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Abstract
We introduce a new model for representation
learning and classification of video sequences.
Our model is based on a convolutional neural
network coupled with a novel temporal pooling
layer. The temporal pooling layer relies on an
inner-optimization problem to efficiently encode
temporal semantics over arbitrarily long video
clips into a fixed-length vector representation.
Importantly, the representation and classification
parameters of our model can be estimated jointly
in an end-to-end manner by formulating learning
as a bilevel optimization problem. Furthermore,
the model can make use of any existing convolu-
tional neural network architecture (e.g., AlexNet
or VGG) without modification or introduction of
additional parameters. We demonstrate our ap-
proach on action and activity recognition tasks.

1. Introduction
Representation learning from sequence data has many ap-
plications including, but not limited to, action and activity
recognition from video, gesture recognition, music clas-
sification, and gene regulatory network analysis. Neural
network-based supervised learning of representations from
sequence data has many advantages compared to hand-
crafted feature engineering. However, capturing the dis-
criminative behaviour of sequence data is a very challeng-
ing problem; especially when neural network-based super-
vised learning is used. In this paper we present a principled
method to jointly learn discriminative dynamic representa-
tions and classification model parameters from video data
using convolutional neural networks (CNNs).

In recent years CNNs have become very popular for au-
tomatically learning representations from large collections
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of static images. Many application domains, such as im-
age classification, image segmentation and object detec-
tion, have benefited from such automatic representation
learning (Krizhevsky et al., 2012; Girshick et al., 2014).
However, it is unclear how one may extend these highly
successful CNNs to sequence data; especially, when the
intended task requires capturing dynamics of video se-
quences (e.g., action and activity recognition). Indeed, cap-
turing the discriminative dynamics of a video sequence re-
mains an open problem. Some authors have propose to
use recurrent neural networks (RNNs) (Du et al., 2015)
or extensions, such as long short term memory (LSTM)
networks (Srivastava et al., 2015), to classify video se-
quences. However, CNN-RNN/LSTM models introduce
a large number of additional parameters to capture se-
quence information. Consequently, these methods need
much more training data. For sequence data such as videos,
obtaining labelled data is more costly than obtaining labels
for static images. This is reflected in the size of datasets
used in action and activity recognition research today. Even
though there are datasets that consist of millions of labelled
images (e.g., ImageNet (Deng et al., 2009)), the largest
fully labelled action recognition dataset, UCF101, consists
of barely more than 13,000 videos (Soomro et al., 2012). It
is highly desirable, therefore, to develop frameworks that
can learn discriminative dynamics from video data without
the cost of additional training data or model complexity.

Perhaps the most straightforward CNN-based method for
encoding video sequence data is to apply temporal max
pooling or temporal average pooling over the video frames.
However, these methods do not capture any valuable time
varying information of the video sequences (Karpathy
et al., 2014). In fact, an arbitrary reshuffling of the frames
would produce an identical video representation under
these pooling schemes. Rank-pooling (Fernando et al.,
2015), on the other hand, attempts to encode time vary-
ing information by learning a linear ranking machine, one
for each video, to produce a chronological ordering of the
video’s frames based on their appearance (i.e., the CNN
features). The parameters of the ranking machine are then
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used as the video representation. However, unlike max and
average pooling, it is unclear how the CNN parameters can
be fine-tuned to give a more discriminative representation
when rank-pooling is used.

In this paper, we present a novel approach for learning dis-
criminative representations for videos using rank-pooling
over a sequence CNN feature vectors (derived from the
video frames). We do this by formulating an optimiza-
tion problem that jointly learns the video representation
and classifier parameters. A key technical challenge, how-
ever, is that the optimization problem contains the rank-
pooling linear ranking machine as a subproblem—itself a
non-trivial optimization problem. This leads to a large-
scale bilevel optimization problem (Bard, 1998) with con-
vex inner-problem, which we propose to solve by stochas-
tic gradient descent.

