
natural than the other algorithms: it uses a rigid epoch sys-
tem requiring that an arm be pulled multiple times in a row.

We introduce a new algorithm inspired from MOSS that
fulfils the goal of both optimal distribution free and sin-
gle parameter dependent bounds at all stages and that has
the major practical advantage of being anytime. We show
experimentally that the new algorithm presents a clear im-
provement upon MOSS used with a doubling trick. We
also introduce a new anytime algorithm motivated by the
conjectured optimal distribution dependent bound, and we
compare empirically its behaviour to the aforementioned
other algorithms.

2. FULL INFORMATION
The goal of this section is to present the full information
case. It will be used as a benchmark to compare the differ-
ent types of bounds obtained in the bandit setting with the
ones of the FTL algorithm.

In the full information setting the rewards from all arms
are observed after each stage. An algorithm can then at-
tain finite regret, as we will prove for FTL, with a logarith-
mic dependency on the number of arms K. We will first
consider the simpler case where all gaps are equal, then
with general gaps. This bound also leads to a

√
t logK

distribution-free upper bound. To the best of our knowl-
edge, these distribution-dependent results do not appear in
the literature yet they are quite interesting to establish a
baseline against which we can compare the bandit settings.

As mentioned before, we start by a bound in the case where
all suboptimal arms have the same gap ∆. This upper
bound will be used as a proof step for a bound for general
gaps. We mention that in the case of two arms, it reduces
to 4/∆ which is indeed optimal since the expected regret is
lower bounded by 1/4∆, see e.g. (Bubeck et al., 2013): .

Lemma 1. The expected regret of FTL in the full informa-
tion setting with K arms with equal gaps verifies,

ERt ≤
2

∆
(2 + log(K − 1)), ∀t ∈ N .

Proof. For simplicity we prove the lemma in the case of
an unique optimal arm, that we call arm 1. The adapta-
tion to several optimal arms is straightforward. The ex-
pected regret incurred by following the policy (πs)s≥1 can
be bounded as

ERt ≤ ∆E[

∞∑
s=1

I{πs 6=1}]

= ∆

∞∑
s=1

P{∃k ∈ [2,K], X
(k)

s > X
(1)

s } .

If the algorithm pulls a suboptimal arm then either the opti-
mal arm was underestimated or one of the suboptimal arms
was overestimated. Let δ ∈ (0,∆), whose value is to be
chosen later. We get

P{∃k ∈ [2,K], X
(k)

s > X
(1)

s }

≤ P{X(1)

s ≤µ(1)−δ}+ P{∃k ∈ [2,K], X
(k)

s >µ(1)−δ} .

By Hoeffding’s inequality,

∆

∞∑
s=1

P{X(1)

s ≤ µ(1) − δ} ≤ ∆

∞∑
s=1

e−2sδ2

≤ ∆

2δ2
,

and

P{∃k ∈ [2,K], X
(k)

s > µ(1) − δ}

= 1−
K∏
k=2

(1− P{X(k)

s − µ(k) > ∆− δ})

≤ 1− (1− exp(−2s(∆− δ)2))K−1 .

Finally, with standard computations, we obtain

ERt ≤
∆

2δ2
+ ∆

∞∑
s=1

(1− (1− exp(−2s(∆− δ)2))K−1)

≤ ∆

2δ2
+

∆

2(∆− δ)2

K−1∑
k=1

1

k
.
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With δ = ∆
2 , we get

ERt ≤
2

∆
(1 +

K−1∑
k=1

1

k
) ≤ 2

∆
(2 + log(K − 1)) ,

hence the result.

The next theorem presents a similar bound for general gaps.
For notational convenience, we reorder the arms by de-
creasing means, 0 = ∆1 ≤ ∆2 ≤ . . . ≤ ∆K . Of course,
algorithms cannot use that information.
Theorem 1. FTL in the full information setting verifies for
any k0 ∈ {1, . . . ,K}, for t ≥ 1,

ERt ≤ t∆k0 +
8

∆k0+1
(2 + log(K − 1)).

In particular,

ERt ≤
8

∆min
(2 + log(K − 1)) .

Proof of Theorem 1. The regret is bounded as

ERt ≤ t∆k0
+

+∞∑
s=1

∑
k>k0

∆kP{πs = k} .

