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Abstract

This paper is about the estimation of the max-
imum expected value of a set of independent
random variables. The performance of several
learning algorithms (e.g., Q-learning) is affected
by the accuracy of such estimation. Unfortu-
nately, no unbiased estimator exists. The usual
approach of taking the maximum of the sample
means leads to large overestimates that may sig-
nificantly harm the performance of the learning
algorithm. Recent works have shown that the
cross validation estimator—which is negatively
biased—outperforms the maximum estimator in
many sequential decision-making scenarios. On
the other hand, the relative performance of the
two estimators is highly problem-dependent. In
this paper, we propose a new estimator for the
maximum expected value, based on a weighted
average of the sample means, where the weights
are computed using Gaussian approximations for
the distributions of the sample means. We com-
pare the proposed estimator with the other state-
of-the-art methods both theoretically, by deriving
upper bounds to the bias and the variance of the
estimator, and empirically, by testing the perfor-
mance on different sequential learning problems.

1. Introduction

In many machine learning problems it is necessary to es-
timate the maximum expected value (MEV) of a set of
random variables, given samples collected from each vari-
able (van Hasselt, 2013). For instance, in reinforcement
learning, the optimal policy can be found by taking, in each
state, the action that attains the maximum expected cumula-
tive reward. The optimal value of an action in a state, on its
turn, depends on the maximum expected values of the ac-
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tions available in the reached states. Since errors propagate
through all the state-action pairs, a bad estimator for the
maximum expected value negatively affects the speed of
learning (van Hasselt, 2010). Another example of the im-
portance of producing accurate estimates for the maximum
expected value is provided by sponsored search auctions,
where the search engine needs to select which ad to show
from a pool of candidates. To select the best ad, usually,
one needs to estimate the probability that a random user
will click on it. Since, each time an ad is clicked, the search
engine charges to the advertiser a fee that depends on the
click probabilities of the top two ads, a good estimate of
the maximum expected value is essential to maximize the
revenue of the search engine (Xu et al., 2013).

The most common estimator is the Maximum Estimator
(ME), which consists of taking the maximum of the sample
means. It is well known (Smith & Winkler, 2006; Van den
Steen, 2004; van Hasselt, 2010) that ME overestimates the
maximum expected value. To avoid such positive bias, a
common approach is the Double Estimator (DE), that con-
sists in a cross-validatory approach where the sample set is
split into two sample sets A and B (Stone, 1974). DE re-
sults from the average of two estimates. For the first esti-
mate, the sample set A is used to determine which is the
variable with the largest mean, while sample set B is used
to estimate the value of the variable. The second estimate is
obtained by switching the roles of A and B. Although the
absolute bias of CV can be larger than the one of ME (van
Hasselt, 2013), CV is negatively biased and this can be
an advantage in some applications (van Hasselt, 2010; Xu
et al., 2013; van Hasselt et al., 2015). Unfortunately, an un-
biased estimator for the maximum expected value does not
exist for many common distributions (e.g., Gaussian, Bi-
nomial, and Beta) (Blumenthal & Cohen, 1968; Dhariyal
et al., 1985). On the other hand, having an unbiased esti-
mator does not entail a small expected Mean Squared Error
(MSE), since also the variance of the estimator has to be
considered.

In this paper we propose to estimate the maximum ex-
pected value using the Weighted Estimator (WE), that con-
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sists of a weighted average of the sample means, where the
weights are obtained by estimating the probability that each
variable has the largest expected value. To compute such
probabilities we would need to know the distributions of
the sample means. Relying on the central limit theorem,
we approximate the distributions of the samples means
with Gaussian distributions parameterized by the sample
mean and sample variance. Such weighting mechanism re-
duces the bias w.r.t. ME without increasing the variance as
DE does. The original contributions are: (1) the introduc-
tion of the WE estimator, (2) a theoretical analysis of the
bias and the variance of the estimation error, (3) an exten-
sive empirical analysis that compares ME, DE, WE when
used for learning in sequential decision problems.

