Guided Cost Learning

A. Policy Optimization under Unknown
Dynamics

The policy optimization procedure employed in this
work follows the method described by Levine and
Abbeel (Levine & Abbeel, 2014), which we summarize
in this appendix. The aim is to optimize Gaussian trajec-
tory distributions ¢(7) = q(x1) [[, ¢(%e41|%¢, ue)g(u|x¢)
with respect to their expected cost Ey-y[co(7)]. This
optimization can be performed by iteratively optimiz-
ing Eq(-)[co(T)] with respect to the linear-Gaussian con-
ditionals ¢(u¢|x:) under a linear-Gaussian estimate of
the dynamics g(x¢41|x¢,u:). This optimization can be
performed using the standard linear-quadratic regulator
(LQR). However, when the dynamics of the system are not
known, the linearization g(x;41|X¢, u;) cannot be obtained
directly. Instead, Levine and Abbeel (Levine & Abbeel,
2014) propose to estimate the local linear-Gaussian dy-
namics ¢(X¢+1|X¢, uz) using samples from ¢(7), which
can be obtained by running the linear-Gaussian controller
g(u¢|x¢) on the physical system. The policy optimization
procedure then consists of iteratively generating samples
from g(u:|xy), fitting ¢(x¢+1|x¢, ut) to these samples, and
updating g(u;|x;) under these fitted dynamics by using
LQR.

This policy optimization procedure has several important
nuances. First, the LQR update can modify the con-
troller g(u;|x;) arbitrarily far from the previous controller.
However, because the real dynamics are not linear, this
new controller might experience very different dynamics
on the physical system than the linear-Gaussian dynamics
q(X¢+1|x¢,ur) used for the update. To limit the change
in the dynamics under the current controller, Levine and
Abbeel (Levine & Abbeel, 2014) propose solving a mod-
ified, constrained problem for updating g(u;|x;), given as
following:

anei}\}f Eqlco(T)] s.t. Dxi(qlld) < e,

where ¢ is the previous controller. This constrained prob-
lem finds a new trajectory distribution ¢(7) that is close to
the previous distribution G(7), so that the dynamics viola-
tion is not too severe. The step size e can be chosen adap-
tively based on the degree to which the linear-Gaussian dy-
namics are successful in predicting the current cost (Levine
et al., 2015). Note that when policy optimization is inter-
leaved with IOC, special care must be taken when adapting
this step size. We found that an effective strategy was to
use the step size rule described in prior work (Levine et al.,
2015). This update involves comparing the predicted and
actual improvement in the cost. We used the preceding cost
function to measure both improvements since this cost was
used to make the update.

The second nuance in this procedure is in the scheme used

empirically
true ground truth estimated no maxent
distribution demoi.w. demoi.w. trajopt no i.w.

%,

. N /\\ \ \ @

i

KL: 0 230.66 272.71 726.28 9145.35

Figure 4. KL divergence between trajectories produced by our
method, and various ablations, to the true distribution. Guided
cost learning recovers trajectories that come close to both the
mean and variance of the true distribution using 40 demonstrated
trajectories, whereas the algorithm without MaxEnt policy opti-
mization or without importance weights recovers the mean but
not the variance.

to estimate the dynamics g(x¢41|X¢, uz). Since these dy-
namics are linear-Gaussian, they can be estimated by solv-
ing a separate linear regression problem at each time step,
using the samples gathered at this iteration. The sample
complexity of this procedure scales linearly with the di-
mensionality of the system. However, this sample com-
plexity can be reduced dramatically if we consider the
fact that they dynamics at nearby time steps are strongly
correlated, even across iterations (due to the previously
mentioned KL-divergence constraint). This property can
be exploited by fitting a crude global model to all of the
samples gathered during the policy optimization proce-
dure, and then using this global model as a prior for the
linear regression. A good choice for this global model
is a Gaussian mixture model (GMM) over tuples of the
form (x¢, s, X¢+1), as discussed in prior work (Levine &
Abbeel, 2014). This GMM is refitted at each iteration using
all available interaction data, and acts as a prior when fitting
the time-varying linear-Gaussian dynamics q(X¢.t1|X¢, t).

B. Consistency Evaluation

We evaluated the consistency of our algorithm by generat-
ing 40 demonstrations from 4 known linear Gaussian tra-
jectory distributions of a second order point mass system,
each traveling to the origin from different starting posi-
tions. The purpose of this experiment is to verify that,
in simple domains where the exact cost function can be
learned, our method is able to recover the true cost function
successfully. To do so, we measured the KL divergence
between the trajectories produced by our method and the
true distribution underlying the set of demonstrations. As
shown in Figure 4, the trajectory distribution produced by
guided cost learning with ground truth demo importance
weights (weights based on the true distribution from which
the demonstrations were sampled, which is generally un-
known) comes very close to the true distribution, with a KL
divergence of 230.66 summed over 100 timesteps. Empiri-

Guided Cost Learning

cally estimating the importance weights of the demos pro-
duces trajectories with a slightly higher KL divergence of
272.71, costing us very little in this domain. Dropping the
demo and sample importance weights entirely recovers a
similar mean, but significantly overestimates the variance.
Finally, running the algorithm without a maximum entropy
term in the policy optimization objective (see Section 4.2)
produces trajectories with similar mean, but O variance.
These results indicate that correctly incorporating impor-
tance weights into sample-based maximum entropy IOC is
crucial for recovering the right cost function. This contrasts
with prior work, which suggests dropping the importance
weights (Kalakrishnan et al., 2013).

