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Abstract
We consider the problem of estimating change in
the dependency structure of two p-dimensional
Ising models, based on respectively n1 and n2

samples drawn from the models. The change
is assumed to be structured, e.g., sparse, block
sparse, node-perturbed sparse, etc., such that it
can be characterized by a suitable (atomic) norm.
We present and analyze a norm-regularized esti-
mator for directly estimating the change in struc-
ture, without having to estimate the structures of
the individual Ising models. The estimator can
work with any norm, and can be generalized to
other graphical models under mild assumptions.
We show that only one set of samples, say n2,
needs to satisfy the sample complexity require-
ment for the estimator to work, and the estima-
tion error decreases as c√

min(n1,n2)
, where c de-

pends on the Gaussian width of the unit norm
ball. For example, for `1 norm applied to s-
sparse change, the change can be accurately es-
timated with min(n1, n2) = O(s log p) which is
sharper than an existing result n1 = O(s2 log p)
and n2 = O(n2

1). Experimental results illustrat-
ing the effectiveness of the proposed estimator
are presented.

1. Introduction
Over the past decade, considerable progress has been made
on estimating the statistical dependency structure of graph-
ical models based on samples drawn from the model. In
particular, such advances have been made for Gaussian
graphical models, Ising models, Gaussian copulas, as well
as certain multi-variate extensions of general exponential
family distributions including multivariate Poisson mod-
els (Banerjee et al., 2008; Kanamori et al., 2009; Mein-
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shausen & Bühlmann, 2006; Ravikumar et al., 2010; 2011;
Yang et al., 2012).

In this paper, we consider Ising models and focus on the
problem of estimating changes in Ising model structure:
given two sets of samples Xn1

1 = {x1
i }
n1
i=1 and Xn2

2 =
{x2

i }
n2
i=1 respectively drawn from two p-dimensional Ising

models with true parameters θ∗1 and θ∗2 , where θ∗1 , θ
∗
2 ∈

Rp×p, the goal is to estimate the change δθ∗ = (θ∗1 − θ∗2).
In particular, we focus on the situation when the change
δθ∗ has structure, such as sparsity, block sparsity, or node-
perturbed sparsity, which can be characterized by a suitable
(atomic) norm (Chandrasekaran et al., 2012; Mohan et al.,
2014). However, the individual model parameters θ∗1 , θ

∗
2

need not have any specific structure, and they may both
correspond to dense matrices. The goal is to get an esti-
mate δθ̂ of the change δθ∗ such that the estimation error
∆ = (δθ̂ − δθ∗) is small. Such change estimation has po-
tentially wide range of applications including identifying
the changes in the neural connectivity networks, the dif-
ference between plant trait interactions at different climate
conditions, and the changes in the stock market dependency
structures.

One can consider two broad approaches for solving such
change estimation problems: (i) indirect change estima-
tion, where we estimate θ̂1 and θ̂2 from two sets of sam-
ples separately and obtain δθ̂ = (θ̂1 − θ̂2), or (ii) direct
change estimation, where we directly estimate δθ̂ using the
two sets of samples, without estimating θ1 and θ2 individ-
ually. In a high dimensional setting, recent advances (Cai
et al., 2011; Ravikumar et al., 2010; 2011) illustrate that
accurate estimation of the parameter θ∗ of an Ising model
depends on how sparse or otherwise structured the true pa-
rameter θ∗ is. For example, if both θ∗1 and θ∗2 are sparse
and the samples n1, n2 are sufficient to estimate them ac-
curately (Ravikumar et al., 2010), indirect estimation of δθ̂
should be accurate. However, if the individual parameters
θ∗1 and θ∗2 are somewhat dense, and the change δθ∗ has
considerably more structure, such as block sparsity (only
a small block has changed) or node perturbation sparsity
(only edges from a few nodes have changed) (Mohan et al.,
2014), direct estimation may be considerably more efficient
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both in terms of the number of samples required as well as
the computation time.

Related Work: In recent work, Liu et al. (2015a) proposed
a direct change estimator for graphical models based on the
ratio of the probability density of the two models (Gret-
ton et al., 2009; Kanamori et al., 2009; Sugiyama et al.,
2008; 2012; Vapnik & Izmailov, 2015). They focused on
the special case of L1 norm, i.e., δθ∗ ∈ Rp2 is sparse,
and provided non-asymptotic error bounds for the estimator
along with a sample complexity of n1 = O(s2 log p) and
n2 = O(n2

1) for an unbounded density ratio model, where s
is the number of the changed edges with p being the num-
ber of variables. Liu et al. (2015b) improved the sample
complexity to min(n1, n2) = O(s2 log p) when a bounded
density ratio model is assumed. Zhao et al. (2014) consid-
ered estimating direct sparse changes in Gaussian graphical
models (GGMs). Their estimator is specific to GGMs and
can not be applied to Ising models.