The rest of the paper is organized as follows. In the next
section we introduce the basic notation and discuss the
most related works. Section 3 contains the description of
the proposed approach, whose theoretical properties are
presented in Section 4. In Section 5, we show the empiri-
cal results where WE is compared with the state of the art.
Section 6 draws conclusions and discusses future work.

2. Preliminaries

Problem definition We consider the problem of finding the
maximum expected value of a finite set of M > 2 inde-
pendent random variables X = {X7, ..., X;}. We denote
with f; : R — R the probability density function (PDF),
with F; : R — R the cumulative density function (CDF),
with p; the mean, and with crf the variance of variable X;.
The maximum expected value . (X) is defined as

+oo
(X)) = max py; = max/ zfi(x) de. (1)

Assuming that the PDFs are unknown, /. (X) cannot be
found analytically. Given a set of noisy samples S =
{S1,..., SN} retrieved by the unknown distributions of
each X, we are interested in finding an accurate estima-
tor /1, (S) = p«(X). These random samples have means
[1, ..., iy that are unbiased estimators of the true mean p;.
The PDF and CDF of /i;(S) are denoted by £ and F5.

Related works The maximum expected value can be ap-
proximated with the maximum of the sample means:
"7 (S) = max fi;(S) & p(X). )

¥
This method is called Maximum Estimator (ME) and it is
used, for instance, by Q-Learning to approximate the value
of the following state by maximizing over the estimated
action values in that state. Unfortunately, as proved in
(Smith & Winkler, 2006), this estimator is positively bi-
ased and this is critical in Q-Learning where the approx-
imation error can increase step by step due to the over-
estimation of the state-action values. To understand the
presence of this positive bias, consider the CDF F,,, ()

of the maximal estimator max; fi; that is the probability
that ME is less than or equal to x. This probability is
equal to the probability that all other estimates are less
than or equal to z: Fmax(x) = P(max; i; < x) =
Hf\ilP(ﬂi <) = Hgl Fi(z). Considering the PDF
fnm(, the expected value of the maximum estimator is
E[pMP] = Elmax; ;] = ffooo & fonax(x)dz. This is
equal to

0 M
—Z/ efia HF 3)

i#]
However, this is the expected value of the ME, not the max-
imum expected value in (1). The positive bias can be ex-
plained by the presence of z in the integral Wthh correlates
with the monotonically increasing product Ht 2; Fj(2).

In order to avoid this issue, an alternative method, called
Double Estimator (DE), has been proposed in (van Hasselt,
2010) and theoretically analyzed in (van Hasselt, 2013). In
this technique, like in the case of the maximum estimator,
a sample set S retrieved by the true unknown distribution
is used, but in this case it is divided in two disjoint subsets
SA = {SA, ..., 84} and SB = {SP, ..., SB}. If the sets
are split in a proper way, for instance randomly, the sam-
ple means ﬂ{‘ and /12 are unbiased, like the means /i; in
the case of the single estimator. An estimator a*, such that
A (X) = max; i (X), is used to pick an estimator 2.
that is an estimate for max; E[P] and for max; E[X;].
Obviously, this can be done the opposite way, using an es-
timator b* to retrieve the estimator value /i1 . DE takes the
average of these two estimators. The bias of DE can be
found in the same way as for ME with

= / A (z) H Fiz)dz @)
J#i
when using an estlmator a* (the same holds by swapping A
and B). This formula can be seen as a weighted sum of the
expected values of the random variables where the weights
are the probabilities of each variable to be the maximum.
Since these probabilities sum to one, the approximation
given by DE results in a value that is lower than or equal
to the maximal expected value. Even if the underestima-
tion does not guarantee better estimation than the ME, it
can be helpful to avoid an incremental approximation er-
ror in some learning problems. For instance, Double Q-
Learning (van Hasselt, 2010) is a variation of Q-Learning
that exploits this technique to avoid the previously de-
scribed issues due to overestimation. Double Q-Learning
has been tested in some very noisy environments and suc-
ceeded to find better policies than Q-Learning. Double Q-
Learning has been applied also in the field of Deep Rein-

E ADE
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forcement Learning as a modification of the widely known
DQN model (van Hasselt et al., 2015). Another remarkable
application of DE is presented in (Xu et al., 2013) where it
achieves better results than ME in a sponsored search auc-
tion problem.