Trying to immediately generalize the proof of Lemma 1
with different gaps leads to cumbersome, heavy computa-
tions. We therefore use instead a peeling idea.

We put the arms with gaps greater than ∆k0
in M groups

G1, . . . , GM with increasing gaps and bound the regret for
each group as in the case of equal arms. Let Km be the
number of arms in group Gm and ∆Gm,min,∆Gm,max be
the smallest and biggest gaps in group Gm. We denote by
˜log the function with value 0 when log is not defined and is

equal to log otherwise.

ERt ≤ t∆k0
+

M∑
m=1

2∆Gm,max

∆2
Gm,min

(2 + ˜log(Km − 1))

≤ t∆k0 + 2(2 + log(K − 1))

M∑
m=1

∆Gm,max

∆2
Gm,min

.

Let the groups be such that i ∈ Gm ⇔ ∆i ∈
[ηm−1∆k0+1, η

m∆k0+1) for some η > 1 that will be cho-
sen later. A group can be empty. M , number of groups, is
such that ηM−1∆k0+1 ≤ ∆max < ηM∆k0+1.

ERt ≤ t∆k0
+ 2(2 + log(K − 1))

M∑
m=1

∆Gm,max

∆2
Gm,min

≤ t∆k0
+

2

∆k0+1
(2 + log(K − 1))

M∑
m=1

1

ηm−2

= t∆k0
+

2

∆k0+1
(2 + log(K − 1))η

η − ( 1
η )M−1

η − 1
.

We use ηM−1∆k0+1 ≤ ∆max to get ( 1
η )M−1 ≥ ∆k0+1

∆max
,

ERt ≤ t∆k0
+

2

∆k0+1
(2 + log(K − 1))η

η − ∆k0+1

∆max

η − 1
.

We now choose η to minimize this last expression, taking

η = 1 +
√

1− ∆k0+1

∆max
, and get

ERt≤t∆k0
+

2

∆k0+1
(2+ log(K−1))

(
1+

√
1−∆k0+1

∆max

)2

≤t∆k0
+

8

∆k0+1
(2+ log(K−1)) ,

which entails the result.

The proof of Lemma 1 for K = 2 yields a regret smaller
than 4/∆. Using the same arguments for all the arms
independently, gives that the regret of FTL is also upper
bounded as 4

∑
k,∆k>0 1/∆k. This can be a better bound

than the one of Theorem 1 if ∆min is very small compared
to the other gaps.

Another main purpose of Theorem 1 is that it entails a
distribution-free upper bound by choosing k0 such that
∆k0

≤ 2
√

2t(2 + log(K − 1)) < ∆k0+1. We recall here
that the arms have been reordered, to ease notations, with
respect to the size of the gaps.

Theorem 2. FTL in the full information satisfies,

sup
distributions

ERt ≤ 2
√

2t(2 + log(K − 1)), ∀t ∈ N .

This distribution free bound in O(
√
t logK) is optimal

(Cesa-Bianchi & Lugosi, 2006).

We have therefore obtained regret bounds of the three dif-
ferent types for the algorithm FTL. In the next section, we
introduce in the bandit setting an anytime algorithm with a
single parameter dependent bound in K

∆min
log(

t∆2
min

K ) and
an optimal distribution free bound

√
tK. This is the first

anytime algorithm with both properties.

3. ANYTIME MINIMAX OPTIMAL
ALGORITHM FOR BANDITS

In the bandit setting, algorithms based on optimism under
uncertainty, like the seminal example UCB (Auer et al.,
2002), were introduced to get an upper bound on the regret
matching the lower bound for the stochastic bandit setting
that was derived in (Lai & Robbins, 1985). We report a
weaker version of this bound in Lemma 2.

Lemma 2 ((Lai & Robbins, 1985)). For all reward dis-
tributions, all strongly consistent policies (policies with
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ERt = o(ta) for all a > 0) satisfy, for all suboptimal arms
k ∈ {1, . . . ,K},

lim inf
t→+∞

ET (k)(t)

log t
≥ 1

KL(ν(k), ν∗)
,

whereKL(ν(k), ν∗) is the Kullback-Leibler divergence be-
tween the distribution ν(k) and the distribution ν∗ of the
rewards of the optimal arm.