Our Contributions: We consider general structured direct
change estimation, while allowing the change to have any
structure which can be captured by a suitable (atomic) norm
R(·). Our work is a considerable generalization of the ex-
isting literature which can only handle sparse changes, cap-
tured by the L1 norm. In particular, our work now enables
estimators for more general structures such as group/block
sparsity, hierarchical group/block sparsity, node perturba-
tion based sparsity, and so on (Banerjee et al., 2014; Chan-
drasekaran et al., 2012; Mohan et al., 2014; Negahban
et al., 2012). Interestingly, for the unbounded density ratio
model, our analysis yields sharper bounds for the special
case of `1 norm, considered by Liu et al. (2015a). In par-
ticular, when δθ∗ is sparse and our estimator is run with
L1 norm, we get a sample complexity of n1 = n2 =
O(s log p) which is sharper than n1 = O(s2 log p) and
n2 = O(n2

1) in (Liu et al., 2015a).

The regularized estimator we analyze is broadly a Lasso-
type estimator, with key important differences: the ob-
jective does not decompose additively over the samples,
and the objective depends on samples from two distribu-
tions. The estimator builds on the density ratio estimator
in (Liu et al., 2015a), but works with general norm reg-
ularization (Banerjee et al., 2014; Chandrasekaran et al.,
2012; Negahban et al., 2012) where the regularization pa-
rameter λn1,n2

depends on the sample size for both Ising
models. Our analysis is quite different from the existing
literature in change estimation. Liu et. (2015a) build on
the primal-dual witness approach of Wainwright (Wain-
wright, 2009), which is effective for the special case of
L1 norm. Our analysis is largely geometric, where generic
chaining (Talagrand, 2014) plays a key role, and our results
are in terms of Gaussian widths of suitable sets associated
with the norm (Banerjee et al., 2014; Chandrasekaran et al.,
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(i) δθ = θ1 − θ2

Figure 1. Examples of δθ with different structures. First, sec-
ond, and last rows show the sparsity structure of δθ. Second row
presents the group sparsity structure. Last row shows the node
perturbation structure. Blue represents zeros.

2012).

The rest of the paper is organized as follows. In Section 2,
we introduce the direct change estimator based on the ratio
of the probability density of the Ising models. In Section
3, we establish statistical consistency of the direct change
estimator, and conclude in Section 5.

2. Generalized Direct Change Estimation
We consider the following optimization problem

argmin
δθ

L(δθ;Xn1
1 ,Xn2

2 ) + λn1,n2
R(δθ), (1)

where Xn1
1 = {x1

i }
n1
i=1 and Xn2

2 = {x2
i }
n2
i=1 are two sets of

i.i.d binary samples drawn from from Ising graphical mod-
els with parameter θ∗1 and θ∗2 , respectively, each x1

i and x2
i

are p−dimensional vectors, and n1, n2 are the respective
sample sizes.

In this Section, we first give a brief background on Ising
model selection. Then, we explain how to develop the
loss function L(δθ;Xn1

1 ,Xn2
2 ) based on the density ratio

(Gretton et al., 2009; Kanamori et al., 2009; Sugiyama
et al., 2008; Vapnik & Izmailov, 2015) to directly estimate
δθ = θ1 − θ2, and finally we describe how to solve the
optimization problem (1) for any norm R(δθ).

2.1. Ising Model

Let X = (X1, X2, · · · , Xp) denote a random vector in
which each variable Xs ∈ {−1, 1}. Let G = (V,E) be
an undirected graph with vertex set V = {1, · · · , p} and
edge set E whose elements are unordered pairs of distinct
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vertices. The pairwise Ising Markov random field associ-
ated with the graph G over the random vector X is

P (X = x|θ∗) =
1

Z(θ∗)
exp{

∑
s,t∈E

θ∗s,txsxt} (2)

=
1

Z(θ∗)
exp{〈θ∗, T (x)〉} (3)

=
1

Z(Θ∗)
exp{xTΘ∗x} (4)

where T (x) = {xsxt}ps,t=1 is a vector of size m = p2,
θ∗ = {θ∗s,t}

p
s,t=1 ∈ Rm and 〈., .〉 is the inner product op-

erator, and Θ∗ ∈ Rp×p where Θ∗s,t = θ∗s,t. Note that basic
Ising models also have non-interacting terms like αsxs and
we are assuming these terms are zero, and they do not affect
the dependency structure.