3. The Proposed Method

Differently from ME and DE that output the sample av-
erage of the variable that is estimated to be the one with
the largest mean, we propose to estimate the maximum ex-
pected value 1, (X) with the Weighted Estimator (WE) that
computes a weighted mean of all the sample averages:

Zul

Ideally, each weight w; should be the probability of /i;(.5)
being larger than all other samples means:

uf = P (7u(s) = maxi($)).

If we knew the PDFs f5 for each j1;(S) we could compute
the Distribution-aware Weighted Estimator (DWE):

+
zm V[ @l
J#i
We know that the sample mean /i;(S) is a random vari-
2

AWE

ADWE )dz. (5)

able whose expected value is p; and whose variance is ‘g—‘
7

Unfortunately, its PDF f;g depends on the PDF f; of vari-
able X; that is assumed to be unknown. In particular, if X;
is normally distributed, then, independently of the sample
size, the sampling distribution of its sample mean is nor-

mal too: [1;(S) ~ N (ui, %) On the other hand, by the

central limit theorem, the sampling distribution fis of the
sample mean /i;(.S) approaches the normal distribution as
the number of samples |S;| increases, independently of the
distribution of X;. Leveraging on these considerations, we
propose to approximate the distribution of the sample mean
f1;(S) with a normal distribution, where we replace the (un-
known) population mean and variance of variable X; with
their (unbiased) sample estimates fi;(.5) and ;(.5):

~2
?z?N(yS,”l‘(S)),
L~ i (S) B

so that WE is computed as:
F2(x) H Fjs(x) dz. (6)

Z e / i

It is worth noting that WE is consistent with z..(X). In fact,
as the number of samples grows to infinity, each sample
mean [i; converges to the related population mean p;, and
the variance of the normal distribution fZ tends to zero, so
that the weights of the variables with expected value less
than 4, (X) go to zero, so that g}V E — 1, (X).

AWE'

4. Estimation Error

In this section, we theoretically analyze the estimation error
of 4V E(S) in terms of bias and variance, comparing it with
the results available for ME and DE. Although DWE can-
not be used in practice, we include it in the following anal-
ysis since it provides an upper limit to the accuracy of WE.

4.1. Bias

We start with summarizing the main results about the bias
of ME and DE reported in (van Hasselt, 2013). For what
concerns the direction of the bias, ME is positively biased,
while DE is negatively biased. If we look at the abso-
lute bias, there is no clear winner. For instance, when
all the random variables are identically distributed, DE is
unbiased, while the same setting represents a worst case
for ME . On the other hand, when the maximum expected
value is sufficiently larger than the expected values of the
other variables, the absolute bias of ME can be significantly
smaller than the one of DE (see Section 5). The bias of
ME is bounded by:

Bias (ﬂi‘/[E) <

For the bias of DE, van Hasselt (2013) conjectures the fol-
lowing bound (which is proved for two variables):

M o M 4

. A~ 1 Ui Ui
Bins (A7) > =5 | \| 2 g7 T 4| 2 5P

In the next theorem we provide a relationship between the
bias of WE and the one of ME.

Theorem 1. For any given set X of M random variables:

Bias(gVF) < Bias(aMF) <

As we will see in Section 5, this does not mean that the
absolute bias of WE is necessarily smaller than the one of
ME, since (as we will see later) the bias of WE can be also
negative. In order to better characterize the bias of WE, we
put it in relation with the bias of DE.

Theorem 2. For any given set X of M random variables:
Bias(aV®) > Bias(ilF).

