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Abstract
In many machine learning applications, crowd-
sourcing has become the primary means for la-
bel collection. In this paper, we study the op-
timal error rate for aggregating labels provided
by a set of non-expert workers. Under the clas-
sic Dawid-Skene model, we establish matching
upper and lower bounds with an exact exponent
mI(π) in which m is the number of workers and
I(π) the average Chernoff information that char-
acterizes the workers’ collective ability. Such an
exact characterization of the error exponent al-
lows us to state a precise sample size requirement
m > 1

I(π) log 1
ε in order to achieve an ε misclas-

sification error. In addition, our results imply the
optimality of various EM algorithms for crowd-
sourcing initialized by consistent estimators.

1. Introduction
In many machine learning problems such as image classi-
fication and speech recognition, we need a large amount
of labeled data. Crowdsourcing provides an efficient while
inexpensive way to collect labels. On a commercial crowd-
sourcing platform like Amazon Mechanical Turk (Ama-
zon Mechanical Turk), in general, it takes only few hours
to obtain hundreds of thousands labels from crowdsourcing
workers worldwide, and each label costs only several cents.

Though massive in amount, the crowdsourced labels are
usually fairly noisy. The low quality is partially due to the
lack of domain expertise from the workers and presence of
spammers. To overcome this issue, a common strategy is
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to repeatedly label each item by different workers, and then
estimate truth from the redundant labels, for example, us-
ing majority voting. Since the pioneering work by Dawid
and Skene (Dawid & Skene, 1979), which jointly estimates
truth and workers’ abilities via a simple EM algorithm, var-
ious approaches have been developed in recent years for ag-
gregating noisy crowdsourced labels. See (Whitehill et al.,
2009; Welinder et al., 2010; Raykar et al., 2010; Ghosh
et al., 2011; Bachrach et al., 2012; Liu et al., 2012; Zhou
et al., 2012; Dalvi et al., 2013; Zhou et al., 2014; Venanzi
et al., 2014; Parisi et al., 2014; Tian & Zhu, 2015) and ref-
erences therein.

Compared with the active progress in aggregation algo-
rithms, statistical understandings of crowdsourcing do not
get much attention except (Gao & Zhou, 2013; Karger
et al., 2014; Zhang et al., 2014; Berend & Kontorovich,
2015). These papers not only show exponential conver-
gence rates for several estimators, they also provide lower
bounds to justify the optimality of the rates. However, the
exponents found in these work are not matched in their up-
per and lower bounds. They are optimal only up to some
constants. The main focus of this paper is to find the exact
error exponent to better guide algorithm design and opti-
mization.

Main Contribution. We study the minimax rate of
misclassification for estimating the truth from crowd-
sourced labels. We provide upper and lower bounds with
exact exponents that match each other. The exponent
has a natural interpretation of the collective wisdom
of a crowd. In the special case where each worker’s
ability is modeled by a real number pi ∈ [0, 1], the
exponent takes a simple form −(1 + o(1))mI(p) with
I(p) = − 1

m

∑m
i=1 log

(
2
√
pi(1− pi)

)
being the average

Rényi divergence of order 1/2. Therefore, in order to
achieve an error of ε in the misclassification proportion,
it is necessary and sufficient that the number of workers
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m satisfies m ≥ (1 + o(1))I(p)−1 log(1/ε). Note that
in previous work, only m = Ω

(
I(p)−1 log(1/ε)

)
can be

claimed. Moreover, our general theorem has implications
on the convergence rates of several existing algorithms.

This paper is organized as follows. In Section 2, we present
the problem setting. In Section 3, given the workers’ abil-
ities, we derive the optimal error exponent. In Section 4,
we show that spectral methods can be used to achieve the
optimal error exponent, followed by a discuss on other al-
gorithms in Section 5. The main proofs are given in Section
6, and the remaining proofs are gathered in the supplemen-
tary material.

2. Problem Setting
Let us start from the classic model proposed by Dawid and
Skene (Dawid & Skene, 1979). Assume there are m work-
ers and n items to label. Denote the true label of the jth
item by yj that takes on a value in [k] = {1, 2, ..., k}. Let
Xij be the label given by the ith worker to the jth item.
The ability of the ith worker is assumed to be fully charac-
terized by a confusion matrix

π
(i)
gh = P(Xij = h|yj = g). (1)

which satisfies the probabilistic constraint
∑k
h=1 π

(i)
gh = 1.

