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Abstract

We show how to efficiently project a vector onto
the top principal components of a matrix, without
explicitly computing these components. Specif-
ically, we introduce an iterative algorithm that
provably computes the projection using few calls
to any black-box routine for ridge regression.
By avoiding explicit principal component analy-
sis (PCA), our algorithm is the first with no run-
time dependence on the number of top princi-
pal components. We show that it can be used to
give a fast iterative method for the popular prin-
cipal component regression problem, giving the
first major runtime improvement over the naive
method of combining PCA with regression.
To achieve our results, we first observe that ridge
regression can be used to obtain a “smooth pro-
jection” onto the top principal components. We
then sharpen this approximation to true projec-
tion using a low-degree polynomial approxima-
tion to the matrix step function. Step function
approximation is a topic of long-term interest in
scientific computing. We extend prior theory by
constructing polynomials with simple iterative
structure and rigorously analyzing their behavior
under limited precision.

1. Introduction

In machine learning and statistics, it is common—often
essential—to represent data in a concise form that de-
creases noise and increases efficiency in downstream tasks.
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Perhaps the most widespread method for doing so is to
project data onto the linear subspace spanned by its direc-
tions of highest variance—that is, onto the span of the top
components given by principal component analysis (PCA).
Computing principal components can be an expensive task,
a challenge that prompts a basic algorithmic question:

Can we project a vector onto the span of a ma-
trix’s top principal components without perform-
ing principal component analysis?

This paper answers that question in the affirmative, demon-
strating that projection is much easier than PCA itself. We
show that it can be solved using a simple iterative algorithm
based on black-box calls to a ridge regression routine. The
algorithm’s runtime does not depend on the number of top
principal components chosen for projection, a cost inher-
ent to any algorithm for PCA, or even algorithms that just
compute an orthogonal span for the top components.

1.1. Motivation: principal component regression

To motivate our projection problem, consider one of the
most basic downstream applications for PCA: linear regres-
sion. Combined, PCA and regression comprise the princi-
pal component regression (PCR) problem:
Definition 1.1 (Principal component regression (PCR)).
Let A 2 Rn⇥d be a design matrix whose rows are data
points and let b 2 Rn be a vector of data labels. Let
A

�

2 Rn⇥d denote the result of projecting each row
of A onto the span of the top principal components of
A, i.e. the eigenvectors of the covariance matrix 1

n

A

T
A

whose corresponding eigenvalue exceeds a threshold �.
The task of PCR is to find a minimizer of the squared loss
kA

�

x� bk22. In other words, the goal is to compute A†
�

b,
where A

†
�

is the Moore-Penrose pseudoinverse of A
�

.

PCR is a key regularization method in statistics, numerical
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linear algebra, and scientific disciplines including chemo-
metrics (Hotelling, 1957; Hansen, 1987; Frank & Fried-
man, 1993). It models the assumption that small principal
components represent noise rather than data signal. PCR
is typically solved by first using PCA to compute A

�

and
then applying linear regression. The PCA step dominates
the algorithm’s cost, especially if many principal compo-
nents have variance above the threshold �.

We remedy this issue by showing that our principal com-
ponent projection algorithm yields a fast algorithm for re-
gression. Specifically, full access to A

�

is unnecessary for
PCR: A†

�

b can be computed efficiently given only an ap-
proximate projection of the vector AT

b onto A’s top prin-
cipal components. By solving projection without PCA we
obtain the first PCA-free algorithm for PCR.

1.2. A first approximation: ridge regression

Our approach to efficient principal component projection
is actually based on a common alternative to PCR: ridge
regression. This ubiquitous method computes a minimizer
of kAx� bk22 + �kxk22 for some regularization parameter
� (Tikhonov, 1963). The advantage of ridge regression is
that it is a simple convex optimization problem that can be
solved efficiently using many techniques (see Lemma 2.1).

Solving ridge regression is equivalent to applying the ma-
trix (A

T
A+�I)�1

A

T, an operation that can be viewed as
a smooth relaxation of PCR. Adding the `2 norm penalty
(i.e. �I) effectively “washes out” A’s small principal com-
ponents in comparison to its large ones and achieves an ef-
fect similar to PCR at the extreme ends of A’s spectrum.

Accordingly, ridge regression gives access to a “smooth
projection” operator, (AT

A+�I)�1
A

T
A, which approxi-

mates P
A

�

, the projection onto A’s top row principal com-
ponents. Both have the same singular vectors, but P

A

�

has
a singular value of 1 for each squared singular value �2

i

� �
in A and a singular value of 0 for each �2

i

< �, whereas
(A

T
A + �I)�1

A

T
A has singular values equal to �

2
i

�

2
i

+�

.
This function approaches 1 when �2

i

is much greater than
� and 0 when it is smaller. Figure 1 shows the comparison.

Unfortunately, in many settings, ridge regression is a very
crude approximation to PCR and projection and may per-
form significantly worse in certain data analysis applica-
tions (Dhillon et al., 2013). In short, while ridge regression
algorithms are valuable tools, it has been unclear how to
wield them for tasks like projection or PCR.