Algorithms designed to get matching upper bounds for cer-
tain classes of distributions include Thompson Sampling
(Kaufmann et al., 2012), KL-UCB (Cappé et al., 2013) and
DMED (Honda & Takemura, 2010). The algorithms we
study however have bounds expressed as functions of the
gaps ∆k and place emphasis on being applicable without
prior knowledge of the reward distributions. Indeed the
only hypothesis on these distributions is the subgaussian
property.

Kullback’s inequality on the Kullback-Leibler divergence
implies that KL(ν(k), ν∗) ≥ 2∆2

k where the constant 2 is
the best possible. Optimal upper bounds for T (k)(t) in the
sense of Lemma 2 expressed as functions of the gaps are
of order log(t)/∆2

k. While the goal of the algorithm intro-
duced here is not primarily to match closely this first lower
bound, we want to maintain the correct dependencies, no-
tably the logarithmic dependency in t.

In the bandit setting, a minimax optimal algorithm (optimal
in the distribution free sense) has a regret at most propor-
tional to

√
Kt, matching the following lower bound.

Lemma 3 ((Auer et al., 1995)). For the multi-armed
stochastic bandit setting with K arms,

inf
policies

sup
distributions

ERt ≥
√
Kt/20 .

If a horizon T is known in advance, the MOSS algorithm
(Audibert & Bubeck, 2010b) enjoys this optimal

√
KT up-

per bound while also having a single parameter dependent
upper bound with a log T dependency. Contrary to the
bound we proved for FTL, this is not valid for t 6= T .
MOSS can be converted to the anytime setting with a dou-
bling trick and keep an optimal

√
Kt bound without the

log t dependency optimal with respect to Lemma 2.

There are other algorithms with bounds close to
√
TK,

such as Successive Elimination (SE) (Perchet & Rigollet,
2013; Perchet et al., 2015) and Improved UCB (Auer &
Ortner, 2010), that both enjoy a bound with a

√
TK logK

dependency. These algorithms are however not any-
time. UCB2 and Thompson sampling with Gaussian priors
(Agrawal & Goyal, 2013) are anytime algorithm with the
same

√
TK logK bound. UCB2 also enjoy a distribution-

dependent bound in
∑
k,∆k>0 log(t∆2

k)/∆k.

We introduce an algorithm inspired from MOSS, named
MOSS-anytime. It is anytime minimax optimal and has an
optimal single parameter dependent O

(
K

∆min
log(

t∆2
min

K )
)

bound.

Algorithm 1 MOSS-anytime.
1: Input: α > 0.
2: Pull each arm once.
3: For 1 ≤ k ≤ K, set sk = 1.
4: for t ≥ 1 do
5: Pull arm k that maximizes

6: X
(k)

sk
+

√
(1+α)

2

max(0,log( t
Ksk

))

sk
.

7: Update the number of pulls: sk ← sk + 1.
8: end for

3.1. Anytime optimal upper bound

The best upper bound previously attained by an anytime
algorithm with the log t distribution-dependent behaviour
was
√
tK logK, as obtained by UCB2 (Auer et al., 2002).

While nearly anytime minimax optimal, UCB2 however
used a block structure for the pulls and was thus not as
convenient to use as UCB1 or MOSS. We were able to re-
move this structure and prove with a refined analysis that
a single-pull variant of UCB2 enjoys the same bounds (see
the supplementary material) while keeping the simplicity
of UCB.

MOSS-anytime improves over UCB2 with respect to the
distribution free bound by removing the logK gap. It im-
proves over MOSS with a doubling trick by having both
single parameter dependent and distribution free optimal
bounds.

In the following, we define log(x) := max{1, log(x)}.
Theorem 3 (Upper bounds for MOSS-anytime). In the K
arms bandit setting, for α = 1.35, the expected regret of
MOSS-anytime satisfies for all t ≥ 1

ERt ≤ 75
K

∆min

(
log(

2t∆2
min

K
) + 1

)
+ ∆max

and

ERt ≤ 113
√
Kt+ ∆max .