The parameter θ∗ associated with the structure of the graph
G reveals the statistical conditional independence structure
among the variables i.e., if θ∗s,t = 0, then feature Xs is
conditionally independent of Xt given all other variables
and there is no edge in the graph G.

The partition function, Z(θ∗), plays the role of a normaliz-
ing constant, ensuring that the probabilities add up to one
which is defined as

Z(θ∗) =
∑
x∈X

exp{〈θ∗, T (x)〉} = exp{Ψ(θ∗)}, (5)

where X be the set of all possible configurations of X .

2.2. Loss Function L(δθ;Xn1
1 ,Xn2

2 )

Here, we build the loss function based on equation (3).
Similarly, one can rewrite the loss function based on (4)
if the regularization function is over matrices.

Consider two Ising models with parameters θ∗1 ∈ Rp2 and
θ∗2 ∈ Rp2 . Following Liu et. al (Liu et al., 2014; 2015a), a
direct estimate for the changes detection problem based on
density ratio can be posed as follows

r(X = x|δθ) =
p(X = x|θ1)

p(X = x|θ2)
=

exp{〈T (x), θ1〉}
exp{〈T (x), θ2〉}︸ ︷︷ ︸

r∗(x|δθ)

Z(θ2)

Z(θ1)︸ ︷︷ ︸
1/Z(δθ)

=
exp{〈T (x), δθ〉)}

Z(δθ)
, (6)

where the parameter δθ = θ1 − θ2 encodes the change
between two graphical models θ1 and θ2.

First, we show that Z(δθ) = EX∼p(X|θ2)[e
〈T (X),δθ〉]:

Z(δθ) =
Z(θ1)

Z(θ2)
=

1

Z(θ2)

∑
x∈X

e〈T (x),θ1〉 (7)

=
1

Z(θ2)

∑
x∈X

e〈T (x),θ2〉 e
〈T (x),θ1〉

e〈T (x),θ2〉

=
∑
x∈X

e〈T (x),θ2〉

Z(θ2)︸ ︷︷ ︸
p(x|θ2)

e〈T (x),δθ〉 = EX∼p(X|θ2)[e
〈T (X),δθ〉].

Next, using the samples Xn2
2 from p(X|θ2), we estimate

Z(δθ) empirically as

Ẑ(δθ) =
1

n2

n2∑
i=1

exp{〈T (x2
i ), δθ〉}, (8)

and the sample approximation of r(X|δθ) is given as

r̂(X = x|δθ) =
r∗(X = x|θ1)

Ẑ(δθ)

=
exp{〈T (x), δθ〉}

1
n2

∑n2

i=1 exp{〈T (x2
i ), δθ〉}

. (9)

Using the fact that r(X|δθ∗)q(X|θ∗2) = p(X|θ∗1), we ap-
proximate r̂(X|δθ), by minimizing the KL divergence,

KL (p(X|θ∗1)‖r̂(X|δθ)p(X|θ∗2)) (10)

=
∑
x∈X

p(x|θ∗1) log
p(x|θ∗1)

p(x|θ∗2)r̂(x|δθ)

= KL (p(X|θ∗1)‖p(X|θ∗2))︸ ︷︷ ︸
Constant

−EX∼p(X|θ∗1 ) [log r̂(X|δθ)]

Thus, using the samples Xn1
1 and Xn2

2 , we define the em-
pirical loss function

L(δθ;Xn1
1 ,Xn2

2 ) =
−1

n1

n1∑
i=1

log r̂(x1
i |δθ) (11)

=
−1

n1

n1∑
i=1

〈T (x1
i ), δθ〉+ log

1

n2

n2∑
i=1

exp{〈T (x2
i ), δθ〉}︸ ︷︷ ︸

Ψ̂(δθ)

Remark 1 Note that the loss function (11) does not addi-
tively decompose over the samples. The second term in
(11) is the logarithm over sum of a function of samples.