1.3. Main result: from ridge regression to projection

We show that it is possible to sharpen the weak ap-
proximation given by ridge regression. Specifically,
there exists a low degree polynomial p(·) such that
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Figure 1: Singular values of the projection matrix P

A

�

vs. those of the smooth projection operator (A

T
A +

�I)�1
A

T
A obtained from ridge regression.

p
�
(A

T
A+ �I)�1

A

T
A

�
y provides a very accurate ap-

proximation to P

A

�

y for any y 2 Rd. Moreover, the poly-
nomial can be evaluated as a recurrence, which translates
into a simple iterative algorithm: we can apply the sharp-
ened approximation to a vector by repeatedly applying any
ridge regression routine a small number of times.
Theorem 1.2 (Principal component projection without
PCA). Given A 2 Rn⇥d and y 2 Rd, Algorithm 1 uses
˜O(��2

log(1/✏)) approximate applications of (A

T
A +

�I)�1 and returns x with kx�P

A

�

yk2  ✏kyk2.

Like all iterative PCA algorithms, our running time scales
inversely with �, the spectral gap around �.1 Notably, it
does not depend on the number of principal components in
A

�

, a cost incurred by any method that applies the projec-
tion P

A

�

directly, either by explicitly computing the top
principal components of A, or even by just computing an
orthogonal span for these components.

As mentioned, the above theorem also yields an algorithm
for principal component regression that computes A

†
�

b

without finding A

�

. We achieve this result by introduc-
ing a robust reduction, from projection to PCR, that again
relies on ridge regression as a computational primitive.
Corollary 1.3 (Principal component regression without
PCA). Given A 2 Rn⇥d and b 2 Rn, Algorithm 2 uses
˜O(��2

log(1/✏)) approximate applications of (A

T
A +

�I)�1 and returns x with kx�A

†
�

bk
A

T
A

 ✏kbk2.

Corollary 1.3 gives the first known algorithm for PCR that
avoids the cost of principal component analysis.

1.4. Related work

A number of papers attempt to alleviate the high cost of
principal component analysis when solving PCR. It has

1See Section 3.2 for a discussion of this gap dependence.
Aside from a full SVD requiring O(nd2) time, any PCA algo-
rithm giving the guarantee of Theorem 1.2 will have a dependence
both on � and on the number principal components in A�. How-
ever, the � dependence can be better – ��1/2 for Krylov methods
(Musco & Musco, 2015), giving a runtime tradeoff.
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been shown that an approximation to A

�

suffices for solv-
ing the regression problem (Chan & Hansen, 1990; Bout-
sidis & Magdon-Ismail, 2014). Unfortunately, even the
fastest approximations are much slower than routines for
ridge regression and inherently incur a linear dependence
on the number of principal components above �.

More closely related to our approach is work on the ma-
trix sign function, an important operation in control the-
ory, quantum chromodynamics, and scientific computing
in general. Approximating the sign function often involves
matrix polynomials similar to our “sharpening polynomial”
that converts ridge regression to principal component pro-
jection. Significant effort addresses Krylov methods for ap-
plying such operators without computing them explicitly
(van den Eshof et al., 2002; Frommer & Simoncini, 2008).

Our work differs from these methods in an important way:
since we only assume access to an approximate ridge re-
gression algorithm, it is essential that our sharpening step
is robust to noise. Our iterative polynomial construction al-
lows for a complete and rigorous noise analysis that is not
available for Krylov methods, while at the same time elim-
inating space and post-processing costs. Iterative approx-
imations to the matrix sign function have been proposed,
but lack rigorous noise analysis (Higham, 2008).

1.5. Paper layout

Section 2: Mathematical and algorithmic preliminaries.

Section 3: Develop a PCA-free algorithm for principal
component projection based on a ridge regression sub-
routine.

Section 4: Show how our approximate projection algo-
rithm can be used to solve PCR, again without PCA.

Section 5: Detail our iterative approach to sharpening the
smooth ridge regression projection towards true pro-
jection via a low degree sharpening polynomial.

Section 6: Empirical evaluation of our principal compo-
nent projection and regression algorithms.

2. Preliminaries

Singular value decomposition. Any matrix A 2 Rn⇥d

of rank r has a singular value decomposition (SVD) A =

U⌃V

T, where U 2 Rn⇥r and V 2 Rd⇥r both have or-
thonormal columns and ⌃ 2 Rr⇥r is a diagonal matrix.
The columns of U and V are the left and right singular
vectors of A. Moreover, ⌃ = diag(�1(A), ...,�

r

(A)),
where �1(A) � �2(A) � ... � �

r

(A) > 0 are the singu-
lar values of A in decreasing order.

The columns of V are the eigenvectors of the covariance
matrix A

T
A, i.e. the principal components of the data, and

the eigenvalues of the covariance matrix are the squares of
the singular values �1, . . . ,�r

.

Functions of matrices. If f : R ! R is a scalar function
and S = diag(s1, . . . , sn) is a diagonal matrix, we define
by f(S)

def
= diag(f(s1), . . . , f(sn)) the entrywise applica-

tion of f to the diagonal. For a non-diagonal matrix A with
SVD A = U⌃V

T we define f(A)

def
= Uf(⌃)V

T.