Moreover, because we use support vector regression to
solve the inner-optimization problem and obtain our video
representation, there are theoretical stability guarantees on
the learned temporal representation (Bousquet & Elisse-
eff, 2002). That is, even if the input sequence is perturbed
the output of the temporal encoding layer produces stable
video representations leading to a robust model in contrast
to CNN-RNN/LSTM models, which can be very sensitive
to changes in the input.

Our contributions are two-fold: First, we present an ele-
gant method for encoding temporal information in video
sequences from frame-based CNN features. Second, we
show that the video representation and classifier param-
eters can be learned jointly in an end-to-end fashion us-
ing a bilevel optimization formulation of the problem. We
demonstrate the effectiveness of our method on two chal-
lenging video classification datasets.

2. Related work
Temporal information encoding of video sequences using
neural networks is an active field of research in both the
machine learning and computer vision communities. Re-
cently, several methods have been proposed to tackle the
problem of video sequence encoding using neural network
architectures (Ji et al., 2013; Donahue et al., 2015; Srivas-
tava et al., 2015; Yue-Hei Ng et al., 2015; Zha et al., 2015;
Simonyan & Zisserman, 2014).

Some authors (e.g., (Ji et al., 2013) and (Tran et al., 2014))
propose to use 3D convolutions to incorporate spatial and
motion information. However, it is not clear if temporal in-
formation of videos can be processed in a similar manner
to the spatial information of images. Therefore the use of
3D-convolutions to capture motion may not be the ideal so-
lution. Moreover, these 3D filers are applied over very short
video clips capturing only local motion information. Con-

sequently, they are not able to capture long-range dynamics
of complex activities. Most of the CNN-based methods use
fixed-length short video clips to learn video representations
ignoring long-range dynamics (e.g., (Ji et al., 2013; Tran
et al., 2014; Simonyan & Zisserman, 2014)). This is not
ideal as it is essential use all available temporal informa-
tion to learn good video representations, especially in tasks
such as activity recognition.

LSTM-based methods have also been proposed to learn
video representations. For example, unsupervised video
representation learning method is presented in Srivastava
et al. (2015). In that work temporal information is learned
by encoding a video using an LSTM model and by decod-
ing the encoded vector to reconstruct the video in the re-
verse order. However, it is unclear how to adapt such a
strategy to encode discriminative dynamics of a video. At
the same time the LSTM model is trained on extracted fea-
ture activations from CNNs. However, the LSTM and CNN
parameters are not trained jointly, leading to suboptimal pa-
rameter settings. The LRCN method proposed by Donahue
et al. (2015) has several nice properties such as the abil-
ity to train an end-to-end model and handle variable length
sequences. However, for inference this method takes the
average prediction over all frames, which can destroy valu-
able dynamical information found by the LSTM compo-
nent of the LRCN model.

In comparison to these methods, our model is trained in a
principled end-to-end fashion using a single convolutional
neural network. It captures the time varying information
using rank pooling (Fernando et al., 2015; 2016b) and has
the ability to handle variable length sequences. Impor-
tantly, our method captures video-wide temporal informa-
tion and does not require the ad hoc assembly of disjoint
components typical of other video classification frame-
works. A schematic illustration of our model is shown in
Figure 1.

Our learning algorithm introduces a bilevel optimization
method for encoding temporal dynamics of video se-
quences using convolutional neural networks. Bilevel opti-
mization (Bard, 1998) is a large and active research field
derived from the study of non-cooperative games with
much work focusing on efficient techniques for solving
non-smooth problems (Ochs et al., 2015) or studying re-
placement of the lower level problem with necessary con-
ditions for optimality (Dempe & Franke, 2015). It has re-
cently gained interest in the machine learning community
in the context of hyperparameter learning (Klatzer & Pock,
2015; Do et al., 2007) and in the computer vision com-
munity in the context of image denoising (Domke, 2012;
Kunisch & Pock, 2013). Unlike these works we take a
gradient-based approach, which the structure of our prob-
lem admits. We also address the problem of encoding and
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classification of temporal sequences, in particular action
and activity recognition in video.