2.3. Optimization

The optimization problem (1) has a composite objective
with a smooth convex term corresponding to the loss func-
tion (11) and a a potentially non-smooth convex term cor-
responding to the regularizer. In this section, we present
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an algorithm in the class of Fast Iterative Shrinkage-
Thresholding Algorithms (FISTA) for efficiently solving
the problem (1) (Beck & Teboulle, 2009). For convenience,
we refer the loss functionL(δθ;Xn1

1 ,Xn2
2 ) asL(δθ) and we

drop the subscript {n1, n2} of λn1,n2
.

One of the most popular methods for composite objective
functions is in the class of FISTA where at each iteration
we linearize the smooth term and minimize the quadratic
approximation of the form

QL(δθ, δθt) :=L(δθ) + 〈δθ − δθt,∇L(δθt)〉

+
L

2
‖δθ − δθt‖22 + λR(δθ), (12)

where L denotes the Lipschitz constant of the loss function
L(δθ). Ignoring constant terms in δθt, the unique mini-
mizer of the above expression (12) can be written as

pL(δθt) = arg min
δθ

QL(δθ, δθt) (13)

= arg min
δθ

λR(δθ) +
L

2

∥∥∥∥δθ − (δθt − 1

L
∇L(δθt)

)∥∥∥∥2

2

= arg min
δθ

λ

L
R(δθ) +

1

2

∥∥∥∥δθ − (δθt − 1

L
∇L(δθt)

)∥∥∥∥2

2

.

In fact, the updates of δθ is to compute certain proximal op-
erators of the non-smooth term R(.). In general, the prox-
imal operator proxh(x) of a closed proper convex function
h : Rd 7→ R ∪ {+∞} is defined as

proxh(x) = argmin
u

(
h(u) +

1

2
‖u− x‖22

)
. (14)

Thus, the unique minimizer (13) correspond to
prox λ

LR

(
δθt − 1

L∇L(δθt)
)

which has rate of con-
vergence of O(1/t) (Nesterov, 2005; Parikh & Boyd,
2014).

To improve the rate of convergence, we adapt the idea of
FISTA algorithm. The main idea is to iteratively consider
the proximal operator prox(.) at a specific linear combina-
tion of the previous two iterates {δθt, δθt−1}

ξt+1 = δθt + αt+1 (δθt − δθt−1) , (15)

instead of just the previous iterate δθt. The choice of αt+1

follows Nesterovs accelerated gradient descent (Nesterov,
2005; Parikh & Boyd, 2014) and is detailed in Algorithm
1. The iterative algorithm simply updates

δθt+1 = prox λ
LR

(
ξt+1 −

1

L
∇L(ξt+1)

)
. (16)

The algorithm has a rate of convergence of O(1/t2) (Beck
& Teboulle, 2009).

Algorithm 1 Generalized Direct Change Estimator
Input: L0 > 0, Xn1

1 ,Xn2
2

Step 0. Set ξ1 = δθ0, t = 1
Step t. (t ≥ 1) Find the smallest non-negative integers
it such that with L̃ = 2itLt−1

L (pL̃(ξt)) +R (pL̃(ξt)) ≤ QL̃ (pL̃(ξt), ξt) . (17)

Set Lt = 2itLt−1 and Compute

δθt = prox λ
LR

(
ξt −

1

L
∇L(ξt)

)
(18)

βt+1 =
1 +

√
1 + 4β2

t

2
(19)

ξt+1 = δθt +

(
βt − 1

βt+1

)
(δθt − δθt−1) (20)

2.4. Regularization Function R(δθ)

We assume that the optimal δθ∗ is sparse or suitably ‘struc-
tured’ where such structure can be characterized by having
a low value according to a suitable norm R(δθ∗). In below,
we provide a few examples of such a norm.

L1 norm: One example for R(.) we will consider through-
out the paper is the L1 norm regularization. We use
L1 norm if only a few edges has changed (1st row in
Figure 1). In particular, we consider R(δθ) = ‖δθ‖1 if
number of non-zeros entries in δθ∗ is s < p2. The
prox λ

L‖.‖1
(.) is given by the elementwise soft-thresholding

operation (Singer & Duchi, 2009) as[
prox λ

L‖.‖1

]
i
(z) = sign(zi).max(0, zi −

λ

L
). (21)