Matrix pseudoinverse. We define the pseudoinverse of A
as A

†
= f(A)

T where f(x) = 1/x. The pseudoinverse
is essential in the context of regression, as the vector A†

b

minimizes the squared error kAx� bk22.

Principal component projection. Given a threshold � >
0 let k be the largest index with �

k

(A)

2 � � and define:

A

�

def
= U diag(�1, . . . ,�k

, 0, . . . , 0)VT.

The matrix A

�

contains A’s rows projected to the span of
all principal components having squared singular value at
least �. We sometimes write A

�

= AP

A

�

where P

A

�

2
Rd⇥d is the projection onto these top components. Here
P

A

�

= f(AT
A) where f(x) is a step function: 0 if x < �

and 1 if x � �.

Miscellaneous notation. For any positive semidefinite
M,N 2 Rd⇥d we use N � M to denote that M � N is
positive semidefinite. For any x 2 Rd, kxk

M

def
=

p
x

T
Mx.

Ridge regression. Ridge regression is the problem of com-
puting, given a regularization parameter � > 0:

x

�

def
= argmin

x2Rd

kAx� bk22 + �kxk22. (1)

The solution to (1) is given by x

�

=

�
A

T
A+ �I

��1
A

T
b.

Applying the matrix
�
A

T
A+ �I

��1 to A

T
b is equivalent

to solving the convex minimization problem:

x

�

def
= argmin

x2Rd

1

2

x

T
A

T
Ax� y

T
x+ �kxk22.

A vast literature studies solving problems of this form via
(accelerated) gradient descent, stochastic variants, and ran-
dom sketching (Nesterov, 1983; Nelson & Nguyên, 2013;
Shalev-Shwartz & Zhang, 2014; Lin et al., 2014; Frostig
et al., 2015; Cohen et al., 2015). We summarize a few, now
standard, runtimes achievable by these iterative methods:
Lemma 2.1 (Ridge regression runtimes). Given y 2
Rd let x

⇤
= (A

T
A + �I)�1

y. There is an algorithm,
RIDGE(A,�,y, ✏) that, for any ✏ > 0, returns x̃ such that

kx̃� x

⇤k
A

T
A+�I

 ✏kyk(AT
A+�I)�1 .

It runs in time TRIDGE(A,�, ✏) =

O
�
nnz(A)

p

�

· log(1/✏)
�

where 
�

= �2
1(A)/� is
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the condition number of the regularized system and
nnz(A) is the number of nonzero entries in A. There is
a also stochastic algorithm that, for any � > 0, gives the
same guarantee with probability 1� � in time

TRIDGE(A,�, ✏, �) = O ((nnz(A) + d sr(A)
�

) · log(1/�✏)) ,

where sr(A) = kAk2
F

/kAk22 is A’s stable rank. When
nnz(A) � d sr(A)

�

the runtime can be improved to

TRIDGE(A,�, ✏, �) = ˜O(

p
nnz(A) · d sr(A)

�

·log(1/�✏)),

where the ˜O hides a factor of log
⇣

d sr(A)
�

nnz(A)

⌘
.

Typically, the regularized condition number 
�

will be sig-
nificantly smaller than the full condition number of AT

A.

3. From ridge regression to principal

component projection

We now describe how to approximately apply P

A

�

using
any black-box ridge regression routine. The key idea is to
first compute a soft step function of AT

A via ridge regres-
sion, and then to sharpen this step to approximate P

A

�

.

Let Bx = (A

T
A+ �I)�1

(A

T
A)x be the result of apply-

ing ridge regression to (A

T
A)x. In the language of func-

tions of matrices, we have B = r(AT
A), where

r(x)
def
=

x

x+ �
.

The function r(x) is a smooth step about � (see Figure 1).
It primarily serves to map the eigenvalues of AT

A to the
range [0, 1], mapping those exceeding the threshold � to a
value above 1/2 and the rest to a value below 1/2.

To approximate the projection P

A

�

, it would now suffice
to apply a simple symmetric step function:

s(x) =

(
0 if x < 1/2

1 if x � 1/2

It is easy to see that s(B) = s(r(AT
A)) = P

A

�

. For
x � �, r(x) � 1/2 and so s(r(x)) = 1. Similarly for
x < �, r(x) < 1/2 and hence s(r(x)) = 0. That is, the
symmetric step function exactly converts our smooth ridge
regression step to the true projection operator.

3.1. Polynomial approximation to the step function

While computing s(B) directly is expensive, requiring the
SVD of B, we show how to approximate this function with
a low-degree polynomial. We also show how to apply this
polynomial efficiently and stably using a simple iterative
algorithm. Our main result, proven in Section 5, is:

Lemma 3.1 (Step function algorithm). Let S 2 Rd⇥d be
symmetric with every eigenvalue � satisfying � 2 [0, 1]
and |� � 1/2| � �. Let A denote a procedure that on x 2
Rd produces A(x) with kA(x) � Sxk2 = O(✏2�2

)kxk2.
Given y 2 Rd set s0 := A(y), w0 := s0 � 1

2y, and for
k � 0 set

w

k+1 := 4

✓
2k + 1

2k + 2

◆
A(w

k

�A(w

k

))

and s

k+1 := s

k

+ w

k+1. If all arithmetic operations are
performed with ⌦(log(d/✏�)) bits of precision then ks

q

�
s(S)yk2 = O(✏)kyk2 for q = ⇥(��2

log(1/✏)).