Theorem 3 states a result only for α = 1.35 but there ex-
ists similar bounds for all α ∈ [0, 1.35] (and for bigger
α with modifications of the proof), with bigger constants.
The constants go to infinity when α goes to zero. How-
ever, in contradiction with this analysis, experimental ex-
amination shows a better performance of the algorithm for
α closer to zero.
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The first upper bound matches a known single parameter
dependent (and K dependent) lower bound in the case of
equal gaps that refines the dependency on ∆ over the lower
bound of Lemma 2.
Lemma 4 ((Mannor & Tsitsiklis, 2004), (Bubeck et al.,
2013) for K = 2). There exists a positive constant C such
that for all policies, for all K ≥ 2 and all ∆ > 0, there
exists a problem with gaps all equal to ∆ such that for all
t ≥ 1,

ERt ≥ C
K

∆
log

(
t∆2

K

)
.

MOSS-anytime is the first anytime algorithm matching this
lower bound while being minimax optimal at all stages.

Sketch of the proof of Theorem 3. The beginning of this
proof uses a decoupling of the arms inspired from the proof
of the upper bounds of MOSS (Audibert & Bubeck, 2010b)
but then departs from it to control the probabilities of the
suboptimal pulls in an anytime fashion. In this second part,
the critical arguments are well chosen relative weights for
the different sources of regret, the use of Hoeffding’s max-
imal inequality and a peeling technique.

Let k0 be an integer in [1,K] that will be chosen later. Let

εt,s =

√
(1+α)

2

max(0,log( t
Ks ))

s be the exploration term of
the algorithm and δ > 0 a constant to be chosen later. For
k ∈ {k0 + 1, . . . ,K}, we define zk = µ∗ − δ∆k

2 , zk0
=

+∞ and zK+1 = 0. We will consider the smallest value
possibly taken by the index of the optimal arm after time t,

A∗t = min
s≥1

min
u≥t

X
∗
s + εu,s ,

and after r pulls of suboptimal arms,

B∗r = min
s≥1

min
u≥r+s

X
∗
s + εu,s .

Step 1: separating the events that the optimal arm is un-
derestimated or that a suboptimal arm is overestimated.
We allow a regret of ∆k0

at each stage,

ERt ≤ t∆k0 + E[

K∑
k=k0+1

(∆k −∆k0
)T (k)(t)] .

We will bound the regret incurred for k > k0. We note πs
the arm pulled at time s.

ERt − t∆k0

≤ E[

K∑
k=k0+1

(∆k −∆k0)
∑
s≥0

I{k pulled at time s}]

≤ E[

K∑
k=k0+1

K∑
j=k0

(∆k −∆k0
)
∑
s≥0

I{πs=k,A∗s∈[zj+1,zj)}] .

We now cut this quantity into two sums: one quantifying
the event that the optimal arm is underestimated (against
values depending on the arms) and a second one quantify-
ing the event that one of the suboptimal arms is pulled even
if the optimal arm is not underestimated.

ERt − t∆k0

≤
∑
s≥0

E[

K∑
j=k0

j∑
k=k0+1

(∆k −∆k0)I{πs=k,A∗s∈[zj+1,zj)}]

+
∑
s≥0

E[

K∑
j=k0

K∑
k=j+1

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}]

Step 2: bounding the probability that the optimal arm
is underestimated. Using some standard computations
(see the supplementary material for more details), we can
reorder the sum and get

K∑
j=k0

j∑
k=k0+1

(∆k −∆k0)I{πs=k,A∗s∈[zj+1,zj)}

≤ I{πs∈[k0+1,K]}

K∑
j=k0+1

(∆j −∆j−1)I{A∗s<zj}

We will rewrite the sum over s of such terms as a sum over
r, number of times that an arm in [k0 + 1,K] has been
pulled. Note that if we know that suboptimal arms were
pulled at least r times before a time s, we get A∗s ≥ B∗r .

∑
s≥0

I{πs∈[k0+1,K]}

K∑
k=k0+1

(∆k −∆k−1)I{A∗s<zk}

≤
∑
r≥0

K∑
k=k0+1

(∆k −∆k−1)I{B∗r<zk} .

Intuitively, for each r, this is of the form (∆kr −∆k0
) for

some kr ≥ k0 and is thus of the order of one ∆kr .

The probability of the events in the sum is bounded as

P{B∗r < zk} ≤ P{∃s≥1,∃t′ ≥ r + s,X
∗
s + εt′,s < zk} .