Group-sparse norm: Another popular example we con-
sider is the group-sparse norm. We use group lasso norm
if a group of edges has changed (2nd row in Figure 1).
For some kinds of data, it is reasonable to assume that the
variables can be clustered (or grouped) into types, which
share similar connectivity or correlation patterns. Let G =
{G1,G2, · · · ,GNG} denote a collection of groups, which
are subsets of variables. We assume that δΘ∗(s, t) = 0 for
any variable s ∈ Gg and for any variable t ∈ Gh. In the
group sparse setting for any subset SG ⊆ {1, 2, · · ·NG}
with cardinality |SG | = sG , we assume that the parameter
δΘ∗ satisfies {δΘ∗s,t = 0 : s, t ∈ Gg & g 6∈ SG}. We will
focus on the case when R(δΘ) =

∑NG
g=1 ‖δΘ(s, t) : s, t ∈

Gg‖F (Marlin et al., 2009). Let δΘGg bd the sub-matrix
of δΘ covering nodes in Gg . Proximal operator is given by
the group specific soft-thresholding operation.[

prox λ
LR

]
g

(δΘ) =
max(‖δΘGg‖F − λ

L , 0)

‖δΘGg‖F
. (22)
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Node perturbation: Another example is the row-column
overlap norm (RCON) (Mohan et al., 2014) to capture per-
turbed nodes i.e., nodes that have a completely different
connectivity pattern to other nodes among two networks
(3rd row in Figure 1). A special case of RCON we are in-
terested is

∑p
i=1 ‖Vi‖q where δΘ = V + V T , and Vi is

the i−th column of matrix V . This norm can be viewed as
overlapping group lasso (Mohan et al., 2014) and thus can
be solved by applying Algorithm 1 with proximal operator
for overlapping group lasso (Yuan et al., 2011). Also, we
can write problem (1) as a constrained optimization

argmin
δΘ,V

L(δΘ;Xn1
1 ,Xn2

2 ) + λ1δΘ‖1 + λn1,n2

p∑
i=1

‖Vi‖q

s.t δΘ = V + V T , (23)

and solve it by applying in-exact ADMM techniques (Mo-
han et al., 2014).

3. Statistical Recovery for Generalized Direct
Change Estimation

Our goal is to provide non-asymptotic bounds on ‖∆‖2 =

‖δθ∗ − δθ̂‖2 between the true parameter δθ∗ and the mini-
mizer δθ̂ of (1). In this section, we describe various aspects
of the problem, introducing notations along the way, and
highlight our main result.

3.1. Background and Assumption

Gaussian Width: In several of our proofs, we use the con-
cept of Gaussian width (Chandrasekaran et al., 2012; Gor-
don, 1988), which is defined as follows.

Definition 1 For any set A ∈ Rp, the Gaussian width of
the set A is defined as:

w(A) = Eg

[
sup
u∈A
〈g, u〉

]
. (24)

where the expectation is over g ∼ N(0, Ip×p), a vector
of independent zero-mean unit-variance Gaussian random
variable.

The Gaussian width w(A) provides a geometric charac-
terization of the size of the set A. Consider the Gaus-
sian process {Zu} where the constituent Gaussian ran-
dom variables Zu = 〈u, g〉 are indexed by u ∈ A, and
g ∼ N(0, Ip×p). Then the Gaussian width w(A) can be
viewed as the expectation of the supremum of the Gaussian
process {Zu}. Bounds on the expectations of Gaussian and
other empirical processes have been widely studied in the
literature, and we will make use of generic chaining for
some of our analysis (Boucheron et al., 2013; Ledoux &
Talagrand, 2013; Talagrand, 2005; 2014).

The Error Set: Consider solving the problem (1), under
assumption λn1,n2 > βR∗ (∇L(δθ∗;Xn1

1 ,Xn2
2 )), where

β > 1 and R∗(.) is the dual norm of R(.). Banerjee et
al. (Banerjee et al., 2014) show that for any convex loss
function the error vector ∆ = (δθ∗−δθ̂) lies in a restricted
set that is characterized as
Er = Er(δθ

∗, β) (25)

=

{
∆ ∈ Rp

∣∣∣∣ R(δθ∗ + ∆) ≤ R(δθ∗) +
1

β
R(∆)

}
.