Given yj = g, Xij is generated by a multinomial dis-

tribution with parameter π(i)
g∗ =

(
π
(i)
g1 , ..., π

(i)
gk

)
. Our

goal is to estimate the true labels y = (y1, · · · , yn) us-
ing the observed labels {Xij}. Denote the estimate by
ŷ = (ŷ1, ..., ŷn). The loss is measured by the error rate

L(ŷ, y) =
1

n

n∑
j=1

I{ŷj 6= yj}. (2)

We would like to remark that the true labels are considered
as deterministic here. It is straightforward to generalize
our results to stochastic labels generated from a distribu-
tion. Also, we assume that every worker has labeled every
item. Otherwise, we can regard the missing labels as a new
category and the results in this paper stay the same.

3. Main Results
In this section, we assume the confusion matrices {π(i)}
are known. Our goal is to establish the optimal error rate
with respect to the loss in Equation (2). Let Pπ,y be the
joint probability distribution of the data {Xij} given π and
y specified in (1), and let Eπ,y be the associated expectation
operator. Then the optimality is characterized by

M = inf
ŷ

sup
y∈[k]n

Eπ,yL(ŷ, y), (3)

which identifies the lowest error rate that we can achieve
uniformly over all possible true labels.

Our main result of the paper is to show that under some
mild condition the minimax risk (3) converges to zero ex-
ponentially fast with an exponent that characterizes the col-
lective wisdom of a crowd. Specifically, the error exponent
is −mI(π) with

I(π) = min
g 6=h

C(πg∗, πh∗), (4)

where C(πg∗, πh∗) is given as

− min
0≤t≤1

1

m

m∑
i=1

log

(
k∑
l=1

(
π
(i)
gl

)1−t (
π
(i)
hl

)t)
.

To better present our main result, let us introduce some no-
tations. Let ρm = mini,g,l π

(i)
gl . Suppose the minimum

of C(πg∗, πh∗) is achieved at g = a and h = b. For any
α > 0, we define a set of workers

Aα =
{
i ∈ [m] : π(i)

aa ≥ (1 + α)π
(i)
ab , π

(i)
bb ≥ (1 + α)π

(i)
ba

}
.

These workers inAα have better expertise in distinguishing
between categories a and b. Then, our main result can be
summarized into the following theorem.

Theorem 3.1. Assume log k = o(mI(π)), | log ρm| =
o(ρm|A0.01|1/2) and | log ρm| = o(

√
mI(π)), asm→∞.

Then, we have

inf
ŷ

sup
y∈[k]n

Eπ,yL(ŷ, y) = exp (−(1 + o(1))mI(π)) ,

where I(π) is defined by (4).

In Theorem 3.1, the assumption that | log ρm| =
o(ρm|A0.01|1/2) can be relaxed to that | log ρm| =
o(ρmα|Aα|1/2) for some α > 0. To better present our
result, we set α = 0.01 in the theorem. To prove the
upper bound, we only need the first assumption log k =
o(mI(π)). The other two assumptions on ρm are used
for proving the lower bound. One could imagine that the
larger ρm is, the more mistake we might make to estimate
the true labels. When there is a constant c (independent of
m) such that ρm ≥ c, the last two assumptions reduce to
|A0.01| → ∞ and

√
mI(π) → ∞. That means as long as

I(π) = Ω(1/
√
m) and the number of experts goes to infin-

ity as m grows, exp(−(1 + o(1))mI(π)) serves as a valid
lower bound.

Theorem 3.1 characterizes the optimal error rate for esti-
mating the ground truth with crowdsourced labels. It im-
plies exp (−(1 + o(1))mI(π)) is the best error rate that
can be achieved by any algorithm. Moreover, it also im-
plies there exists an algorithm that can achieve this optimal
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rate. The error exponent depends on an important quan-
tity I(π). When m = 1 and k = 2, this theorem reduces
to the Chernoff-Stein Lemma (Cover & Thomas, 2006),
in which I(π) is the Chernoff information between prob-
ability distributions. For the general problem, C(πg∗, πh∗)
can be understood as the average Chernoff information be-
tween {π(i)

g∗ }mi=1 and {π(i)
h∗}mi=1, which measures the collec-

tive ability of the m workers to distinguish between items
with label g and items with label h. Then, I(π) is the col-
lective ability of the m workers to distinguish between any
two items of different labels. The higher the overall collec-
tive ability mI(π), the smaller the optimal rate.