Two recent rank-pooling methods with learning have also
been proposed (Fernando et al., 2016a; Bilen et al., 2016).
Fernando et al. (2016a) propose a discriminative hierarchi-
cal rank pooling method on extracted CNN features. How-
ever, this method does not learn an end-to-end network. In
contrast, Bilen et al. (2016) does learn an end-to-end net-
work, but the rank-pooling operator is simplified for effi-
ciency and only applied to input RGB data.

3. Learning Sequence Classification
In this section we describe our method for sequence clas-
sification and the associated end-to-end parameter learning
problem. We start by formalising our sequence represen-
tation and prediction pipeline. We then present our main
contribution—jointly learning the representation of the el-
ements in the sequence and the parameters of the classifier.

3.1. Representation

We consider the problem of classifying a sequence ~x =
〈xt | t = 1, . . . , T 〉 by assigning it a label y from some dis-
crete set of classes Y . For example, the sequence can be a
video and the label can be the action occurring in the video.
Here Y is the set of recognizable actions such as “running”,
“jumping”, “skipping”, etc. We assume that each element
xt of the sequence is an object from some input domain X
(e.g., a video frame).

Our first task is to transform the arbitrary-length sequence
into a form that is amenable to classification. To this end we
first map each element of the sequence into a p-dimensional
feature vector via a parameterizable feature function ψθ(·),

vt = ψθ(xt) ∈ Rp. (1)

The feature function can be, for example, a convolutional
neural network (CNN) applied to a video frame with fea-
tures extracted from the final activation layers in the net-
work. We introduce the shorthand ~v = 〈v1, . . . ,vT 〉 to
denote the sequence of element feature vectors.

Next we map the sequence of element feature vectors into
a single q-dimensional feature vector describing the entire
sequence via a temporal encoding function φ,

u = φ(~v) ∈ Rq. (2)

The vector u is now a fixed-length representation of the
sequence, which can be used for classification.

Typical temporal encoding functions include sufficient
statistics calculations or simple pooling operations, such
as max or avg. However, the temporal encoding func-
tion can be much more sophisticated, such as the recently

introduced rank-pool operator (Fernando et al., 2015).
Unlike max and avg pooling operators, which can be ex-
pressed in closed-form, rank-pool requires an optimiza-
tion problem to be solved in order to determine the repre-
sentation. Mathematically, we have

u ∈ argmin
u′

f(~v,u′) (3)

where f(·, ·) is some measure of how well a sequence is
described by each representation and we seek the best rep-
resentation. It is this type of temporal encoding function
that we are interested in this paper.

Note also, that the optimization problem is very general
and can include constraints on the solution in addition to
just minimizing the objective f . Moreover, many standard
pooling operations can be formulated in this way. For ex-
ample, avg pooling can be written (somewhat offensively)
as

avg(~v) = argmin
u

{
1

2

T∑
t=1

‖u− vt‖2
}
. (4)

Importantly, the rank-pool operator encodes temporal
dynamics of the sequence, which max and avg pooling
operators do not. Specifically, the rank-pool operator
attempts to capture the order of elements in the sequence
by finding a vector u such that uTva < uTvb for all
a < b, i.e., the function v 7→ uTv honors the relative
order of the elements in the sequence. This is achieved by
regressing the element feature vector onto its index in the
sequence and solved using regularized support vector re-
gression (SVR) to give a point-wise ranking function (Liu,
2009). Concretely, we define rank-pool(~v) as

argmin
u

{
1

2
‖u‖2 +

C

2

T∑
t=1

[
|t− uTvt| − ε

]2
≥0

}
(5)

where [·]≥0 = max{·, 0} projects onto the positive reals.

