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A Proof of Corollary 3.1
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We focus on the proof of the lower bound, which involves weaker assumptions than that of

Theorem 3.1. Using a similar analysis as (15)-(16), we have
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EL(ŷ, y)

� 1

n

n

X

j=1

inf
ŷj
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Following the proof of Theorem 3.1 with the confusion matrix ⇡

(i) replaced by (5), we have
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Finally, we need to show that L = o(mI(p)). We claim that
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B Proof of Lemma 6.1
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