By Markov’s inequality, Theorem 3.1 implies

1

n

n∑
j=1

I{ŷj 6= yj} ≤ exp (−(1 + o(1))mI(π)) ,

with probability tending to 1. This allows a precise state-
ment for a sample size requirement to achieve a prescribed
error. If it is required that the misclassification proportion
is no greater than ε, then the number of workers should
satisfy m ≥ (1 + o(1)) 1

I(π) log 1
ε . A special case is

ε < n−1. Since 1
n

∑n
j=1 I{ŷj 6= yj} only takes value in

{0, n−1, 2n−1, ..., 1}, an error rate smaller than n−1 im-
plies that every item is correctly labeled. Therefore, as long
as m > (1 + o(1)) 1

I(π) log n, the misclassification rate is 0

with high probability.

When k = 2, a special case of the general Dawid-Skene
model takes the simple form[

π
(i)
11 π

(i)
12

π
(i)
21 π

(i)
22

]
=

[
pi 1− pi

1− pi pi

]
. (5)

This is referred to as the one-coin model, because the abil-
ity of each worker is parametrized by a biased coin with
bias pi. In this special case, I(π) takes the following sim-
ple form

I(π) = I(p) = − 1

m

m∑
i=1

log
(

2
√
pi(1− pi)

)
. (6)

Note that −2 log
(

2
√
pi(1− pi)

)
is the Rényi divergence

of order 1/2 between Bernoulli(pi) and Bernoulli(1− pi).
Let us summarize the optimal convergence rate for the one-
coin model in the following corollary.

Corollary 3.1. Assume max1≤i≤m(| log(pi)| ∨ | log(1 −
pi)|) = o(mI(p)), Then, we have

inf
ŷ

sup
y∈{1,2}n

Ep,yL(ŷ, y)

= exp (−(1 + o(1))mI(p)) ,

where I(p) is defined by (6).

Corollary 3.1 has a weaker assumption than that of The-
orem 3.1. When each pi is assumed to be in the interval
[c, 1 − c] with some constant c ∈ (0, 1/2), the assump-
tion of Corollary 3.1 reduces to mI(p) → ∞, which is
actually the necessary and sufficient condition for consis-
tency. The result of Corollary 3.1 is very intuitive. Note
that the Rényi divergence −2 log

(
2
√
pi(1− pi)

)
is de-

creasing for pi ∈ [0, 1/2] and increasing for pi ∈ [1/2, 1].
When most workers have pi’s that are close to 1/2, then
the rate of convergence will be slow. On the other hand,
when pi is either close to 0 or close to 1, that worker has a
high ability, which will contribute to a smaller convergence
rate. It is interesting to note that the result is symmetric
around pi = 1/2. This means for adversarial workers with
pi < 1/2, an optimal algorithm can invert their labels and
still get useful information.

4. Adaptive Estimation
The optimal rate in Theorem 3.1 can be achieved by the
following procedure:

ŷj = arg max
g∈[k]

∏
i∈[m]

∏
h∈[k]

(
π
(i)
gh

)I{Xij=h}
. (7)

This is the maximum likelihood estimator. When k = 2, it
reduces to the likelihood ratio test by Neyman and Pearson
(Neyman & Pearson, 1933). However, (7) is not practical
because it requires the knowledge of the confusion matrix
π(i) for each i ∈ [m]. A natural data-driven alternative
is to first get an accurate estimator π̂ of π in (7) and then
consider the plug-in estimator,

ŷj = arg max
g∈[k]

∏
i∈[m]

∏
h∈[k]

(
π̂
(i)
gh

)I{Xij=h}
. (8)

In the next theorem, we show that as long as π̂ is suffi-
ciently accurate, (8) will also achieve the optimal rate in
Theorem 3.1.