Restricted Strong Convexity (RSC) Condition: The
sample complexity of the problem (1) depends on the RSC
condition (Negahban et al., 2012), which ensures that the
estimation problem is strongly convex in the neighborhood
of the optimal parameter (Banerjee et al., 2014; Negahban
et al., 2012). A convex loss function satisfies the RSC con-
dition in Cr = cone(Er), i.e., ∀∆ ∈ Cr, if there exists a
suitable constant κ such that
δL(δθ∗, u) :=L(δθ∗ + u)− L(δθ∗)− 〈∇L(δθ∗), u〉

≥κ‖u‖22 (26)

Deterministic Recovery Bounds: If the RSC condition
is satisfied on the error set Cr and λn1,n2

satisfies the as-
sumptions stated earlier, for any norm R(.), Banerjee et al.
(Banerjee et al., 2014) show a deterministic upper bound
for ‖∆‖2 in terms of λn1,n2

, κ, and the norm compatibility
constant Ψ(Cr) = supu∈Cr

R(u)
‖u‖2 , as

‖∆‖2 ≤
1 + β

β

λn1,n2

κ
Ψ(Cr) . (27)

Smooth Density Ratio Model Assumption: For any vec-
tor u such that ‖u‖2 ≤ ‖δθ∗‖2 and every ε ∈ R, the fol-
lowing inequality holds:
EX∼p(X|θ2)[exp{ε r(X|δθ∗ + u)− 1}] ≤ exp{ε2}.

A similar assumption is used in the analysis of Liu et al.
(Liu et al., 2015a).

Remark 2 Bounded density ratio is a special case sat-
isfying the smooth density ratio assumption. Lemma 1
shows a sufficient condition under which the density ratio
is bounded.

Lemma 1 Consider two Ising Model with true parameters
θ∗1 and θ∗2 . Let d1, d2 � s where ‖θ∗1‖0 = d1, ‖θ∗2‖0 = d2,
and ‖δθ∗‖0 = s. Assume

min
i,j=1···p

(|θ∗1(i, j)|) ≥ 1

d1 − 1
− c1

(d1 − 1)s
(28)

min
i,j=1···p

(|θ∗2(i, j)|) ≥ 1

d2 − 1
− c2

(d2 − 1)s
, (29)

where c1 and c2 are positive constants. Then the density
ratio r(X = x|δθ∗) is bounded.



Generalized Direct Change Estimation in Ising Model Structure

Note that if individual graphs are dense, then the conditions
(28) and (29) are satisfied and as a result the smooth density
ratio is satisfied.

Remark 3 In this paper, we focus on the Ising graphical
model. But, our statistical analysis holds for any graph-
ical models that satisfy the above mentioned assumption.
Through our analysis, no assumption is required on the in-
dividual graphical models.

3.2. Bounds on the regularization parameter

To get the recovery bound (27) above, one needs to
have λn1,n2

≥ βR∗ (∇L(δθ∗;Xn1
1 ,Xn2

2 )). However, the
bound on λn1,n2

depends on unknown quantity δθ∗ and
the samples Xn1

1 ,Xn2
2 and is hence random. To over-

come the above challenges, one can bound the expecta-
tion E[R∗ (∇L(δθ∗;Xn1

1 ,Xn2
2 ))] over all samples of size

n1 and n2, and obtain high-probability deviation bounds.
The goal is to provide a sharp bound on λn1,n2

since the
error bound in (27) is directly proportional to λn1,n2

.

In theorem 1, we characterize the expectation
E[R∗ (∇L(δθ∗;Xn1

1 ,Xn2
2 ))] in terms of the Gaussian

width of the unit norm-ball of R(.), which leads to a sharp
bound. The upper bound on Gaussian width of the unit
norm-ball of R for atomic norms which covers a wide
range of norms is provided in (Chandrasekaran et al.,
2012; Chen & Banerjee, 2015).

Theorem 1 Define ΩR = {u : R(u) ≤ 1}. Let φ(R) =

supu
‖u‖2
R(u) . Assume that for any u that ‖u‖ ≤ ‖θ∗‖

1

2
λmax

(
∇2L(δθ∗ + u)

)
≤ η0, (30)

where λmax(.) is the maximum eigenvalue. Then under the
smooth density ratio assumption, we have

E [R∗(∇L(δθ∗;Xn1
1 ,Xn2

2 ))] ≤
2
√
η0(c1w (ΩR) + φ(R))√

min(n1, n2)
.

and with probability at least 1− c2e−ε
2

R∗ (∇L(δθ∗;Xn1
1 ,Xn2

2 )) ≤ c2(1 + ε)w(ΩR) + τ1√
min(n1, n2)

.

where c1 and c2 are positive constants, τ1 = 2
√
η0φ(R),

and w(ΩR) is the Gaussian width of set ΩR.