Note that the output s
q

is an approximation to a 2q degree
polynomial of S applied to y. In Algorithm 1, we give
pseudocode for combining the procedure with ridge regres-
sion to solve principal component projection. Set S = B

and let A be an algorithm that approximately applies B to
any x by applying approximate ridge regression to A

T
Ax.

As long as B has no eigenvalues falling within � of 1/2,
the lemma ensures ks

q

�P

A

�

yk2 = O(✏)kyk2. This re-
quires � on order of the spectral gap: 1��2

k+1(A)/�2
k

(A),
where k is the largest index with �2

k

(A) � �.

Algorithm 1 (PC-PROJ) Principal component projection
input: A 2 Rn⇥d, y 2 Rd, error ✏, failure rate �, threshold
�, gap � 2 (0, 1)

q := c1�
�2

log(1/✏)
✏0 := c�1

2 ✏2�2/
p

�

, �0 := �/(2q)
s := RIDGE(A,�,AT

Ay, ✏0, �0)
w := s� 1

2y

for k = 0, ..., q � 1 do

t := w � RIDGE(A,�,AT
Aw, ✏0, �0)

w := 4

⇣
2k+1
2k+2

⌘
RIDGE(A,�,AT

At, ✏0, �0)

s := s+w

end for

return s

Theorem 3.2. If 1
1�4��k+1(A)

2  �  (1 � 4�)�
k

(A)

2

and c1, c2 are sufficiently large constants, PC-PROJ (Algo-
rithm 1) returns s such that with probability � 1� �,

ks�P

A

�

yk2  ✏kyk2.

The algorithm requires O(��2
log(1/✏)) ridge regression

calls, each costing TRIDGE(A,�, ✏0, �0). Lemma 2.1 yields
total cost (with no failure probability)

O
�
nnz(A)

p

�

��2
log(1/✏) log (

�

/(✏�))
�

or, via stochastic methods,

˜O
�
(nnz(A) + d sr(A)

�

) ��2
log(1/✏) log(

�

/(✏��))
�

with acceleration possible when nnz(A) > d sr(A)
�

.
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Proof. We instantiate Lemma 3.1. Let S = B = (A

T
A+

�I)�1
A

T
A. As discussed, B = r(AT

A) and hence all its
eigenvalues fall in [0, 1]. Specifically, �

i

(B) =

�

i

(A)2

�

i

(A)2+�

.

Now, �
k

(B) � �/(1�4�)
�/(1�4�)+�

=

1
2�4� � 1

2 +� and similarly

�
k+1(B)  �(1�4�)

�(1�4�)+�

=

1�4�
2�4�  1

2��, so all eigenvalues
of B are at least � far from 1/2.

By Lemma 2.1, for any x, with probability � 1� �0:

kRIDGE(A,�,AT
Ax, ✏0, �0)�Bxk

A

T
A+�I

 ✏0kAT
Axk(AT

A+�I)�1  �1(A)✏0kxk2.

Since the minimum eigenvalue of AT
A+ �I is �:

kRIDGE(A,�,AT
Ax, ✏0, �0)�Bxk2

 �1(A)p
�

✏0kxk2 
p

�

✏2�2

c2
p

�

kxk2 = O(✏2�2
)kxk2.

Union bounding over all 2q calls of RIDGE, this bound
holds for all calls with probability � 1� �0 · 2q = 1� �.

Overall, by Lemma 3.1, ks� s(B)yk2 = O(✏)kyk2 with
probability 1 � �. As discussed, s(B) = P

A

�

. Adjusting
constants on ✏ (via c1, c2) completes the proof.

Note that the runtime of Theorem 3.2 depends on
p

�

. In
performing principal component projection, PC-PROC ap-
plies an asymmetric step function to A

T
A. The best poly-

nomial approximating this step also has a
p

�

dependence
(Eremenko & Yuditskii, 2011), so our reduction from pro-
jection to ridge regression is optimal in this regard.

3.2. Choosing � and �

Theorem 3.2 requires �

k+1(A)2

1�4�  �  (1� 4�)�
k

(A)

2. If
� is chosen approximately equidistant from the two eigen-
values, we need � = O(1� �2

k+1(A)/�2
k

(A)).

In practice, however, it is unnecessary to explicitly specify
� or to choose � so precisely. With q = O(��2

log(1/✏))
our projection will be approximately correct on all singu-
lar values outside the range [(1 � �)�, (1 + �)�]. If there
are any “intermediate” singular values in this range, as
shown in Section 5, the approximate step function applied
by Lemma 3.1 will map these values to [0, 1] via a mono-
tonically increasing soft step. That is, Algorithm 1 gives a
slightly softened projection, removing any principal direc-
tions with value below (1 � �)�, keeping any with value
above (1 + �)�, and partially projecting any in between.