Theorem 4.1. Assume that, as m→∞,

P

max
g∈[k]

∑
i∈[m]

max
h∈[k]

∣∣∣log π̂
(i)
gh − log π

(i)
gh

∣∣∣ > δ

→ 0 (9)

with δ such that δ + log k = o(mI(π)). Then, for any
y ∈ [k]n, we have

1

n

n∑
j=1

I{ŷj 6= yj} ≤ exp (−(1 + o(1))mI(π)) ,

with probability tending to 1, where I(π) is defined by (4).

Theorem 4.1 guarantees that as long as the confusion ma-
trices can be consistently estimated, the plugged-in MLE
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(8) achieves the optimal error rate. In what follows, we
apply this result to verify the optimality of some methods
proposed in the literature.

4.1. Spectral Methods

Let us first look at the spectral method proposed in (Zhang
et al., 2014). They compute the second and third order
empirical moments and then estimate the confusion matri-
ces by using tensor decomposition. In particular, they ran-
domly partition the m workers into three different groups
G1, G2 and G3 to formulate the moments equations. For
(a, h) ∈ [3]× [k], let

π�ah =
1

|Ga|
∑
i∈Ga

π
(i)
h∗ , ωh =

|{j : yj = h}|
n

.

Note that π�ah is a k dimensional vector and we denote its
lth component as π�ahl. They use two steps to estimate the
individual confusion matrices. They first estimate the ag-
gregated confusion matrices π�a∗ by deriving equations be-
tween the moments of the labels {Xij} and the following
moments of π�ah,

M2 =
∑
h∈[k]

ωhπ
�
ah⊗π�ah, M3 =

∑
h∈[k]

ωhπ
�
ah⊗π�ah⊗π�ah.

Empirical moments are used to approximate the population
moments. Due to the symmetric structure of M2 and M3,
a robust tensor power method (Anandkumar et al., 2014) is
applied to approximately solve these equations. Then they
use another moment equation to get an estimator π̂(i) of the
confusion matrices π(i) from the estimator of π�ah.

Let ωmin = minh∈[k] ωh, κ = mina∈[3],l 6=h∈[k]{π�ahh −
π�ahl} and σk be the minimum kth eigenvalue of the matri-
ces Sab =

∑
h∈[k] ωhπ

�
ah ⊗ π�bh for a, b ∈ [3]. Applying

Theorem 1 in (Zhang et al., 2014) to Theorem 4.1, we have
the following result.
Theorem 4.2. Assume log k = o(mI(π)) and ρmI(π) ≤
min{ 36kκ logm

ωminσL
, 2 logm}. Let ŷ be the estimated labels

from (8) using the estimated confusion matrices returned
by Algorithm 1 in (Zhang et al., 2014). If the number of
items n satisfies

n = Ω

(
k5 log3m log k

ρ2mI
2(π)ω2

minσ
13
k

)
,

then for any y ∈ [k]n, we have

1

n

n∑
j=1

I{ŷj 6= yj} ≤ exp (−(1 + o(1))mI(π)) ,

with probability tending to 1, where I(π) is defined by (4).

Combined with Theorem 3.1, this result shows that an one-
step update (8) of the spectral method proposed in (Zhang
et al., 2014) can achieve the optimal error exponent.

4.2. One-coin Model

For the one-coin model, a simpler method of moments for
estimating pi is proposed in (Gao & Zhou, 2013). Let n1 =
|{j : yj = 1}|, n2 = n− n1, and γ = n2/n. They observe
the equation 1

n

∑n
j=1 P {Xij = 2} = γpi+(1−γ)(1−pi).

This leads to a natural estimator

p̂i =
1
n

∑n
j=1 I {Xij = 2} − (1− γ̂)

2γ̂ − 1
, (10)

where γ̂ is a consistent estimator of γ proposed in (Gao
& Zhou, 2013). Combining the consistency result of p̂i in
(Gao & Zhou, 2013) and Theorem 4.1, we have the follow-
ing result.

Theorem 4.3. Assume |2γ − 1| ≥ c for some constant c >
0, ρm ≤ pi ≤ 1− ρm for all i ∈ [m] and 1

m

∑
i∈[m](2pi−

1)2 ≤ 1− 4
m . Let ŷ be the estimated labels from (8) using

(10). If the number of items n satisfies

n = Ω

(
log2m log n

ρ2mI
2(p)

)
,

then for any y ∈ [k]n, we have

1

n

n∑
j=1

I{ŷj 6= yj} ≤ exp (−(1 + o(1))mI(p)) ,

with probability tending to 1, where I(p) is defined by (6).