Example In Figures 1 and 2 we visualize the bias of
the different MEV estimators in a setting with two nor-
mally distributed random variables (X; ~ N(u1,0%) and
Xy ~ N(uz,03)) as a function of the difference of their
expected values. Both variables have variance equal to 10
(02 = 03 = 10) and we assume to have 100 samples for
each variable (]S1| = |S2| = 100). Figure 1 confirms the
previous theoretical analysis: the bias of ME is always pos-
itive, while the biases of DWE and DE are always negative,
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Figure 1. Comparison of the bias of the different estimators.

with the latter always worse than the former. The bias of
WE can be positive or negative according to the situation,
but it always falls in the range identified by the biases of
ME and DE. Looking at the absolute biases shown in Fig-
ure 2, we can notice that there is not a clear winner. As pre-
viously mentioned, when the variables have the same mean,
both DE and DWE are unbiased, while it represents a worst
case for the bias of ME and WE. It follows that, when the
difference of the two means is small (less than 0.5 in the ex-
ample), DE suffers less absolute bias than ME and WE. For
moderate differences of the means (between 0.5 and 1.8 in
the example), WE has the minimum absolute bias, while
ME is preferable for larger differences. Such results can
be generalized as follows: DE suffers a small bias when
there are several variables that have expected values close
(w.r.t. their variances) to the maximum one, while ME pro-
vides the best estimate when there is one variable whose
expected value is significantly larger (w.r.t. the variances)
than all the expected values of all the other variables. In all
the other cases, WE is less biased.

4.2. Variance

We cannot evaluate the goodness of an estimator by ana-
lyzing only its bias. In fact, since the MSE of an estimator
is the sum of its squared bias and its variance, we need to
take into consideration also the latter.

van Hasselt (2013) proved that both the variance of ME and
the one of DE can be upper bounded with the sum of the

2
variances of the sample means: Var (42/7) < M “;—‘,
2
Var (aPP) < 21, 57+ The next theorem shows that the

E
same upper bound holds also for the variance of WE.

Theorem 3. The variance of WE is upper bounded by

M o
Var (ﬂ*WE) < Z i
i=1

|54

The bound in Theorem 3 is overly pessimistic; in fact, even

Absolute Bias

py - 2

Figure 2. Comparison of the absolute bias of the different estimators.

if each weight w is correlated to the other weights and to
the sample mean /i;(.S), their sum is equal to one. For sake
of comparison, we upper bound the variance of DWE.

Theorem 4. The variance of DWE is upper bounded by
2

Var (a2 F

i
) - ierlr}?“},{nf |5

Example As done for the bias, in Figure 3 we show the
variance of the different estimators under the same settings
described above. As the difference of the means of the
two variables grows, the variance of all the estimators con-
verges to the variance of the sample mean of the variable
with the maximum expected value. DE is the estimator
with the largest variance since its sample means are com-
puted using half the number of samples w.r.t. the other esti-
mators. WE exhibits a variance slightly larger than the one
of ME, while, as expected, the variance of DWE is always
the smallest.

Finally, in Figure 4 we show the MSE (variance + bias?) of
the different estimators. When the difference between the
two means is less than one, WE suffers from a lower MSE
than the other two estimators. On the other hand, ME is
preferable when there is a variable with an expected value
that is significantly larger than the other ones.

S. Experiments

In this section we empirically compare the performance of
WE, ME, and DE on four sequential decision-making prob-
lems: two multi-armed bandit domains and two MDPs.

5.1. Multi-Armed Bandits

In the multi-armed bandit problem, a learner wants to iden-
tify the action (arm) associated to the largest mean reward.
In some domains, we are not interested only in knowing
which is the best action, but we want also an accurate esti-
mate of its expected reward.
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Figure 3. Comparison of the variance of the different estimators.
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Figure 4. Comparison of the MSE of the different estimators.
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Figure 5. MSE for each setting. Results are averaged over 2,000 experiments.