4. From principal component projection to

principal component regression

A major motivation for an efficient, PCA-free method for
projecting a vector onto the span of top principal compo-

nents is principal component regression (PCR). Recall that
PCR solves the following problem:

A

†
�

b = argmin

x2Rd

kA
�

x� bk22.

In exact arithmetic, A†
�

b is equal to (A

T
A)

�1
P

A

�

A

T
b.

This identity suggests a method for computing the solu-
tion to ridge regression without finding A

�

explicitly: first
apply a principal component projection algorithm to A

T
b

and then solve a linear system to apply (A

T
A)

�1.

Unfortunately, this approach is disastrously unstable, not
only when P

A

�

is applied approximately, but in any fi-
nite precision environment. We instead present a modified
method for obtaining PCA-free regression from projection.

4.1. Stable inversion via ridge regression

Let y = P

A

�

A

T
b and suppose we have ỹ ⇡ y (e.g.

from Algorithm 1). The issue with the above approach is
that (AT

A)

�1 can have a very large max eigenvalue, so
we cannot guarantee (A

T
A)

�1
ỹ ⇡ (A

T
A)

�1
y. On the

other hand, applying the ridge regression operator (AT
A+

�I)�1 is much more stable – it has max eigenvalue 1/�, so
(A

T
A+ �I)�1

ỹ will approximate (A

T
A+ �I)�1

y well.

In short, it is more stable to apply (A

T
A + �I)�1

y =

f(AT
A)y, where f(x) =

1
x+�

, but the goal in PCR is to
apply (A

T
A)

�1
= h(AT

A) where h(x) = 1/x. So, in or-
der to go from one function to the other, we use a correction
function g(x) = x

1��x

. By simple calculation,

A

†
�

b = (A

T
A)

�1
y = g((AT

A+ �I)�1
)y.

Additionally, we can stably approximate g(x) with an iter-
atively computed low degree polynomial! Specifically, we
use a truncation of the series g(x) =

P1
i=1 �

i�1xi. Exact
computation of g(x) would exactly apply (A

T
A)

�1, which
as discussed, is unstable due to large eigenvalues (corre-
sponding to small eigenvalues of AT

A). Our approxima-
tion to g(x) is accurate on the large eigenvalues of AT

A

but inaccurate on the small eigenvalues. This turns out to
be the key to stability – by not “fully inverting” these eigen-
values, we avoid the instability of applying (A

T
A)

�1. We
give a full analysis in Appendix B, yielding:
Lemma 4.1 (PCR approximation algorithm). Let A be
a procedure that, given x 2 Rd, produces A(x) with
kA(x) � (A

T
A + �I)�1

xk
A

T
A+�I

= O(

✏

q

2
�1(A) )kxk2.

Let B be a procedure that, given x 2 Rd produces B(x)
with kB(x)�P

A

�

xk2 = O(

✏

q

2p


�

)kxk2. Given b 2 Rn

set s0 := B(AT
b) and s1 := A(s0). For k � 1 set:

s

k+1 := s1 + � · A(s

k

).

If all arithmetic operations are performed with
⌦(log(d/q✏)) bits of precision then ks

q

� A

†
�

bk
A

T
A

=

O(✏)kbk2 for q = ⇥(log(
�

/✏)).
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We instantiate the iterative procedure above in Algorithm
2. PC-PROJ(A,�,y, �, ✏, �) denotes a call to Algorithm 1.

Algorithm 2 (RIDGE-PCR) Ridge regression-based PCR
input: A 2 Rn⇥d, b 2 Rn, error ✏, failure rate �, threshold
�, gap � 2 (0, 1)

q := c1 log(�

/✏)
✏0 := c�1

2 ✏/(q2
p

�

), �0 = �/2(q + 1)

y := PC-PROJ(A,�,AT
b, �, ✏0, �/2)

s0 := RIDGE(A,�,y, ✏0, �0), s := s0

for k = 1, ..., q do

s := s0 + � · RIDGE(A,�, s, ✏0, �0)
end for

return s

Theorem 4.2. If 1
1�4��k+1(A)

2  �  (1 � 4�)�
k

(A)

2

and c1, c2 are sufficiently large constants, RIDGE-PCR (Al-
gorithm 2) returns s such that with probability � 1� �,

ks�A

†
�

bk
A

T
A

 ✏kbk2.

The algorithm makes one call to PC-PROJ and
O(log(

�

/✏)) calls to ridge regression, each of which
costs TRIDGE(A,�, ✏0, �0), so Lemma 2.1 and Theorem 3.2
imply a total runtime of

˜O(nnz(A)

p

�

��2
log

2
(

�

/(✏�))),

where ˜O hides log log(1/✏), or, with stochastic methods,

˜O((nnz(A) + d sr(A)
�

)��2
log

2
(

�

/(✏��))).

Proof. We apply Lemma 4.1; A is given by
RIDGE(A,�,x, ✏0, �0). Since k(AT

A+ �I)�1k2 < 1/�,
Lemma 2.1 states that with probability 1� �0,

kA(x)� (A

T
A+ �I)�1

xk
A

T
A+�I

 ✏0kxk(AT
A+�I)�1  c�1

2 ✏

q2
p

�

�
kxk2  c�1

2 ✏

q2�1(A)

kxk2.