5. Discussion
In this section, we show the implications of our results on
analyzing two popular crowdsourcing algorithms, EM al-
gorithm and majority voting.

5.1. EM Algorithm

In the probabilistic model of crowdsourcing, the true labels
can be regarded at latent variables. This naturally leads to
apply the celebrated EM algorithm (Dempster et al., 1977)
to obtain a local optimum of maximum marginal likelihood
with the following iterations (Dawid & Skene, 1979):

• (M-step) update the estimate of workers’ abilities

π
(i)
(t+1),gh ∝

∑
j

P(t) {yj = g} I{Xij = h} (11)

• (E-step) update the estimate of true labels

P(t+1) {yj = g} ∝
∏
i,h

(
π
(i)
(t+1),gh

)I{Xij=h}
(12)
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The M-step (11) is essentially the maximum likelihood
estimator. Bayesian versions of (11) are considered
in (Raykar et al., 2010; Liu et al., 2012). Though
the E-step (12) gives a probabilistic predication of the
true label, a hard label can be obtained as ŷj =
arg maxg∈[k] P(t+1) {yj = g}. According to Theorem 4.1,
as long as the M-step gives a consistent estimate of the
workers’ confusion matrices, the E-step will achieve the
optimal error rate. This may explain why the EM algorithm
for crowdsourcing works well in practice. In particular, as
we have shown, when it is initialized by moment methods
(Zhang et al., 2014; Gao & Zhou, 2013), the EM algorithm
is provably optimal after only one step of iteration.

5.2. Majority Voting

Majority voting is perhaps the simplest method for aggre-
gating crowdsourced labels. In what follows, we establish
the exact error exponent of the majority voting estimator
and show that it is inferior compared with the optimal er-
ror exponent. For simplicity, we only discuss the one-coin
model. Then, the majority voting estimator is given by

ŷj = arg max
g∈{1,2}

m∑
i=1

I{Xij = g}.

Its error rate is characterized by the following theorem.

Theorem 5.1. Assume pi ≤ 1 − ρm for all i ∈ [m],
ρ2m
∑
i∈[m] pi(1 − pi) → ∞ as m → ∞ and | log ρm| =

o(
√
mJ(p)). Then, we have

sup
y∈{1,2}n

Ep,yL(ŷ, y) = exp (−(1 + o(1))mJ(p)) ,

where

J(p) = − min
t∈(0,1]

1

m

m∑
i=1

log
[
pit+ (1− pi)t−1

]
.

The theorem says that −mJ(p) is the error exponent for
the majority voting estimator. Given the simple relation

J(p) = − min
t∈(0,1]

1

m

m∑
i=1

log
[
pit+ (1− pi)t−1

]
≤ − 1

m

m∑
i=1

min
t>0

log
[
pit+ (1− pi)t−1

]
(13)

= − 1

m

m∑
i=1

log
(

2
√
pi(1− pi)

)
= I(p),

we can see that the majority voting estimator has an infe-
rior error exponent J(p) to that of the optimal rate I(p) in
Theorem 4.3. In fact, the inequality (13) holds if and only

if pi’s are all equal, in which case, the majority voting is
equivalent to the MLE (7). When pi’s are varied among
workers, majority voting cannot take the varied workers’
abilities into account, thus being sub-optimal.

6. Proofs
Proof of Theorem 3.1. The main proof idea is as follows.
Consider the maximum likelihood estimator (7), we first
derive the upper bound by union bound and Markov’s in-
equality. The proof of lower bound is quite involved and it
consists of three steps. Based on a standard lower bound
technique, we first lower bound the misclassification rate
by testing error. Then we calculate the testing error us-
ing the Neyman-Person Lemma. Finally, we give a lower
bound for the tail probability of a sum of random variables,
using the technique from the proof of the Cramer-Chernoff
Theorem (Van der Vaart, 2000, Proposition 14.23).

Upper Bound. Let ŷ = (ŷ1, ..., ŷn) be defined as in (7).
In the following, we give a bound for P(ŷj 6= yj). Let us
denote by Pl the joint probability distribution of {Xij , i ∈
[m]} given π and yj = l. Without loss of generality, let
yj = 1. Using union bound, we have

P1(ŷj 6= 1) ≤
k∑
g=2

P1(ŷj = g).