3.2. Prediction

With a fixed-length sequence descriptor u ∈ Rq in hand
the prediction task is to map u to one of the discrete class
labels. Let hβ be a predictor parameterized by β. We can
summarize our classification pipeline of an arbitrary-length
sequence ~x to a label y ∈ Y as:

~x = 〈xt〉
ψθ7−→ 〈vt〉

φ7−→ u
hβ7−→ y (6)

Typical predictors include (linear) support vector machines
(SVM) and soft-max classifiers. For the latter—which we
use in this work—the probability of a label y given the se-
quence ~x can be written as

P (y | ~x) =
exp(βT

y u)∑
y′ exp(βT

y′u)
. (7)
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Figure 1. The CNN network architecture used in this paper for learning end-to-end temporal representations of videos. Network takes a
sequence of frames from a video as inputs and feed forward till the end of the temporal pooling layer. At the temporal polling layer, the
sequence of vectors are encoded by rank-pooling operator to produce fixed length video representation. This fixed length vector is feed
to the next layer in the network. Note that we do not introduce any new parameters to network architectures such as AlexNet or Caffe
reference model. During back-propagation, the gradients are feed backwards through the rank-pooling operator to the rest of the CNN
network.

Here hβ(u) represents the (discrete) probability distribu-
tion over all labels and β = {βy} are the learned parame-
ters of the model.

3.3. Learning

Given a dataset of sequence-label pairs, {(~x(i), y(i))}ni=1,
our goal is to learn both the parameters of the classifier and
representation of the elements in the sequence. Let ∆(·, ·)
be a loss function. For example, when using the soft-max
classifier a typical choice would be the cross-entropy loss

∆(y, hβ(u)) = − logP (y | ~x). (8)

We jointly estimate the parameters of the feature function
and prediction function by minimizing the regularized em-
pirical risk. Our learning problem is

minimizeθ,β
∑n
i=1 ∆

(
y(i), hβ(u(i))

)
+R(θ,β)

subject to u(i) ∈ argminu f(~v(i),u)

(9)

where R(·, ·) is some regularization function, typically the
`2-norm of the parameters, and θ also appears in the defi-
nition of the ~v(i) by Eq. 1.

Eq. 9 is an instance of a bilevel optimization problem,
which have recently been explored in the context of support

vector machine (SVM) hyper-parameter learning (Klatzer
& Pock, 2015). Here an upper level problem is solved
subject to constraints enforced by a lower level problem.
A number of solution methods have been proposed for
bilevel optimization problems. Given our interest in learn-
ing video representations from powerful CNN features,
gradient-based techniques are most appropriate in allowing
the fine-tuning of the CNN parameters.

When the temporal encoding function φ can be evaluated
in closed-form (e.g., max or avg) we can substitute the
constraints in Eq. 9 directly into the objective and use
(sub-)gradient descent to solve for (locally or globally) op-
timal parameters.

Fortunately, when the lower level objective is twice differ-
entiable we can compute the gradient of the argmin func-
tion as other authors have also observed (Ochs et al., 2015;
Domke, 2012; Do et al., 2007) and the following lemmas
show. It is then simply a matter of applying the chain rule
to obtain the derivative of the loss function with respect to
any parameter in the model. We begin by considering the
scalar case and then extend to the vector case.

Lemma 1. : Let f : R × R → R be a continuous
function with first and second derivatives. Let g(x) =
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argminy f(x, y). Then

dg(x)

dx
= −fXY (x, g(x))

fY Y (x, g(x))

where fXY
.
= ∂2f

∂x∂y and fY Y
.
= ∂2f

∂y2 .

Proof. Differentiating f with respect to y we have

∂f(x, y)

∂y

∣∣∣∣
y=g(x)

= 0 (since g(x) = argmin
y

f(x, y))

(10)

∴
d

dx

∂f(x, g(x))

∂y
= 0 (differentiating lhs and rhs)

(11)

But

d

dx

∂f(x, g(x))

∂y
=
∂2f(x, g(x))

∂x∂y
+
∂2f(x, g(x))

∂y2
dg(x)

dx
(12)

Equating to zero and rearranging gives the desired result

dg(x)

dx
= −

(
∂2f(x, g(x))

∂y2

)−1
∂2f(x, g(x))

∂x∂y
(13)

= −fXY (x, g(x))

fY Y (x, g(x))
(14)

Lemma 2. : Let f : R × Rn → R be a continuous
function with first and second derivatives. Let g(x) =
argminy∈Rn f(x,y). Then

g′(x) = −fY Y (x, g(x))−1fXY (x, g(x)).

where fY Y
.
= ∇2

yyf(x,y) ∈ Rn×n and fXY
.
=

∂
∂x∇yf(x,y) ∈ Rn.