5.1.1. INTERNET ADS

We consider the problem as formulated in (van Hasselt,
2013). The goal of this problem is to select the best ad to
show on a website among a set of M possible ads, each one
with an unknown expected return per visitor. Assuming
that each ad has the same return per click, the best ad is the
one with the maximum click rate. Since the click rates are
unknown, we need to estimate them from data. In our set-
ting, given N visitors, each ad is shown the same number of
times, so that we have N/M samples to compute the sam-
ple click rate. A quick and accurate estimate of the maxi-
mum click rate may be relevant to determine future invest-
ment strategies. We compared the results of ME, DE, and
WE in three different settings. We consider a default con-
figuration where we have N = 300, 000 visitors, M = 30
ads and mean click rates uniformly sampled from the inter-
val [0.02, 0.05]. In the first experiment, we vary the number
of visitors N = {30, 000, 60, 000, ..., 270, 000, 300, 000},
so that the number of impressions per ad ranges from 1, 000
to 10,000. In the second experiment, we vary the num-

ber of ads M = {10,20,...,90,100} and the number
of visitors is set to N = 10,000 - M. In the last ex-
periment, we modify the interval of the mean click rates
by changing the value of the upper limit with values in
{0.02,0.03, ...,0.09, 0.1}, with the lower fixed at 0.02.

In Figure 5, we show the M SE = bias? + variance for
the three experiments comparing the results obtained by
each estimator. In the first experiment (Figure 5(a)), as ex-
pected, the MSE decreases for all estimators as the number
of impressions increases and WE has the lowest MSE in all
cases. It is interesting to see how the ME estimator has a
very large bias in the leftmost case, which shows (accord-
ingly to Figure 2) that ME estimator suffers large bias when
only a few samples are available and, therefore, the vari-
ances of the sample means are large. From Figure 5(b) we
can notice that an increasing number of actions has a neg-
ative effect on ME and a positive effect on the DE due to
the fact that a larger number of ads implies a larger number
of variables with a mean close to the maximum expected
value, that represents a worst case for ME and a best case
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Figure 6. Relative player 1 utility gain for different value of the
bid defined as ZZZSJ’((SZ; — 1. Results are averaged over 2,000
experiments.

for DE. The MSE of WE is the lowest in all cases and does
not seem to suffer the increasing number of actions. The
same happens in Figure 5(c) when all the ads share the
same click rate (0.02), where DE is the best. However, it
starts to have large variance as soon as the range of proba-
bilities increases (Figure 3). WE has the lowest MSE, but,
as the range increases, it gets similar to the MSE of ME.

5.1.2. SPONSORED SEARCH AUCTIONS

We considered the domain described in (Xu et al., 2013),
where a search engine runs an auction to select the best ad
to show from a pool of candidates with the goal of maxi-
mizing over a value that depends on the bid of each adver-
tiser and its click probability. Each time an ad is clicked,
the search engine charges the advertiser a fee that depends
on the bids b of the advertisers and the click through rates
(CTRs) p of the ads. Since in general the CTRs are un-
known, it is crucial for the search engine to estimate from
the data which is the best ad (i.e., the one that maximizes
b - p) and the payment in case of click. Wrong estimations
may significantly harm the revenue. On the other hand,
the advertisers have to decide the value of their bid b; ac-
cording to the true values v; of a click. A desirable con-
dition in auctions, called incentive compatibility, requires
that the advertisers maximize their utility by truthfully bid-
ding b; = v;. Incentive incompatibility may occur if the
estimate of the click probabilities are not accurate, there-
fore it is interesting to evaluate how the estimators per-
form on this task. We measured the utility gain of adver-
tiser 1, whose true per click value is v; = 1, for differ-
ent bid b; values and competing with four other advertis-