For each g ≥ 2, we have

P1(ŷj = g)

≤ P1

 ∏
i∈[m]

∏
h∈[k]

(
π
(i)
gh

π
(i)
1h

)I{Xij=h}

> 1


≤ min

t≥0

∏
i∈[m]

E1

∏
h∈[k]

(
π
(i)
gh

π
(i)
1h

)tI{Xij=h}

(14)

= min
t≥0

∏
i∈[m]

∑
h∈[k]

(
π
(i)
1h

)1−t (
π
(i)
gh

)t
,

where (14) is due to Markov’s inequality for each t ≥ 0.
Therefore, we have

P1(ŷj 6= 1) ≤
k∑
g=2

exp (−mC (π1∗, πg∗))

≤ (k − 1) exp

(
−mmin

g 6=1
C(π1∗, πg∗)

)
,

which leads to
1

n

∑
j∈[n]

Pyj (ŷj 6= yj) ≤ (k − 1) exp (−mI(π))

= exp (−(1 + o(1))mI(π)) ,

when log k = o(mI(π)).
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Lower Bound. Now we establish a matching lower
bound. We first introduce some notations. Define

Bt(π
(i)
g∗ , π

(i)
h∗) =

k∑
l=1

(
π
(i)
gl

)1−t (
π
(i)
hl

)t
.

Without loss of generality, we let

C(π1∗, π2∗) = min
g 6=h

C(πg∗, πh∗) = I(π).

Using the fact that the supremum over [k]n is bigger than
the average over [k]n , the minimax rate M can be lower
bounded as

sup
y∈[k]n

Eπ,yL(ŷ, y)

≥ 1

kn

∑
y∈[k]n

Eπ,yL(ŷ, y)

=
1

kn

k∑
l=1

n∑
j=1

Pl {ŷj 6= l}

≥ 2

kn

n∑
j=1

[
1

2
P1{ŷj 6= 1}+

1

2
P2{ŷj 6= 2}

]
.

Taking an infimum of ŷ on both sides leads to

inf
ŷ

sup
y∈[k]n

Eπ,yL(ŷ, y)

≥ inf
ŷ

2

kn

n∑
j=1

inf
ŷj

[
1

2
P1{ŷj = 2}+

1

2
P2{ŷj = 1}

]

=
2

kn

n∑
j=1

inf
ŷj

[
1

2
P1{ŷj = 2}+

1

2
P2{ŷj = 1}

]
.

By the Neyman-Pearson Lemma (Neyman & Pearson,
1933), for any fixed j ∈ [n], the Bayes testing error

1

2
P1{ŷj = 2}+

1

2
P2{ŷj = 1}

is minimized by the likelihood ratio test

ŷj = arg max
g∈{1,2}

∏
i∈[m]

∏
h∈[k]

(
π
(i)
gh

)I{Xij=h}
.

Therefore,

P1(ŷj = 2)

= P1

 ∏
i∈[m]

∏
h∈[k]

(
π
(i)
2h

π
(i)
1h

)tI{Xij=h}

> 1


= P(Sm > 0).

Here t is a positive constant that we will specify later. And
Sm =

∑
i∈[m]Wi, with the random variable Wi defined as

P

(
Wi = t log

(
π
(i)
2h

π
(i)
1h

))
= π

(i)
1h . (15)

We lower bound P(Sm > 0) by∑
0<Sm

∏
i∈[m]

P(Wi)

≥
∑

0<Sm<L

∏
i∈[m]

P(Wi)

=
∑

0<Sm<L

∏
i∈[m]

P(Wi)e
Wi

Bt(π
(i)
1∗ , π

(i)
2∗ )

∏
i∈[m]

Bt(π
(i)
1∗ , π

(i)
2∗ )

eWi

≥
∏
i∈[m]

Bt(π
(i)
1∗ , π

(i)
2∗ )e−L

∑
0<Sm<L

Qi(Wi)

≥
∏
i∈[m]

Bt(π
(i)
1∗ , π

(i)
2∗ )e−LQ(0 < Sm < L),

where the distribution Qi is defined as

Qi

(
Wi = t log

(
π
(i)
2h

π
(i)
1h

))
=

(
π
(i)
1h

)1−t (
π
(i)
2h

)t
Bt(π

(i)
1∗ , π

(i)
2∗ )

, (16)

and Q is defined as the joint distribution of Q1, · · · ,Qm.