Proof. Similar to Lemma 1, we have:

fY (x, g(x))
.
= ∇Y f(x,y)|y=g(x) = 0 (15)

d

dx
fY (x, g(x)) = 0 (16)

∴ fXY (x, g(x)) + fY Y (x, g(x))g′(x) = 0 (17)
d

dx
g(x) = −fY Y (x, g(x))

−1
fXY (x, g(x)) (18)

Interestingly, replacing argmin with argmax yields the
same gradient, which follows from the proof above that
only requires that g(x) be a stationary point.

Consider again the learning problem defined in Eq. 9. Us-
ing the result of Lemma 2 we can compute du(i)

dθ for each
training example and hence the gradient of the objective
via the chain rule.1 We then use stochastic gradient descent
(SGD) to learn all parameters jointly.

Gradient of the rank-pool function: For completeness
let us now derive the gradient of the rank-pool func-
tion. Assume a scalar parameter θ for the element feature
function ψ (the extension to a vector of parameters can be
derived elementwise). Let

f(θ,u) =
1

2
‖u‖2 +

C

2

T∑
t=1

[
|t− uTvt| − ε

]2
≥0

(19)

where vt = ψθ(xt). Let

et
.
=


uTvt − t+ ε, if t− uTvt ≥ ε
uTvt − t− ε, if uTvt − t ≥ ε
0, otherwise.

(20)

Then by Lemma 2 we have

d

dθ
argmin
u

f(θ,u) =

I + C
∑
et 6=0

vtv
T
t

−1
C ∑

et 6=0

etψ
′
θ(xt)− uTψ′θ(xt)vt

 (21)

where with slight abuse of notation the u on the right-hand
side is the optimal u. Here ψ′θ(xt) is the derivative of the
element feature function. In the context of CNN-based fea-
tures for encoding video frames the derivative can be com-
puted by back-propagation through the network.

Note that the rank-pool objective function is convex but
includes a zero-measure set of non-differentiable points.
However, this does not cause any practical problems dur-
ing optimization in our experience.

3.4. Optimization difficulties

One of the main difficulties for learning the parameters
of high-dimensional temporal encoding functions (such as
those based on CNN features) is that the gradient update in
Eq. 21 requires the inversion of the hessian fY Y . One so-
lution is to use a diagonal approximation of the hessian,
which is trivial to invert. Fortunately, for temporal en-
coding functions with certain structure like ours, namely
where the hessian can be expressed as a diagonal plus the
sum of rank-one matrices, the inverse can be computed ef-
ficiently using the Sherman-Morrison formula (Golub &
Loan, 1996),

1The derivative with respect to β, which only appears in the
upper-level problem, is straightforward.
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Table 1. Classification accuracies for action recognition on the
ten-class UCF-sports dataset (Rodriguez et al., 2008).

METHOD ACC. (%)
AVG-POOL + SVM 67
MAX-POOL + SVM 66
RANK-POOL + SVM 66
FRAME-LEVEL FINE-TUNING 70
FRAME-LEVEL FINE-TUNING + RANK-POOLING 73
AVG-POOL-CNN-END-TO-END 70
MAX-POOL-CNN-END-TO-END 71
RANK-POOL-CNN-END-TO-END (DIAG.) 87
RANK-POOL-CNN-END-TO-END 87
IMPROVED-TRAJECTORY
+FISHER VECTORS+RANK-POOLING 87.2

Lemma 3. : Let H = I +
∑n
i=1 uiv

T
i ∈ Rp×p be in-

vertible. Define H0 = I and Hm = Hm−1 + umv
T
m for

m = 1, . . . , n. Then

H−1m = H−1m−1 −
H−1m−1umv

T
mH

−1
m−1

1 + vTmH
−1
m−1um

(22)

whenever vTmH
−1
m−1um 6= −1.