Algorithm 1 Weighted Q-Learning
initialize V(s,a) : Q(s,a) = u(s,a) =0, o(s,a) = o
repeat
Initialize s.
repeat
Choose action a from state s using policy derived
from @ (e.g. e-greedy).
Take action a, observe reward r and next state s’.
for all a; € ado
w; fj;o f5(s', a;) 1. F3(s',a5) da.
end for
W+ wT Q(s',a).
Q(s.0) < Q(s,a) + alr +7W — Q(s,a)).
Update (s, a) and o(s, a).
s+ §,a+dad.
until s is terminal
until

ers whose bids are b_; = {0.9,1,2,1}. The CTRs are:
p = {0.15,0.11,0.1,0.05,0.01}. Following the approach
suggested in (Xu et al., 2013), CTRs are estimated from
data collected using the UCB1 algorithm (Auer et al., 2002)
in a learning phase consisting of 10, 000 rounds of explo-
ration (i.e., impressions).

Figure 6 shows the utility gain of advertiser 1 when using
ME, DE, and WE.! It can be seen that ME does not achieve
incentive compatibility because utility has positive values
before the true bid price (which is highlighted with a black
vertical bar). On the other hand, with DE the advertiser has
no incentive to underbid, but there is an incentive to over-
bid using DE. With WE, there is no significant incentive
to underbid or overbid showing that it succeeds to achieve
incentive compatibility.

5.2. Markov Decision Process

In the following experiments we compare Q-Learning,
Double Q-Learning and a modified version of Q-Learning,
that we call Weighted Q-Learning (see Algorithm 1), which
uses WE to estimate the maximum action values. Since
WE computes the probability of each action to be the opti-
mal one, it is quite natural to exploit them to define a policy,
that we call Weighted policy. At each step, this policy se-
lects an action using the probability estimated by WE. As
we show in the following experiments, the exploration in-
duced by this policy is effective in reducing the estimation
error of the value function.

!The debiasing algorithm proposed in (Xu et al., 2013) is a
cross validation approach, but differs from the estimators consid-
ered in this paper. It averages the values used for selection and the
values used for estimation, thus being a hybrid of DE and ME.
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Figure 7. Grid world results with the three reward functions averaged over 10,000 experiments. Optimal policy is the black line.

5.2.1. GRID WORLD

We analyzed the performance of the different estimators on
a 3 x 3 grid world where the start state in the lower-left
cell and the goal state in the upper-right cell (van Has-
selt, 2010). In this domain, we also compared the per-
formance of the Bias-corrected Q-Learning algorithm, a
modified version of Q-learning that, assuming Gaussian
rewards, corrects the positive bias of ME by subtract-
ing to each Q-value a quantity that depends on the stan-
dard deviation of the reward and on the number of ac-
tions (Lee & Powell, 2012; Lee et al., 2013). Learning rate
is ay(s,a) = W where n4(s, a) is the current num-
ber of updates of that action value and the discount factor is
~v = 0.95. In Double Q-Learning we use two learning rates
a(s,a) = W and P (s,a) = W where
n{(s,a) and n (s, a) are respectively the number of times
when table A and table B are updated. We use an e-greedy
policy with ¢ = i(s) where n(s) is the number of times
the state s has been visited. For the reward function we
consider three different settings: (1) Bernoulli, —12 or 10
randomly at each step, (2) Gaussian with mean y = —1
and standard deviation o = 5, (3) Gaussian with mean
# = —1 and standard deviation o = 1. Once in the goal
state, each action ends the episode and returns a reward
of 5. Since the optimal policy ends the episode in five ac-