To precede, we will need the following two lemmas.

Lemma 6.1. If Aα is not empty, there is an unique t0 such
that

t0 = argmin
t∈[0,1]

∏
i∈[m]

Bt(π
(i)
1∗ , π

(i)
2∗ ). (17)

Moreover, we have 0 < t0 < 1.

Lemma 6.2. Let t = t0 defined in (17). Then under the
assumption of Theorem 3.1, Sm is a zero mean random
variable satisfying the central limit theorem, i.e. for any
x,

Q

(
Sm√

Var(Sm)
≤ x

)
→ Φ(x), as m→∞,

where Φ is the cumulative distribution function of aN(0, 1)
random variable.

The proof of Lemma 6.1 and Lemma 6.2 are given in
the supplementary material. Let t = t0 and L =
2
√

VarQ(Sm). Using Lemma 6.2 and Chebyshev’s in-
equality, we have

Q(0 < Sm < L) ≥ 1−Q(Sm ≤ 0)−Q(Sm ≥ L)

≥ 1− 5/8− 1/4 = 1/8
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for sufficiently large m. Note that

EQW 2
i

=
∑
h∈[k]

(
t log

(
π
(i)
2h

π
(i)
1h

))2

Qi

(
Wi = t log

(
π
(i)
2h

π
(i)
1h

))

≤ max
i,h

(
t log

(
π
(i)
2h

π
(i)
1h

))2

≤ log2 ρm.

Consequently,

VarQ(Sm) =
∑
i∈[m]

VarQ(Wi) ≤
∑
i∈[m]

EQW 2
i ≤ m log2 ρm.

Under the assumption that log2 ρm = o(mI2(π)), we have

e−L ≥ e−
√
m log2 ρm ≥ e−o(mI(π)). This leads to the

lower bound

P1(ŷj = 2) ≥
∏
i∈[m]

Bt(π
(i)
1∗ , π

(i)
2∗ )e−o(mI(π))

= exp (−(1 + o(1))mI(π)) .

Note that the same bound holds for P2(ŷj = 1). Hence,

inf
ŷ

sup
y∈[k]n

EL(ŷ, y) ≥ 2

k
exp (−(1 + o(1))mI(π))

= exp (−(1 + o(1))mI(π)) ,

under the assumption that log k = o (mI(π)). This com-
pletes the proof.

Proof of Theorem 4.1. Define

E =

max
g∈[k]

∑
i∈[m]

max
h∈[k]

∣∣∣log π̂
(i)
gh − log π

(i)
gh

∣∣∣ ≤ δ
 .

Then, we have

P

 1

n

∑
j

I{ŷj 6= yj} > ε


≤ P

 1

n

∑
j

I{ŷj 6= yj} > ε,E

+ P(Ec)

= P

 1

n

∑
j

I{ŷj 6= yj} > ε
∣∣∣E
P(E) + P(Ec)

≤ 1

n

∑
j

P (ŷj 6= yj |E)P(E)/ε+ P(Ec)

=
1

n

∑
j

P (ŷj 6= yj , E) /ε+ P(Ec).

Let us give a bound for P (ŷj 6= yj , E). Without loss of
generality, let yj = 1. Then,

P (ŷj 6= yj , E)

≤
k∑
g=2

P (ŷj = g,E)

≤
k∑
g=2

P

 ∏
i∈[m]

∏
h∈[k]

(
π̂
(i)
gh

π̂
(i)
1h

)I{Xij=h}

> 1, E


=

k∑
g=2

P

 ∏
i∈[m]

∏
h∈[k]

(
π
(i)
gh

π
(i)
1h

)I{Xij=h}

∏
i∈[m]

∏
h∈[k]

(
π̂
(i)
ghπ

(i)
1h

π
(i)
gh π̂

(i)
1h

)I{Xij=h}

> 1, E


On the event E,

log

 ∏
i∈[m]

∏
h∈[k]

(
π̂
(i)
ghπ

(i)
1h

π
(i)
gh π̂

(i)
1h

)I{Xij=h}


≤
∑
i∈[m]

∑
h∈[k]

(
log

π̂
(i)
gh

π
(i)
gh

− log
π̂
(i)
1h

π
(i)
1h

)
I{Xij = h} ≤ 2δ.