Proof. Follows from repeated application of the Sherman-
Morrison formula.

Since each update in Eq. 22 can be performed in O(p2) the
inverse of H can be computed in O(np2), which is accept-
able for many applications. In the Section 4 we present
experimental results and discuss the overall running time
of our algorithm.

4. Experiments
We conduct experiments on action and activity recognition
tasks in video using two real-world datasets, and compare
our approach against some strong baseline methods.

4.1. Datasets and tasks

First, we use UCF-sports dataset (Rodriguez et al., 2008)
for the task of action classification. The dataset consists
of a set of short video clips depicting actions collected
from various sports. The clips were typically sourced from
footage on broadcast television channels such as the BBC
and ESPN. The video collection represents a natural pool
of actions featured in a wide range of scenes and view-
points. The dataset includes a total of 150 sequences of
resolution 720 × 480 pixels. Video clips are grouped into
ten action categories as shown in Figure 2. Classification
performance is measured using mean per-class accuracy.
We use provided train-test splits for training and testing.

Figure 2. Example frames from UCF-sports (top) and Holly-
wood2 (bottom) dataset from different action and activity classes.

Second, we use the Hollywood2 dataset (Laptev et al.,
2008) for the task of activity recognition. The dataset has
been constructed from 69 different Hollywood movies and
includes 12 activity classes. It has 1,707 videos in total
with a pre-defined split of 823 training videos and 884 test
videos. Training and test videos are selected from different
movies. The dataset represents a very challenging video
collection. The length of the video clips varies from hun-
dreds to several thousand frames. As is standard on this
dataset, performance is measured by mean average preci-
sion (mAP) over all classes. Different activity classes are
shown in Figure 2.

4.2. Baseline methods and implementation details

We compare our end-to-end training of the rank-pooling
network against the following baseline methods.

avg pooling + svm: We extract FC7 feature activations
from the pre-trained Caffe reference model (Jia et al., 2014)
using MatConvNet (Vedaldi & Lenc, 2015) for each frame
of the video. Then we apply temporal average pooling to
obtain a fixed-length feature vector per video (4096 dimen-
sional). Afterwards, we use a linear SVM classifier (Lib-
SVM) to train and test action and activity categories.

max pooling + svm: Similar to the above baseline, we ex-
tract FC7 feature activations for each frame of the video
and then apply temporal max pooling to obtain a fixed-
length feature vector per video. Again we use a linear SVM
classifier to predict action and activity categories.

rank pooling + svm: We extract FC7 feature activations
for each frame of the video. We then apply time vary-
ing mean vectors to smooth the signal as recommended
by (Fernando et al., 2015), and L2-normalize all frame fea-
tures. Next, we apply the rank-pooling operator to obtain
a video representation using publicly available code (Fer-
nando et al., 2015). We use a linear SVM classifier applied
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Table 2. Classification performance in average precision for activity recognition on the Hollywood2 dataset (Laptev et al., 2008).

CLASS AVG+SVM MAX+SVM RANKPOOL+SVM AVG+CNN MAX+CNN RANKPOOL+CNN
ANSWERPHONE 23.6 19.5 35.3 29.9 28.0 25.0
DRIVECAR 60.9 50.8 40.6 55.6 48.6 56.9
EAT 19.7 22.0 16.7 27.8 22.0 24.2
FIGHTPERSON 45.6 28.3 28.1 26.6 17.6 30.4
GETOUTCAR 39.5 29.2 28.1 48.9 43.8 55.5
HANDSHAKE 28.3 24.4 34.2 38.4 40.0 32.0
HUGPERSON 30.2 23.9 22.1 25.9 26.6 33.2
KISS 38.2 27.5 36.8 50.6 45.7 54.2
RUN 55.2 53.0 39.4 59.6 52.5 61.0
SITDOWN 30.0 28.8 32.1 30.6 30.0 39.6
SITUP 23.0 20.2 18.7 23.8 26.4 25.4
STANDUP 34.6 32.4 39.9 37.4 34.8 49.9
MAP 35.7 30.0 31.0 37.9 34.7 40.6

on the L2-normalized representation to classify each video.