Note, that our analysis hold for any norm and it is expressed
in terms of the Gaussian width. In the following, we give
the bound on the regularization parameter for two examples
of the regularization function R(.).

Corollary 1 If R(δθ) is the L1 norm, and δθ ∈ Rp2 then
with high probability we have the bound

R∗ (∇L(δθ∗;Xn1
1 ,Xn2

2 )) ≤ η2

√
log p√

min(n1, n2)
. (31)

Corollary 2 If R(δθ) is the group-sparse norm, and δθ ∈
Rp2 then with high probability we have the bound

R∗ (∇L(δθ∗;Xn1
1 ,Xn2

2 )) ≤ η2

√
m+ logNG√

min(n1, n2)
, (32)

where G = {G1, · · · ,GNG} is a collection of groups, m =
maxi |Gi| is the maximum size of any group.

3.3. RSC Condition

In this Section, we establish the RSC condition for direct
change detection estimator (1). Simplifying the expression
and applying mean value theorem twice on the left side of
RSC condition (26), for ∀γi ∈ [0, 1], we have

δL(δθ∗, u) := L(δθ∗ + u)− L(δθ∗)− 〈∇L(δθ∗), u〉
≥ uT∇2L(δθ∗ + γiu)u. (33)

Thus, the RSC condition depends on the non-linear terms
of loss function. Recall that the nonlinear term, second
term, in Loss function (1) which is the approximation of
the log-partition functions only depends on n2. As a re-
sults, only samples of Xn2

2 affect the RSC conditions. Our
analysis is an extension of the results on (Banerjee et al.,
2014) using the generic chaining. We show that, with high
probability the RSC condition is satisfied once samples n2

crosses w2(Cr ∩ Sd−1) the Gaussian width of restricted
error set. The bound on Gaussian width of the error set
for atomic norms has been provided in (Chen & Banerjee,
2015).

Let ri = r(X = x2
i |δθ∗) and ε̄ denote the probability that

ri exceeds some constant T : ε̄ = p(ri > T ) ≤ 2e−
T2

2 .

Theorem 2 Let X ∈ Rn×p be a design matrix with inde-
pendent isotropic sub-Gaussian rows with |||Xi|||Ψ2

≤ κ.
Then, for any set A ⊆ Sp−1, for suitable constants η, c1,
c2 > 0 with probability at least 1 − exp(−ηw2(A)), we
have

inf
u∈A

∂L(θ∗;u,X) ≥ c1ρ2

(
1− c2κ2

1

w(A)
√
n2

)
− τ (34)

where κ1 = κ
ε̄ , ρ2 = infu∈A ρ

2
u with ρ2

u =

E
[〈
u, T (X2

i )
〉2 I(ri > T )

]
, and τ is smaller than the

first term in right hand side. Thus, for n2 ≥ c2w
2(A),

with probability at least 1 − exp(−ηw2(A)), we have
infu∈A ∂L(θ∗;u,X) > 0.

3.4. Statistical Recovery

With the above results in place, from (27), Theorem 3
provides the main recovery bound for generalized direct
change estimator (1).
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Theorem 3 Consider two set of i.i.d samples Xn1
1 =

{x1
i }
n1
i=1 and Xn2

2 = {x2
i }
n2
i=1. Define ΩR = {u : R(u) ≤

1}. Assume that δθ̂ is the minimizer of the problem (1).
Then, with probability at least 1 − η0e

−ε2 the followings
hold

λn1,n2
≥ η1√

min(n1, n2)
(w(ΩR) + ε) (35)

and for n2 ≥ cw2(Cr ∩ Sd−1), with high probability, the
estimate δθ̂ satisfies

‖∆‖2 ≤ O

(
w(ΩR)√

min(n1, n2)

)
Ψ(Cr) , (36)

where w(.) is the Gaussian width of a set,and c2, η0, and
η1 are positive constants.

Proof: Proof of the Theorem can be directly obtain as the
results of (27) and Theorem 1 and Theorem 2.

In the following, we provide the recovery bound for two
special cases as an example.

Corollary 3 If R(δθ) is the L1 norm, δθ∗ ∈ Rp2 s s-
sparse., Ψ(Cr) ≤ 4

√
s, and for n2 > cs log p, the recovery

error is bounded by

‖∆‖2 ≤ c3
Ψ(Cr)λn1,n2

κ
= O

(√
s log p

min(n1, n2)

)
.