We use the monotonicity of u 7→ εu,s to simplify the event,

P{∃s≥1,∃t′≥r+s,X∗s+εt′,s<zk}

≤ P{∃s ≥ 1, X
∗
s + ε∗r+s,s < zk} .

Step 3: bounding the probability that a suboptimal arm
is overestimated. Similarly to the previous step, we re-
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order the sum describing this event,

K∑
j=k0

K∑
k=j+1

(∆k −∆k0
)I{πs=k,A∗s∈[zj+1,zj)}

≤
K∑

k=k0+1

∆kI{πs=k,A∗s≥zk}

As we did above, we replace the sum over the time of such
terms by sums over the number of pulls of arms. Let P (k)

r

be the event ”arm k was pulled for the rth time”.

∑
s≥0

K∑
k=k0+1

∆kI{πs=k,A∗s≥zk}

≤
∑
r≥0

K∑
k=k0+1

∆kI{P (k)
r , at time tr , andX

(k)
r +εtr,r≥zk}

≤
∑
r≥0

K∑
k=k0+1

∆kI{∃t′≥r,X(k)
r +εt′,r≥zk}

.

For this sum, for each r we get a sum that intuitively can
be of order

∑K
k=k0+1(∆k −∆k0

), that is roughly K times
larger than the sum depending on the optimal arm.

We use the monotonicity of u 7→ εu,s to simplify the event,

P{∃t′ ≥ r,X(k)

r + εt′,r ≥ zk} ≤ P{X(k)

r + εt,r ≥ zk} .

Step 4: Controlling the probabilities. Putting the two
previous steps together we get the inequality

ERt ≤ t∆k0

+

K∑
k=k0+1

(∆k−∆k−1)
∑
r≥0

P{∃s≥1, X
∗
s+ε

∗
r+s,s<zk}

+

K∑
k=k0+1

∆k

∑
r≥0

P{X(k)

r + εt,r ≥ zk} .

The next step is to control the sums of probabilities, which
are small for r big enough. To this effect we cut the sums in
two, a first part for small r for which the probability is up-
per bounded by 1 and a second part for big r. As noted pre-
viously, intuitively the first sum tend to be K times smaller
than the second one. Thus we cut the sums at indices that
differ by a factor K (up to a (1 + 80α)log(

2t∆2
k

K ) term).

Let r̃k be the largest integer such that r̃k ≤ K
2∆2

k
+ 1 and r̃′k

the largest integer such that r̃′k ≤
(1+80α)log(

2t∆2
k

K )

2∆2
k

.

ERt ≤ t∆k0 +

K∑
k=k0+1

(∆k−∆k−1)r̃k

+

K∑
k=k0+1

(∆k−∆k−1)
∑
r>r̃k

P{∃s≥1, X
∗
s+ε

∗
r+s,s<zk}

+

K∑
k=k0+1

∆kr̃
′
k +

K∑
k=k0+1

∆k

∑
r>r̃′k

P{X(k)

r +εt,r≥zk}

= t∆k0
+A+B + C +D ,

where A,B,C,D are the four sums of the previous equa-
tion.

Bounding term A. Since r̃k ≤ K
2∆2

k
+ 1 ,

A ≤
K∑

k=k0+1

(∆k −∆k−1)(
K

2∆2
k

+ 1)

≤ K

∆k0+1
+ ∆K .

Bounding term B. With Lemma 4 of the supplementary ma-
terial,

B ≤ 4(1 + α)3/2

α2 log(1 + α)

K∑
k=k0+1

(∆k −∆k−1)
K

∆2
k

log(
2et∆2

k

K
)

We compute the sum with a sum-integral comparison and
get

B ≤ 8(1 + α)3/2

α2 log(1 + α)

(
log(

2t∆2
k0+1

K
)

K

∆k0+1
+

2K

∆k0+1

)

Bounding term C. r̃′k ≤
(1+80α)log(

2t∆2
k

K )

2∆2
k

and then

C ≤
K∑

k=k0+1

∆k

(1 + 80α)log(
2t∆2

k

K )

2∆2
k

≤ (1/2 + 40α)
K

∆k0+1
log(

2t∆2
k0+1

K
) .