C. Neural Network Parametrization and
Initialization

We use expressive neural network function approximators
to represent the cost, using the form:

co(xe,uy) = || Ayt + b]|* 4+ wal[u|?

This parametrization can be viewed as a cost that is
quadratic in a set of learned nonlinear features y; = fy(x;)
where fy is a multilayer neural network with rectifying
nonlinearities of the form max(z,0). Since simpler cost
functions are generally preferred, we initialize the fy to be
the identity function by setting the parameters of the first
fully-connected layer to contain the identity matrix and the
negative identity matrix (producing hidden units which are
double the dimension of the input), and all subsequent lay-
ers to the identity matrix. We found that this initialization
improved generalization of the learned cost.

D. Detailed Description of Task Setup

All of the simulated experiments used the MuJoCo simu-
lation package (Todorov et al., 2012), with simulated fric-
tional contacts and torque motors at the joints used for ac-
tuation. All of the real world experiments were on a PR2
robot, using its 7 DOF arm controlled via direct effort con-
trol. Both the simulated and real world controllers were
run for 5 seconds at 20 Hz resulting in 100 time steps per
rollout. We describe the details of each system below.

In all tasks except for 2D navigation (which has a small
state space and complex cost), we chose the dimension of
the hidden layers to be approximately double the size of the
state, making it capable of representing the identity func-
tion.

2D Navigation: The 2D navigation task has 4 state di-
mensions (2D position and velocity) and 2 action dimen-
sions. Forty demonstrations were generated by optimiz-
ing trajectories for 32 randomly selected positions, with at

least 1 demonstration from each starting position. The neu-
ral network cost was parametrized with 2 hidden layers of
dimension 40 and a final feature dimension of 20.

Reaching: The 2D reaching task has 10 dimensions (3
joint angles and velocities, 2-dimensional end effector po-
sition and velocity). Twenty demonstrations were gen-
erated by optimizing trajectories from 12 different initial
states with arbitrarily chosen joint angles. The neural net-
work was parametrized with 2 hidden layers of dimension
24 and a final feature dimension of 100.

Peg insertion: The 3D peg insertion task has 26 dimen-
sions (7 joint angles, the pose of 2 points on the peg in
3D, and the velocities of both). Demonstrations were gen-
erated by shifting the hole within a 0.1 m x 0.1 m region
on the table. Twenty demonstrations were generated from
sixteen demonstration conditions. The neural network was
parametrized with 2 hidden layers of dimension 52 and a
final feature dimension of 100.

Dish: The dish placing task has 32 dimensions (7 joint
angles, the 3D position of 3 points on the end effector, and
the velocities of both). Twenty demonstrations were col-
lected via kinesthetic teaching on nine positions along a
43 cm dish rack. A tenth position, spatially located within
the demonstrated positions, was used during IOC. The in-
put to the cost consisted of the 3 end effector points in
3D relative to the target pose (which fully define the pose
of the gripper) and their velocities. The neural network
was parametrized with 1 hidden layer of dimension 64 and
a final feature dimension of 100. Success was based on
whether or not the plate was in the correct slot and not bro-
ken.

Pouring: The pouring task has has 40 dimensions (7 joint
angles and velocities, the 3D position of 3 points on the
end effector and their velocities, 2 learned visual feature
points in 2D and their velocities). Thirty demonstrations
were collected via kinesthetic teaching. For each demon-
stration, the target cup was placed at a different position on
the table within a 28 cm X 13 cm rectangle. The autoen-
coder was trained on images from the 30 demonstrations
(consisting of 3000 images total). The input to the cost was
the same as the state but omitting the joint angles and veloc-
ities. The neural network was parametrized with 1 hidden
layer of dimension 80 and a final feature dimension of 100.
To measure success, we placed 15 almonds in the grasped
cup and measured the percentage of the almonds that were
in the target cup after the executed motion.

Guided Cost Learning

] —e— ours, demo init
08 r [\ ReaChmg =+®= ours, rand. init
1 N —=*— ours, no Icr reg, demo init
1 o == ours, no lcr reg, rand. init
06 1\ N, —e— ours, no mono reg, demo init
[i s =®:= ours, no mono reg, rand. init
8 | i
oL
S04
5 L
0.2
0 & L L i ind |
5 25 45 6 85
samples
Peg Insertion
05
s
Ly
0.4 i
1
Sost 1
S -
£0.2
©
0.1
0

45 65 85
samples

Figure 5. Comparison showing ablations of our method with leav-
ing out one of the two regularization terms. The monotonic regu-
larization improves performance in three of the four task settings,
and the local constant rate regularization significantly improves
performance in all settings. Reported distance is averaged over
four runs of IOC on four different initial conditions.

E. Regularization Evaluation

We evaluated the performance with and without each of
the two regularization terms proposed in Section 5 on the
simulated reaching and peg insertion tasks. As shown in
Figure 5, both regularization terms help performance. No-
tably, the learned trajectories fail to insert the peg into the

hole when the cost is learned using no local constant rate
regularization.