Now, B is given by PC-PROJ(A,�,x, �, ✏0, �/2). With
probability 1 � �/2, if 1

1�4��k+1(A)

2  �  (1 �
4�)�

k

(A)

2 then by Theorem 3.2, kB(x)�P

A

�

xk2 
✏0kxk2 = ✏/(c2q

2p
�

). Applying the union bound over
q + 1 calls to A and a single call to B, these bounds hold
on every call with probability � 1� �. Adjusting constants
on ✏ (via c1 and c2) proves the theorem.

5. Approximating the matrix step function

We now return to proving our underlying result on iterative
polynomial approximation of the matrix step function:
Lemma 3.1 (Step function algorithm). Let S 2 Rd⇥d be
symmetric with every eigenvalue � satisfying � 2 [0, 1] and

|� � 1/2| � �. Let A denote a procedure that on x 2 Rd

produces A(x) with kA(x)�Sxk = O(✏2�2
)kxk2. Given

y 2 Rd set s0 := A(y), w0 := s0 � 1
2y, and for k � 0 set

w

k+1 := 4

✓
2k + 1

2k + 2

◆
A(w

k

�A(w

k

))

and s

k+1 := s

k

+ w

k+1. If all arithmetic operations are
performed with ⌦(log(d/✏�)) bits of precision and if q =

⇥(��2
log(1/✏)) then ks

q

� s(S)yk2 = O(✏)kyk2.

The derivation and proof of Lemma 3.1 is split into 3 parts.
In Section 5.1 we derive a simple low degree polynomial
approximation to the sign function:

sgn(x)
def
=

8
><

>:

1 if x > 0

0 if x = 0

�1 if x < 0

In Section 5.2 we show how this polynomial can be com-
puted with a stable iterative procedure. In Section 5.3
we use these pieces and the fact that the step function
is simply a shifted and scaled sign function to prove
Lemma 3.1. Along the way we give complementary views
of Lemma 3.1 and show that there exist more efficient poly-
nomial approximations. All proofs are in Appendix A.

5.1. Polynomial approximation to the sign function

We show that for sufficiently large k, the following polyno-
mial is uniformly close to sgn(x) on [�1, 1]:

p
k

(x)
def
=

kX

i=0

x(1� x2
)

i

iY

j=1

2j � 1

2j
.

p
k

(x) can be derived in several ways. One follows from
observing that sgn(x) is odd and so sgn(x)/x = 1/|x| is
even. So, a good polynomial approximation for sgn(x)
should be odd and, when divided by x, should be even
(i.e. a function of x2). Specifically, given an approximation
q(x) to 1/

p
x on (0, 1] we can approximate sgn(x) using

xq(x2
). Letting q be the k-th order Taylor approximation

to 1/
p
x at x = 1 yields p

k

(x). We first show:
Lemma 5.1. sgn(x) = lim

k!1 p
k

(x) for all x 2 [�1, 1].

Proof. Let f(x) = x�1/2. By induction on k it is straight-
forward to show that the k-th derivative of f at x > 0 is
f (k)

(x) = (�1)

k

x� 1+2k
2

Q
k

i=1
2i�1
2 . Since (�1)

i

(x �
1)

i

= (1� x)i, the degree k Taylor approximation to f(x)

at x = 1 is q
k

(x) =
P

k

i=0(1 � x)i
Q

i

j=1
2j�1
2j . The inte-

gral form of Taylor series remainder gives |f(x)�q
k

(x)| =���
R
x

1
f

(k+1)(t)
k! (x� t)kdt

��� which is bounded by:

O

0

@
Z

x

1

k

t3/2

✓
t� x

t

◆
k

kY

j=1

2j � 1

2j
dt

1

A
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and consequently, the Taylor approximation converges, i.e.
lim

k!1 q
k

(x) = 1/
p
x, for x 2 (0, 1]. Since p

k

(x) =

x·q
k

(x2
), lim

k!1 p
k

(x) = x/
p
x2

= sgn(x) for x 6= 0 in
[�1, 1]. Since p

k

(0) = 0 = sgn(0), the result follows.

Alternatively, to derive p
k

(x) we can consider (1 � x2
)

k,
which is relatively large near 0 and small on the rest of
[�1, 1]. Integrating this function from 0 to x and normaliz-
ing yields a good step function. In Appendix A we prove:

Lemma 5.2. For all x 2 R, p
k

(x) =
R

x

0 (1�y

2)kdyR 1
0 (1�y

2)kdy
.

Next, we bound the rate of convergence of p
k

(x) to sgn(x):

Lemma 5.3. For k � 1 if x 2 (0, 1] then p
k

(x) > 0 and

sgn(x)� (x
p
k)�1e�kx

2

 p
k

(x)  sgn(x) . (2)

If x 2 [�1, 0) then p
k

(x) < 0 and

sgn(x)  p
k

(x)  sgn(x) + (x
p
k)�1e�kx

2

.