Then

P (ŷj 6= yj , E)

≤
k∑
g=2

P

e2δ ∏
i∈[m]

∏
h∈[k]

(
π
(i)
gh

π
(i)
1h

)I{Xij=h}

> 1


≤

k∑
g=2

e2δ min
0≤t≤1

∏
i∈[m]

∑
h∈[k]

(
π
(i)
1h

)1−t (
π
(i)
gh

)t
≤ (k − 1) exp

(
−mmin

g 6=1
C(π1∗, πg∗) + 2δ

)
.

Thus,

1

n

∑
j∈[n]

P (ŷj 6= yj , E) ≤ (k − 1) exp (−mI(π) + 2δ) .

Letting ε = (k − 1) exp (−(1− η)mI(π) + 2δ) with η =
1/
√
mI(π), we have

1

n

∑
j

P (ŷj 6= yj , E) /ε ≤ exp
(
−
√
mI(π)

)
.

Thus, the proof is complete under the assumption that
log k + δ = o(mI(π)) and P(Ec) = o(1).

Proof of Theorem 5.1. The risk is 1
n

∑n
j=1 P{ŷj 6= yj}.

Consider the random variable I{ŷj 6= yj}. It has the
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same distribution as I{
∑m
i=1(Ti − 1/2) > 0}, where

Ti ∼ Bernoulli(1− pi). Therefore,

1

n

n∑
j=1

P{ŷj 6= yj} = P

{
m∑
i=1

(Ti − 1/2) > 0

}
.

We first derive the upper bound. Using Chernoff’s method,
we have

P

{
m∑
i=1

(Ti − 1/2) > 0

}
≤

m∏
i=1

Eeλ(Ti−1/2)

= exp

(
m∑
i=1

log
[
(1− pi)eλ/2 + pie

−λ/2
])

.

The desired upper bound follows by letting t = e−λ/2 and
optimizing over t ∈ (0, 1].

Now we show the lower bound using the similar arguments
as in the proof of Theorem 3.1. Define Wi = λ(Ti − 1/2)
and Sm =

∑m
i=1Wi. Then, we have

P

{
m∑
i=1

(Ti − 1/2) > 0

}
= P {Sm > 0}

≥
∑

0<Sm<L

m∏
i=1

P(Wi)

=
∑

0<Sm<L

(
m∏
i=1

P(Wi)e
Wi

(1− pi)eλ/2 + pie−λ/2

m∏
i=1

(1− pi)eλ/2 + pie
−λ/2

eWi

)

≥
m∏
i=1

(
(1− pi)eλ/2 + pie

−λ/2
)
e−LQ {0 < Sm < L} .

Note that under Q, Wi has distribution

Qi(Wi = λ/2) =
(1− pi)eλ/2

(1− pi)eλ/2 + pie−λ/2
,

Qi(Wi = −λ/2) =
pie
−λ/2

(1− pi)eλ/2 + pie−λ/2
.

We choose λ0 ∈ [0,∞) to minimize f(λ) =∏m
i=1

(
(1− pi)eλ/2 + pie

−λ/2). This leads to the equa-
tion EQSm = 0. It is sufficient to lower bound
e−LQ {0 < Sm < L} to finish the proof. To do this, we
need the following result.

Lemma 6.3. Suppose pi ≤ 1 − ρm for all i ∈ [m] and
ρ2m
∑
i∈[m] pi(1− pi)→∞ as m→∞. Then we have

i) λ0 ≤ −2 log ρm.

ii) Sm√
VarQ(Sm)

 N(0, 1) under the distribution Q.

The proof of Lemma 6.3 is given in the supplementary file.
Let L = 2

√
VarQ(Sm), and we have

e−LQ(0 < Sm < L) ≥ 0.25e−2
√

VarQ(Sm).

Finally, we need to show
√

VarQ(Sm) = o(mJ(p)). This
is because

Var(Sm) ≤
m∑
i=1

EQW 2
i ≤ mλ20/4

≤ m log2 ρm = o(m2J(p)2),

where the last equality is implied by the assumption
| log ρm| = o(

√
mJ(p)). The proof is complete.
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