Bounding term D. Since for r > r̃′k, r >

(1+80α)log(
2t∆2

k
K )

2∆2
k

≥ 1
2∆2

k
, it is not difficult to see that

εt,r ≤ ∆k

√
1+α

1+80α and thus that Lemma 2 of the supple-
mentary material applies.

D ≤
K∑

k=k0+1

32

α2∆k
≤ 32K

α2∆k0+1
.
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Step 5: Putting things together. Define Cα and C ′α as

Cα =
8(1 + α)3/2

α2 log(1 + α)
+ 40α+ 1/2

C ′α =
16(1 + α)3/2

α2 log(1 + α)
+ 1 +

32

α2
.

We get the following bound for the regret, for any k0,

ERt ≤ t∆k0
+Cα

K

∆k0+1
log(

2t∆2
k0+1

K
)+C ′α

K

∆k0+1
+∆K .

Using the same argument as for Theorem 1, we can then
get two particular upper-bounds. The first one is obtained
with k0 the number of the last optimal arm,

ERt ≤ Cα
K

∆min
log(

2t∆2
min

K
) + C ′α

K

∆min
+ ∆K ,

then one upper-bound independent of the distributions, by

taking k0 such that ∆k0
≤
√

K
t < ∆k0+1 ,

ERt ≤
√
Kt(1 + Cα log(2) + C ′α) + ∆K .

For α = 1.35, the maximum value allowed by Lemma 2
of the supplementary material, Cα ≤ 75, C ′α ≤ 60 and
(1 + Cα log(2) + C ′α) ≤ 113. Hence the result.

3.2. Comparison with other algorithms

While MOSS-anytime is optimal with respect to the
distribution-free bound and the single parameter depen-
dent bound of Lemma 4 with equal gaps, other algorithms
can have a better behaviour when the gaps are not all
equal. In particular, MOSS-anytime does not have a dis-
tribution dependent upper bound of the form of Lemma 2,
in
∑
k,∆k>0

log t
∆k

.

UCB, UCB2 and its single-pull variant, Improved UCB
(Auer & Ortner, 2010) and SE are algorithms that all get
upper bounds expressed as sums of terms depending on
each gap ∆k, contrary to MOSS and MOSS-anytime that
only gets a bound expressed as a function of the smallest
gap ∆min. UCB2, Improved UCB and SE get bounds of
the form ERT ≤ C

∑
k,∆k>0

log(T∆2
k)

∆k
. When ∆min is

very small compared to the other gaps, the problem can
be significantly easier than expressed by an upper bound
written as function of ∆min and the bounds for these other
algorithms can be more advantageous.

Finding an algorithm that is optimal with respect to the
lower bounds of the 3 precedent Lemmas is still an open
problem. We conjecture that there exists an algorithm that

enjoys a bound of the form
(
C
∑
k,∆k>0

log(tH)
∆k

+ CK

)
,

where C and CK does not depend on the gaps or t, C does

nor depend onK and the constantH =
(∑

k,∆k>0
1

∆2
k

)−1

is believed to describe the difficulty of the problem (Audib-
ert & Bubeck, 2010a). This bound has the same form as the
one of MOSS-anytime in the case of equal gaps and gets
smaller when some gaps are bigger.

It is shown in (Lattimore, 2015) that such a bound with
CK = 0 cannot be attained for a horizon T = K2 but this
does not exclude that the bound be valid for larger hori-
zons or for CK a non-zero function of K that would be the
dominant term for small T .

4. EXPERIMENTS
This section is dedicated to the experimental comparison
of the algorithms introduced, to which we add a new algo-
rithm for which we do not provide theoretical analysis but
that seems promising in the experiments. This new algo-
rithm, based on the constant H presented in the previous
sections, is a variant of UCB with the index

I
(k)
t = X

(k)

t +

√√√√ 1

2sk
max

{
0, log

(
t(
∑

j,sj<
√
t

sj)−1
)}

where the sj are the number of pulls of the arms until
time t. The idea is that dividing by one sj will lead to a
1/∆2

j in the logarithm appearing in the bound, similarly to
what happens in UCB2 and MOSS. Summing the number
of pulls that are smaller than

√
t is a way to sum only the

pulls of the suboptimal arms and obtain an approximation
of H . Indeed an optimal arm would have been pulled a lin-
ear number of times and will not be included in the sum,
whereas a suboptimal arm should have sj ∝ log t and will
be summed. The hope is that this algorithm will enjoy a
bound of the form

∑
k,∆k>0 log(tH)/∆k, at least for large

t, and we include it here to show as a first step that it has a
good experimental performance.