frame-level fine-tuning: We fine-tune the Caffe reference
model on the frame data considering each frame as an in-
stance from the respective action category. Then we sum
the classifier scores from each frame belonging to a video
to obtain the final prediction.

frame-level fine-tuning + rank-pooling: We use the pre-
trained model as before and fine-tune the Caffe reference
model on the frame data considering each frame as an in-
stance from the respective action category. Afterwards, we
extract FC7 features from each video (frames). Then we
encode temporal information of fine-tuned FC7 video data
using rank-pooling. Afterwards, we use soft-max classifier
to classify videos.

end-to-end baselines: We also compare our method with
end-to-end trained max and average pooling variants. Here
the pre-trained CNN parameters were fine-tuned using the
classification loss.

state-of-the-art: Last, we benchmark our approach against
combined state-of-the-art improved trajectory (Wang &
Schmid, 2013) features (MBH, HOG, HOG) and Fisher
vectors (Perronnin et al., 2010) with rank-pooling for tem-
poral encoding (Fernando et al., 2015).

The first five baselines can all be viewed as variants of the
CNN-base temporal pooling architecture of Figure 1. The
differences being the pooling operation and whether end-
to-end training is applied. The last baseline represents a
state-of-the-art video classification pipeline.

We compare the baseline methods against our rank-pooled
CNN-based temporal architecture where training is done
end-to-end. We do not sub-sample videos to generate fixed-
length clips as typically done in the literature (e.g., (Si-
monyan & Zisserman, 2014; Tran et al., 2014)). Instead,
we consider the entire video during training as well as test-
ing. We use stochastic gradient descent method without

batch updates (i.e., each batch consists of a single video).
We initialize the network with the Caffe reference model
and use a variable learning rate starting from 0.01 down
to 0.0001 over 60 epochs. We also use a weight decay
of 0.0005 on an L2-regularizer over the model parame-
ters. We explore two variants of the learning algorithm.
In the first variant we use the diagonal approximation to
the rank-pool gradient during the back-propagation. In the
second variant we use the full gradient update, which re-
quires computing the inverse of matrices per video (see
Section 3). For the UCF-sports dataset we use the cross-
entropy loss for all CNN-based methods (including the
baselines). Whereas for the Hollywood2 dataset, where
performance is measured by mAP, we use the hinge-loss
(as is common practice for this dataset).

4.3. Experimental results

Results for experiments on the UCF-sports dataset are re-
ported in Table 1. Let us make several observations. First,
the performance of max, average and rank-pooling are sim-
ilar when CNN activation features are used without end-to-
end learning. Perhaps increasing the capacity of the model
to better capture video dynamics (say, using a non-linear
SVM) may improve results but that is beyond the scope
of our study in this paper. Second, end-to-end training
helps all three pooling methods. However, the improve-
ment obtained by end-to-end training of rank-pooling is
about 21%, significantly higher than the other two pooling
approaches. Moreover, the performance using the diagonal
approximation is the same as when full gradient is used.
This suggests that the diagnoal approximation is driving
the parameters in a desireable direction and may be suf-
ficient for a stochastic gradient-based method. Last, and
perhaps most interesting, is that using state-of-the-art im-
proved trajectory (Wang & Schmid, 2013) features (MBH,
HOG, HOG) and Fisher vectors (Perronnin et al., 2010)
with rank-pooling (Fernando et al., 2015) obtains 87.2% on
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this dataset. This result is comparable with the results ob-
tained with our method using end-to-end feature learning.
Note, however, that the dimensionality of the feature vec-
tors for the state-of-the-art method are extremely high (over
50,000 dimensional) compared to our 4,096-dimensional
feature representation.