Proof. The claim is trivial for x = 0. Since p
k

(x) is odd it
suffices to consider x 2 (0, 1]. It is direct that p

k

(x) >
0, and p

k

(x)  sgn(x) follows since p
k

(x) increases
monotonically with k and lim

k!1 p
k

(x) = sgn(x) by
Lemma 5.1. All that remains is the left-side inequality of
(2). Using the Taylor series expansion of Lemma 5.1,

sgn(x)�p
k

(x)  x(1�x2
)

k

1X

i=0

0

@
(1� x2

)

i

kY

j=1

2j � 1

2j

1

A .

Now since 1 + x  ex for all x and
P

n

i=1
1
i

� lnn,

kY

j=1

2j � 1

2j
 exp

0

@
kX

j=1

�1

2j

1

A  exp

✓
� ln k

2

◆
=

1p
k
.

Combining with
P1

i=0(1� x2
)

i

= x�2 and again that 1 +
x  ex proves the left hand side of (2).

The lemma directly implies that p
k

(x) is a high quality ap-
proximation to sgn(x) for x bounded away from 0.
Corollary 5.4. If x 2 [�1, 1], with |x| � ↵ > 0 and
k = ↵�2

ln(1/✏), then | sgn(x)� p
k

(x)|  ✏.

We conclude by noting that this proof in fact implies the
existence of a lower-degree polynomial approximation to
sgn(x). Since the sum of coefficients in our expansion is
small, we can replace each (1�x2

)

q with Chebyshev poly-
nomials of lower degree. In Appendix A, we prove:
Lemma 5.5. There exists an O(↵�1

log(1/↵✏)) degree
polynomial q(x) such that | sgn(x) � q(x)|  ✏ for all
x 2 [�1, 1] with |x| � ↵ > 0 .

Lemma 5.5 achieves, up to an additive log(1/↵)/↵, the
optimal trade off between degree and approximation of
sgn(x) (Eremenko & Yuditskii, 2007). We have prelimi-
nary progress toward making this near-optimal polynomial
algorithmic, a topic we leave to explore in future work.

5.2. Stable iterative algorithm for the sign function

We now provide an iterative algorithm for computing p
k

(x)
that works when applied with limited precision. Our for-
mula is obtained by considering each term of p

k

(x). Let

t
k

(x)
def
= x(1� x2

)

k

kY

j=1

2j � 1

2j
.

Clearly t
k+1(x) = t

k

(x)(1 � x2
)(2k + 1)/(2k + 2) and

therefore we can compute the t
k

iteratively. Since p
k

(x) =P
k

i=0 ti(x) we can compute p
k

(x) iteratively as well. We
show this procedure works when applied to matrices, even
if all operations are performed with limited precision:

Lemma 5.6. Let B 2 Rd⇥d be symmetric with kBk2  1.
Let C be a procedure that given x 2 Rd produces C(x) with
kC(x) � (I � B

2
)xk2  ✏kxk2. Given y 2 Rd suppose

that we have t0 and p0 such that kt0�Byk2  ✏kyk2 and
kp0 �Byk2  ✏kyk2. For all k � 1 set

t

k+1 :=

✓
2k + 1

2k + 2

◆
C(t

k

) and p

k+1 := p

k

+ t

k+1 .

Then if operations are carried out with ⌦(log(d/✏)) bits
of precision, for 1  k  1/(7✏): kt

k

(B)y � t

k

k2 
7k✏kyk2 and kp

k

(B)y � p

k

k2  7k✏kyk2 .

Proof. Let t⇤
k

def
= t

k

(B)y, p⇤
k

def
= p

k

(B)y, and C

def
= I �

B

2. Since p

⇤
0 = t

⇤
0 = By and kBk2  1 we see that even

if t0 and p0 are truncated to the given bit precision we still
have kt0 � t

⇤
0k2  ✏kyk2 and kp0 � p

⇤
0k2  ✏kyk2.

Now suppose that kt
k

� t

⇤
k

k2  ↵kyk2 for some ↵  1.
Since |t

k

(x)|  |p
k

(x)|  | sgn(x)|  1 for x 2 [�1, 1]
and �I � B � I we know that kt⇤

k

k2  kyk2 and by
reverse triangle inequality kt

k

k2  (1 + ↵)kyk2. Using
our assumption on C and applying triangle inequality yields

kC(t
k

)�Ct

⇤
k

k2  kC(t
k

)�Ct

k

k2 + kC(t

k

� t

⇤
k

)k2
 ✏kt

k

k2 + kCk2 · k(tk � t

⇤
k

)k2
 (✏(1 + ↵) + ↵)kyk2  (2✏+ ↵)kyk2 .

In the last line we used kCk2  1 since 0 � B

2 � I.
Again, this gives kCt

⇤
k

k2  kyk2 and by reverse triangle
inequality kC(t

k

)k2  (1 + 2✏ + ↵)kyk2. Using C(t
k

) to
compute t

k+1 with bounded precision will then introduce
an additional additive error of ✏(1+2✏+↵)kyk2  4✏kyk2.
Putting all this together, kt⇤

k

� t

k

k2 grows by at most an
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additive 6✏kyk2 every time k increases and by the same
argument so does kp

k

�p

⇤
k

k2. Including our initial error of
✏kyk2 on t0 and p0, we conclude that kt⇤

k

�t

k

k2 and kp
k

�
p

⇤
k

k2 are both bounded by (6k✏+ ✏)kyk2  7k✏kyk2.