Corollary 4 If R(δθ) is the group-sparse norm, δθ ∈ Rp2 ,
Ψ(Cr) ≤ 4

√
sG and for n2 ≥ c(msG + sG logNG), the

recovery error is bounded by

‖∆‖2 ≤ c3
Ψ(Cr)λn1,n2

κ
= O

(√
sGm+ logNG

min(n1, n2)

)
.

4. Experiments
In this Section, we evaluate generalized direct change es-
timator (direct) with three different norms. and we com-
pare our direct approach with indirect approach. For in-
direct approach, we first estimate Ising model structures
θ̂1 and θ̂2 with L1 norm regularizer, separately (Raviku-
mar et al., 2010). Then, we obtain δθ̂ = θ̂1 − θ̂2. In
all experiments, we draw n1 and n2 i.i.d samples from
each Ising model by running Gibbs sampling. Here we set
n = n1 = n2 = {20, 50, 100}.

L1 norm: Here we first generate θ∗1 with three discon-
nected star sub-graphs (Figure 4-a) with p = 50. We gen-
erate the weights uniformly random between {0.3 − 0.5}.
We then generate θ∗2 by removing 10 random edges from
θ∗1 (Figure 4-b). It is interesting that although individual
graphs are sparse, but direct approach has a better ROC

curve for all values of n (Figure 4-d). Similar results ob-
tained by with random graph structure of θ∗1 and θ∗2 .

Group-sparse norm: In this set of experiments, we evalu-
ate direct method with three different structure for θ∗1 : (i) a
random graph structure (Figure 4-e), (ii) scale free graph
structure (Figure 4-i), and (iii) a cluster graph structure
(Figure 4-m). In all settings, we set p = 60 and gener-
ate θ∗2 by removing a block of edges from θ∗1 (Figure 4-
(f,j,n)). For random graph structure and block structure, di-
rect method has a better ROC curve (Figure 4-h,p). But, for
scale-free structure, since the individual graphs are sparse,
indirect method can estimate θ̂1 and θ̂2 correctly, and thus
have a better ROC curve (Figure 4-l).

Node perturbation: Here, we first generate a random
graph structure θ∗1 , and then generate θ∗2 by perturbing two
nodes in θ∗1 . Here we set p = 60 and generate θ∗2 by set-
ting rows and columns 3, 51 to zero in θ∗1 (Figure 4-s). Al-
though, the individual graphs are dense but direct approach
can estimate edges in δθ with only n = 20 samples (Figure
4-t).

5. Conclusion
This paper presents the statistical analysis of direct change
problem in Ising graphical models where any norm can be
plugged in for characterizing the parameter structure. An
optimization algorithm based on FISTA-style algorithms is
proposed with the convergence rate of O(1/T 2). We pro-
vide the statistical analysis for any norm such as L1 norm,
group sparse norm, node perturbation, etc. Our analysis
is based on generic chaining and illustrates the important
role of Gaussian widths (a geometric measure of size of
suitable sets) in such results. For the special case of spar-
sity, we obtain a sharper result than previous results (Liu
et al., 2015a) under the same smooth density ratio assump-
tion. Liu et al. (Liu et al., 2015a) obtained the same re-
sult with a bounded density ratio assumption which is a
more restrictive assumption. Although, we presented the
results for Ising model, our analysis can be applied to any
graphical model which satisfies the smooth density ratio
assumption. Further, we extensively compared our gen-
eralized direct change estimator with an indirect approach
over a wide range of graph structures and norms. We show
that our direct approach has a better ROC curve than indi-
rect approach without any assumption on the structure of
individual graphs. We implemented indirect approach by
estimating individual Ising model structures with L1 norm
regularizer. However, if individual graphs has a suitable
structure such as group sparsity, one may apply a regular-
ization that can characterize the graph structure and may
improve performance of the indirect approach. We will in-
vestigate this possibility in our future research.
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Figure 2. First row δθ∗ has a sparse structure (L1 norm) and θ∗1 has 3 disconnected star graphs. Second, third, and forth rows δθ∗ has
group sparse structure (group sparse norm) where θ∗1 has a random graph structure in second row, scale-free structure in third row, and
block structure in forth row. Last row δθ∗ has two perturbed norm (Node perturbation) and θ∗1 has a random graph structure. Blacks
in heatmaps denotes zeros. ROC curve for different structures show in the last column. Direct approach has a better ROC curve for all
structures except with scale-free structure of θ∗1 .
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