tions, the optimal average reward per step is 0.2. Moreover,
the optimal value of the action maximizing the Q-value is
574 — 2% _,7* ~ 0.36. In Figure 7, the top plots show
the average reward per step obtained by each algorithm and
the plots at the bottom show the estimate of the maximum
state-action value at the starting state for each algorithm.
Figures 7(a) and 7(b) show that when the variance is large
with respect to the differences between the means, the un-
derestimation of Double Q-Learning allows to achieve the
best policy faster than other algorithms, even if the approxi-
mation of the Q-function is not accurate as for Weighted Q-
Learning. Bias-corrected Q-Learning performs better than
Q-Learning, but worse than the other algorithms (at least
when the reward variance is large), even if the approxi-
mation of the Q-function is quite accurate. In all settings,
Weighted Q-Learning shows much less bias than the other
estimators (in particular using the weighted policy). Us-
ing the weighted policy, it achieves the best performance
in the case with ¢ = 1 (see Figure 7(c)). This happens
because the weighted policy exploits the good approxima-
tion of the Q-function computed by Weighted Q-Learning
and reduces the exploration faster than e greedy. It is worth
to point out that the Gaussian approximation of Q-values
used by Weighted Q-Learning works well for both Gaus-
sian and Bernoullian rewards, showing that WE is effective
even with non-Gaussian distributions.
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5.2.2. FOREX rithms on the training set (Figure 8(a)) and test set (Fig-

Finally, we want to evaluate the performance of the three
estimators in a more challenging learning problem. For-
eign Exchange Market (Forex) is known to be an environ-
ment with hardly predictable dynamics. For this reason, it
is very difficult to estimate the Q-values and, therefore, the
expected profit. In real cases it becomes a crucial issue,
especially in terms of risk management, to avoid overesti-
mation or underestimation of the Q-value of a state-action
pair. To better evaluate the results, we defined a more ba-
sic environment compared to the real market. In our Forex
MDP the agent enters in the market always with 1$ and
each time the agent enters on long or short position a fixed
spread value of 0.0002$ is paid. The possible actions taken
from the agent can be -1, 0 or 1, which mean respectively
’enter on a short position’, ’close a position’ and ’enter
on long position’. As state space we consider the sugges-
tions (in terms of actions) provided by 7 common Forex
indicators and the action chosen by the agent at the pre-
vious time step. The state space is S = {—1,0,1}® with
$i=1..7(t) = {—1,0,1} and sg(¢t) = a(t — 1). The action
taken by the agent is a(t) = {—1,0,1}. The reward r(t)
is a function of the previous and current action chosen and
of the difference between the current closing price ¢(t) and
the previous closing price ¢(t — 1):

r(t) = a(t—1)(c(t)—c(t—1))+0.5xspread|a(t)—a(t—1)|.

The same four algorithms used in the grid world domain
were trained using historical daily data of GBP/USD ex-
change rate from 09/22/1997 to 01/10/2005 and tested on
data from 01/11/2005 to 05/27/08. During the training
phase, we set learning rate (s, a) = @, discount fac-
1

n(s)

tory=0.8and € =

In Figure 8 is shown the profit per year of the four algo-

ure 8(b)) in relation to the number of training episodes. In
this training phase an e-greedy policy is used for Q-learning
and Double Q-Learning, while Weighted Q-Learning has
been done with both the e-greedy policy and the Weighted
policy. During training, Q-learning performs better than
Double Q-learning and also than Weighted Q-learning.
Weighted Q-learning with the Weighted policy has the
worst performance on the training set, but it performs
significantly better on the test set. This is because the
Weighted policy is more explorative than the e-greedy pol-
icy, so the performance can be worse during the training
phase, but the estimation of the Q-values is more accu-
rate. Double Q-learning performs worse than Q-learning
and Weighted Q-learning both on training set and test set.
The reason is that in many states there is an action that is
significantly better than the others, that represents the case
where ME gives the best results, while DE suffers.

6. Conclusions

We have presented a new estimator for the maximum ex-
pected value of a set of random variables, based on a
weighted average of the sample means. An extensive em-
pirical analysis confirms what has been observed in the the-
oretical analysis, showing that no estimator is always the
best. Nevertheless, our estimator has a robust behavior per-
forming well in all conditions and obtaining the best per-
formance in most of the “non-trivial” cases.

As future work, in order to apply the proposed estimator
to continuous reinforcement learning problems, it will be
interesting to extend WE to the case where Q-values are
not stored in a table, but are represented through regression
models such as trees or neural networks.
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