We compare experimentally the different anytime algo-
rithms studied here on synthetic data. The reward variables
used are all Gaussian with variance σ2 = 1/2. While the
unique best arm will always have mean 0, the gaps between
this arm and the 9 suboptimal arms are the main parame-
ters influencing the behavior of the algorithms and depend
on the experiment.

UCB will be omitted in the figures because its high regret
otherwise distorts the plots and masks the differences be-
tween the other algorithms.

Note that MOSS, although included in the figures for com-
parison, is not an anytime algorithm.

In the first case, reported in Figure 1, all 9 suboptimal arms
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Figure 1. Regrets of the algorithms in the equal gaps case, aver-
aged over 100 runs.

Figure 2. Regrets of the algorithms in the increasing gaps case,
averaged over 800 runs.

have the same gap ∆ = σ. This is the best scenario for
the bound of MOSS and MOSS-anytime. In practice, while
MOSS and MOSS with a doubling trick behave similarly to
UCB2, MOSS-anytime significantly outperforms the other
algorithms.

Figure 2 shows the results of an experiment with increas-
ing gaps: the 9 suboptimal arms have gaps increasing lin-
early between σ and 3σ. This scenario with different gaps
theoretically favours UCB2 over MOSS and its variants.
We note that MOSS-anytime has a regret slightly higher
than the ones of the other algorithms and has a higher vari-
ance. More detailed examination of the data showed that
this variance is due to rare runs with very high regret.

In both experiments, the H-inspired algorithm shows
promising experimental behavior by performing similarly
to MOSS-anytime on those ranges of number of steps. This

Figure 3. Regret of MOSS-Anytime in the increasing gaps case
for different values of α, averaged over 400 runs.

said, we expect that the bigger the number of steps, the bet-
ter the H-inspired algorithm behaves.

In both experiments, α was taken equal to 0.1. This is the-
oretically worse than the 1.35 value used in Theorem 3 but
an experimental study indicated than smaller values of α
were better (see Figure 3). Negative values of α are not
covered by our theoretical analysis and lead to a high vari-
ance (α = −1 gives the FTL algorithm) so we took α small
and positive.

As a last note, further experiments show that the single-pull
UCB2 algorithm mentioned in section 3.1 is experimen-
tally very close to UCB2 in all cases (see the supplemen-
tary material): the complicated structure of pulls of UCB2
can be safely removed from both theoretical and practical
points of view.

5. CONCLUSION
In the full information and in the bandit stochastic settings,
we investigated anytime algorithms with regret bounded
optimally both from a distribution dependent (or single pa-
rameter dependent) and a distribution free points of view.
We proved that this is realized by the classic follow-the-
leader algorithm in full information. In the bandit setting,
we introduced the MOSS-anytime algorithm and proved
that it is minimax optimal and has an optimal single param-
eter dependent bound function of the minimum gap ∆min.

An algorithm that gets the same properties as MOSS-
anytime and additionally a bound using the gaps of all
the arms is still an open problem. A candidate algorithm
for this task shows promising empirical performance and
would require involved theoretical analysis.
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identification in multi-armed bandits. In Proceedings of
the 23th Conference on Learning Theory (COLT), pp.
13–p, 2010a.

Audibert, Jean-yves and Bubeck, Sbastien. Regret Bounds
and Minimax Policies under Partial Monitoring. Journal
of Machine Learning Research, 11:2785–2836, 2010b.

Auer, Peter and Ortner, Ronald. Ucb revisited: Improved
regret bounds for the stochastic multi-armed bandit prob-
lem. Periodica Mathematica Hungarica, 61(1-2):55–65,
2010.

Auer, Peter, Cesa-Bianchi, Nicolo, Freund, Yoav, and
Schapire, Robert E. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings
ot the 36th Annual Symposium on Foundations of Com-
puter Science, pp. 322–331. IEEE, 1995.

Auer, Peter, Cesa-Bianchi, Nicolo, and Fischer, Paul.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.
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