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A Proof of Corollary 3.1

Proof. Under the assumption that mI(m) — oo, the upper bound is a special case of Theorem
3.1. Note that
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We focus on the proof of the lower bound, which involves weaker assumptions than that of
Theorem 3.1. Using a similar analysis as (15)-(16), we have
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Following the proof of Theorem 3.1 with the confusion matrix 7(*) replaced by (5), we have
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where S, = Zie[m} W;, and under the distribution Q,
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Therefore, S, has a symmetric distribution around 0. Letting L = 2,/Varg(S,,), we have
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Finally, we need to show that L = o(mI(p)). We claim that
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This is becase when p; € [1/16, 15/16], we have ‘log % < 6(2pi—1)% < —6log (4p;(1 — p;)).

When p; € (0,1/16)U(15/16, 1), 1;—?’ < —2log (4p;(1 — p;)) and ‘log Lpi
2|log(1 — p;)|. Therefore, under the assumption that

< 2[log(ps)|V

max (Jlog(pi)| v [log(1 —pi)l) = o(ml (p)),

L = o(mI(p)) holds, and the proof is complete. O

B Proof of Lemma 6.1

Let f(t) = >_", log Bt(w@,wé*)). Then we have f/(tg) = 0 by its definition. First, we are
going to prove 0 < to < 1. The concavity of logarithm gives us xy'~* < tx 4 (1 — t)y for
non-negative z,y and ¢ € [0, 1], which implies
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For ¢ € (0,1), the equality holds if and only if 7\ = 7} for all b € [k] and i € [m]. As there
is at least one non-spammer, we must have f(t) < 0= f(0) = f(1) for ¢ € (0,1). Hence the
minimizer ¢y € (0.1).

Now we are going to show the uniqueness of ¢y by proving that

F(t) = Var(Sp) > 0, V¢ € (0,1)
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where S, = Zie[m} W;. To simplify the notation, let us define w;, = tlog (:%%) and
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B (77%,3, 772*) Zhe pin. Notice that dtpm = pinW;n, We have
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Since the set A, is non-empty, there is at least one Var(W;) > 0. Thus, f”(t) = Var(S,,) > 0.

C Proof of Lemma 6.2

From (19), we know ES,, = f'(to) = 0. Since ty > 0 by lemma 6.1, we can rescale W;
by W;/(—tolog pm) and the value of S,,/+/Var(S,,) will not change. Let us define V; =
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Wi/(—tolog pm) and R, = >, Vi. Then we have |V;|] < 1. To prove a central limit
theorem of S,,, it is sufficient to check the following Lindeberg’s condition [? |, that is, for
any € > 0,
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Note that for a discrete random variable X who takes value x, with probability p, for a € [N],
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Then, for any i € A,, we have

SNt @ ot -
1 (Wga)ﬂgb)) <7T§a)7réb)) 9 7757’)77&)
N — 1 &
Var(V;) oo 2, ) _(0) 0 (1)_(2)
08" Pm " B; (71*7772*) T1a Top
(@),_(2)
1 i i i Too T
> o A1) () v ()
08" Pm T2 a1
1 )\
= logzpm( §2) %1)) ( §2) 51)) log? (1 + a)?)
> Prn 41oo?
> — og“(1+a)
log” pm
2
> sz min{a?, 1}
log” pm,

Here the second inequality is due to the assumption that for any i € A, 7r,(w) > w(l) (14 «) for
any b # a. We have used the assumption that TI'C(Lb) > pm for the third inequality. The last
inequality is because log(1 + ) > /(1 4+ «) > min{«/2,1/2} for positive a. Take a sum of
Var(V;) over i € A,,
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for some constant ¢ € (0,1). Since (V; — EV;)? < 2V2 + 2(EV;)? < 4, we will have
I{(V; = EV;)* > ¢#Var(R,,)} =0

when 4log? p,, < €2|Aq|p2, min{a?,1}. Notice that E(V;—EV;)? < 4, we apply the Dominated
Convergence Theorem to conclude

E ((V; — EV;)*I{(V; — EV;)? > *Var(R,,)}) — 0.

Thus, the Lindeberg condition holds when |log py| = 0(pm|Ao.01|*?).



D Proof of Lemma 6.3

We are first going to show A\g < —2log p,,. Recall that
70 =TT (= p)e? + pie™2)
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For all A > —2log pm,, we have f(A) > p. ™ [[7%,(1 —p;) > 1, and f(0) = 1. Thus, the
minimizer of f(\) must be in the interval (0, —2log py,].

Again, we are going to prove the central limit theorem of S, by checking the following
Lindeberg’s condition. For any € > 0,
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When A\g € (0, —2log pp,], a lower bound of Varg(W;) is given by
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Therefore, Varg(Sm) = Y v, Varg(W;) > A3p2, Zie[m] pi(1—p;i). Notice that |[W; —EqgW;| <
|[W;| + E|W;| = A, for any fixed € > 0, we will have

I{|Wl —EqWi| > € Var@(Sm)} =0

when p2, > icpm) Pill = pi) — o0 as m — oo. Since Varg(W;)/A2 < 1/4, the Dominated
Convergence Theorem implies the desired Lindeberg’s condition (22).