5.3. Approximating the step function

We finally apply the results of Section 5.1 and Section 5.2
to approximate the step function and prove Lemma 3.1. We
simply use s(x) = 1

2 (1 + sgn(2x� 1)), first showing how
to compute 1

2 (1 + p
k

(2x� 1)) via Lemma 5.6.
Lemma 5.7. Let S 2 Rd⇥d be symmetric with 0 � S � I.
Let A be a procedure that on x 2 Rd produces A(x) with
kA(x) � Sxk2  ✏kxk2. Given arbitrary y 2 Rd set
s0 := A(y), w0 := s0 � 1

2y, and for all k � 0 set

w

k+1 := 4

✓
2k + 1

2k + 2

◆
A(w

k

�A(w

k

))

and s

k+1 := s

k

+w

k+1. If arithmetic operations are per-
formed with ⌦(log(d/✏)) bits of precision and k = O(1/✏)
then k 1

2 (I+ p
k

(2S� I))y � s

k

k2 = O(k✏)kyk2.

Proof. Since M

def
= I � (2S � I)

2
= 4S(I � S), w

k

is
the same as 1

2tk in Lemma 5.6 with B = 2S � I and
C(x) = 4A(x � A(x)), and s

k

= s0 +

P
k

i=1 wi

=P
k

i=0
1
2ti +

1
2y =

1
2 (pk

+ y). Multiplying by 1/2 ev-
erywhere does not increase error and k2S� Ik2  1 so we
can invoke Lemma 5.6 to yield the result provided we can
show k4A(x � A(x)) �Mxk2 = O(✏)kxk2. Computing
A(x) and subtracting from x introduces at most additive
error 2✏kxk2 Consequently by the error guarantee of A,
k4A(A(x)� x)�Mxk2 = O(✏)kxk2 as desired.

Using Lemma 5.7 and Corollary 5.4 we finally have:

Proof of Lemma 3.1. By assumption, 0 � S � I and
✏�2q = O(1). Invoking Lemma 5.7 with error ✏0 = ✏2�2,
letting a

q

def
=

1
2 (I+ p

q

(2S� I))y we have

ka
q

� s

q

k2 = O(�2✏2q)kyk2 = O(✏)kyk2 . (3)

Now, since s(S) = 1
2 (I+sgn(2S�I)) and every eigenvalue

of 2S � I is in [�, 1], by assumption on S we can invoke
Corollary 5.4 yielding ka

q

� s(S)yk2  1
2kpq(2S � I) �

sgn(2S � I)k2kyk2  2✏kyk2. The result follows from
combining with (3) via triangle inequality.

6. Empirical evaluation

We conclude with an empirical evaluation of PC-PROC and
RIDGE-PCR (Algorithms 1 and 2). Since PCR has already
been justified as a statistical technique, we focus on show-
ing that, with few iterations, our algorithm recovers an ac-
curate approximation to A

†
�

b and P

A

�

y.
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Figure 2: Relative log error of RIDGE-PCR (left) and PC-
PROJ (right) for synthetically generated data.
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Figure 3: Extended log error plot on synthetic data with
gap � = .1 (left). Relative log error of RIDGE-PCR and
PC-PROJ for an MNIST-based regression problem (right).

We begin with synthetic data, which lets us control the
spectral gap � that dominates our iteration bounds (see
Theorem 3.2). Data is generated randomly by drawing top
singular values uniformly from the range [.5(1+ �), 1] and
tail singular values from [0, .5(1 � �)]. � is set to .5 and
A (500 rows, 200 columns) is formed via the SVD U⌃V

T

where U and V are random bases and ⌃ contains our ran-
dom singular values. To model a typical application, b is
generated by adding noise to the response Ax of a random
x that correlates with A’s top principal components.

As apparent in Figure 2, our algorithm performs very well
for regression, even for small �. Error is measured via the
natural AT

A-norm and we plot kRIDGE-PCR(A,b,�) �
A

†
�

bk2
A

T
A

/kA†
�

bk2
A

T
A

. The figure shows similar conver-
gence for projection (given with respect to the more natural
2-norm), although we do notice a stronger effect of a small
gap � in this case. Both plots confirm the linear conver-
gence predicted by our analysis (Theorems 3.2 and 4.2).
To illustrate stability, we include an extended plot for the
� = .1 data which shows arbitrarily high accuracy as itera-
tions increase (Figure 3).

Finally, we consider a 60K-point regression problem con-
structed from MNIST classification data (LeCun et al.,
2015), with the goal of distinguishing handwritten digits
{1,2,4,5,7} from the rest. Input is normalized and 1000
random Fourier features are generated according to a unit
RBF kernel (Rahimi & Recht, 2007). Our final data set is
both of larger scale and condition number than the original.
The MNIST principal component regression was run with
� = .01�2

1 . Although the gap � is very small around this
cutoff point (just .006), we see fast convergence for PCR.
Convergence for projection is slowed more notably by the
gap, but it is still possible to obtain 0.01 relative error with
only 20 iterations (i.e. invocations of ridge regression).
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