We now evaluate activity recognition performance on the
Hollywood2 dataset. Results are reported in Table 2 as
average precision performance for each class and we take
the mean average precision (mAP) to compare methods.
As before, for this task, the best results are obtained by
end-to-end training using rank-pooling for temporal encod-
ing. The improvement over non-end-to-end rank pooling is
9.6 mAP. One may ask whether this performance could be
achieved without end-to-end training but just fine-tuning
the frame-level features. To answer this question we ran
two additional baselines. In the first we simply fine-tuned
the CNN parameters to classify each video frame with the
ground-truth activity and average the frame-level predic-
tions at test time. In the second we apply rank-pooling to
the fine-tuned frame features. On the test set we get 34.1
mAP and 36.3 mAP, respectively. Thus we observe gradual
improvement from frame-level fine-tuning to fine-tuning
with rank-pooling to end-to-end training (40.6 mAP).

For this dataset, one can obtain much higher accuracy us-
ing the state-of-the-art improved trajectory features (MBH,
HOG, HOG) and Fisher vectors with rank-pooling (Fer-
nando et al., 2015). Here Fernando et al. (2015) used
several kinds of data augmentations (forward reverse rank
pooling and mirrored videos data) to get to 70.0 mAP
after combining all features. Individually, HOG, HOF,
MBH,and TRJ features obtains 45.3, 59.8, 60.5, and 49.8
mAP, respectively. We improve CNN feature performance
from 31.0 (vanilla rank pooling) to 40.6 mAP using end-to-
end training, and note that here our objective is not to ob-
tain state-of-the art but to show that rank-pooling operator
of (Fernando et al., 2015) can be improved in the context
of CNN-based video classification.

That said, our end-to-end trained CNN features can be
combined with HOG+HOF+MBH features to boost per-
formance. Here, without any data augmentation, we ob-
tain 73.4 mAP whereas combining the vanilla CNN fea-
tures combined with HOG+HOF+MBH we only get 71.4
mAP. These results indicate that our end-to-end training is
useful even when combined with hand-crafted HOG, HOF
and MBH features.

4.4. Diagonal approximation vs. full gradient

As we have seen, optimization using the diagonal approx-
imation of the gradient obtains results that are on par with
full gradient. Using the full gradient optimization is ten
times slower than the approximate method, resulting in pro-

cessing videos at 5 frames per second versus 50 frames per
second (for the approximate method) during training on a
Titan-X GPU. Even with the diagonal approximation end-
to-end training is currently prohibitively slow on very large
video collections such as the UCF101 dataset. Here we es-
timate training to take over 340 hours for 60 epochs over
the 1M frames in the dataset. However, we are hopeful the
next-generation GPUs, promised to be ten times faster than
the Titan-X, will make our method tractable on very large
video collections.

5. Conclusions
We propose an effective, clean, and principled temporal
encoding method for convolutional neural network-based
video sequence classification task. Our temporal pooling
layer can sit above any CNN architecture and through a
bilevel optimization formulation admits end-to-end learn-
ing of all model parameters. We demonstrated that this end-
to-end learning significantly improves performance over
a traditional rank-pooling approach by 21% on the UCF-
sports dataset and 9.6 mAP on the Hollywood2 dataset.

We believe that the framework proposed in this paper will
open the way for embedding other traditional optimiza-
tion methods as subroutines inside CNN architectures. Our
work also suggests a number of interesting future research
directions. First, it would be interesting to explore more
expressive variants of rank-pooling such as through kernal-
ization. Second, our framework could be adapted to other
sequence classification tasks (e.g., speech recognition) and
we conjecture that as for video classification there may be
accuracy gains for these other tasks too. Last, our ability to
update model parameters at 50 frames per second suggests
that an agent, provided with appropriate supervision, could
learn to recognize activities in real-time.
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