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Abstract
We consider axiomatically the problem of esti-
mating the strength of a conditional dependence
relationship PY |X from a random variables X to
a random variable Y . This has applications in
determining the strength of a known causal re-
lationship, where the strength depends only on
the conditional distribution of the effect given the
cause (and not on the driving distribution of the
cause). Shannon capacity, appropriately regular-
ized, emerges as a natural measure under these
axioms. We examine the problem of calculating
Shannon capacity from the observed samples and
propose a novel fixed-k nearest neighbor estima-
tor, and demonstrate its consistency. Finally, we
demonstrate an application to single-cell flow-
cytometry, where the proposed estimators signif-
icantly reduce sample complexity.

1. Introduction
The axiomatic study of dependence measures on joint dis-
tributions between two random variables X and Y has
a long history in statistics (Shannon, 1948; Rényi, 1959;
Csiszár, 2008). In this paper, we study the relatively unex-
plored terrain of measures that depend only on the condi-
tional distribution PY |X . We are motivated to study con-
ditional dependence measures from a problem in causal
strength estimation. Causal learning is a basic problem in
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many areas of scientific learning, where one wants to un-
cover the cause-effect relationship usually using interven-
tions or sometimes directly from observational data (Pearl,
2009; Richardson & Evans, 2015; Mooij et al., 2015).

In this paper, we are interested in an even simpler ques-
tion: given a causal relationship, how does one measure the
strength of the relationship. This problem arises in many
contexts, for example, one may know causal genetic path-
ways but only a subset of these maybe active in a particular
tissue or organ - therefore, deducing how much influence
each causal link exerts becomes necessary.

We focus on a simple model: consider a pair of random
variables (X,Y ) with known causal direction X → Y , and
suppose that there are no confounders - we are interested
in quantifying the causal influence X has on Y . We denote
the causal influence quantity by C(X,Y ). There are two
philosophically distinct ways to model the quantity: the
first one is factual influence, i.e., how much influence does
X exert on Y under the current probability of the cause X .
The second possible way, which one can term as potential
influence measures how much influence X can potentially
exert on Y - without cognizance to the present distribution
of the cause. For example, consider a (hypothetical) city
which has very few smokers, but smoking inevitably leads
to lung-cancer. In such a city, the factual influence of smok-
ing on lung-cancer will be small but the potential influence
is very high. Depending on the setting, one may prefer the
former or the latter. In this paper, we are interested in the
potential influence of a cause on its effect.

We want C(X,Y ) to be invariant to scaling and one-one
transformations of the variables X,Y . This naturally sug-
gests information theoretic metrics as plausible choices of
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C(X,Y ), starting with the mutual information I(X;Y ) =
D(PXY ||PXPY ), at least in the case of factual influence.
This measures the information through the channel from
X → Y as given by the prior PX . Observe that this met-
ric is symmetric with respect to the directions X → Y and
Y → X; this property is not always desirable. In fact, this
measure is taken as a starting point to develop an axiomatic
approach to studying causal strength on general graphs in
(Janzing et al., 2013).

In a recent work (Krishnaswamy et al., 2014), potential
causal influence is posited as a relevant metric to spot
“trends” in gene pathways. In the particular application
considered there, rare biological states of geneX in a given
data may nevertheless correspond to important biological
states (or become common under different biological con-
ditions), and therefore it is important to have causal mea-
sures that are not sensitive to the cause distribution but
only depend on the relationship between the cause and the
effect. To quantify the potential influence of those rare
X , the following approach is proposed. Replace the ob-
served distribution PX by a uniform distribution UX and
calculate the mutual information under the joint distribu-
tion UXPY |X . The resulting causal strength quantification
is C(X,Y ) = D(UXPY |X ||PUPY ), where PY represents
the distribution at the output of a channel PY |X with input
given by UX . We call this quantification as Uniform Mu-
tual Information (UMI) and pronounced “you-me”. A key
challenge is to compute this quantity from i.i.d. samples in
a statistical efficient manner, especially when the channel
output is continuous valued (and potentially in high dimen-
sions). This is the first focus point of this paper.

UMI is not invariant under bijective transformations (since
a uniform distribution on X is different from a uniform
distribution on X3) and is also sensitive to the estimated
support size of X . Even more fundamentally, it is un-
clear why one would prefer the uniform prior to measure
potential influence through the channel PY |X . Based on
natural axioms of data processing and additivity, we moti-
vate an alternative measure of causal strength: the largest
amount of information that can be sent through the chan-
nel, namely the Shannon capacity. Formally C(X,Y ) =
maxQX

D(QXPY |X ||QXPY ), where PY represents the
distribution at the output of a channel PY |X with input
given by QX . We refer to such a quantification as Ca-
pacitated Mutual Information (CMI) and pronounced “see-
me”. A key challenge is to compute this quantity from i.i.d.
samples in a statistical efficient manner, especially when
the channel output is continuous valued (and potentially in
high dimensions). This is the second focus point of this
paper. We make the following main contributions in this
paper.

• UMI Estimation: We construct a novel estimator to

compute UMI from data sampled i.i.d. from a distri-
bution PXY . The estimator brings together ideas from
three disparate threads in statistical estimation the-
ory: nearest-neighbor methods, a correlation boosting
idea in the estimation of (standard) mutual informa-
tion from samples (Kraskov et al., 2004), and impor-
tance sampling. The estimator has only a single hyper
parameter (the number of nearest-neighbors consid-
ered, set to 4 or 5 in practice), uses an off-the-shelf
kernel density estimator of only PX , and has strong
connections to the entropy estimator of (Kozachenko
& Leonenko, 1987). Our main technical result is to
show that the estimator is consistent (in probability)
supposing that the Radon-Nikodym derivative dPU

dPX
is

uniformly bounded over the support. In simulations,
the estimator has very strong performance in terms
of sample complexity (compared to a baseline of the
partition-based estimator in (Moddemeijer, 1989)).

• CMI Estimation: We build upon the estimator derived
for UMI and construct an optimization problem that
mimics the optimization problem inherent in comput-
ing the capacity directly from the conditional proba-
bility distribution of the channel. Our main technical
result is to show the consistency of this estimator, sup-
posing that the Radon-Nikodym derivative dPQ

dPX
is uni-

formly bounded over the support, where PQ is the op-
timizing input to the channel. Simulation results show
strong empirical performance, compared to a baseline
of a partition-based method followed by discrete opti-
mization.

• Application to gene pathway influence: In (Krish-
naswamy et al., 2014), considered an important result
in single-cell flow-cytometry data analysis, a causal
strength metric (termed DREMI) is proposed for mea-
suring the causal influence of a gene – this estima-
tor is a specific way of implementing UMI along with
a “channel amplification” step, and DREMI was suc-
cessfully used to spot gene-pathway trends. We show
that our proposed CMI and UMI estimators also ex-
hibit the same performance as DREMI when supplied
with the full dataset, while at the same time, having
significantly smaller sample complexity for the same
performance.

2. An Axiomatic Approach
We formally model an influence measure on conditional
probability distributions, by postulating five natural ax-
ioms. Let X be drawn from an alphabet X , and Y from
an alphabet Y . Let the probability distribution of Y given
X be given as PY |X . Let P be a family of conditional dis-
tributions; usually we will consider the case when P is the
set of all possible conditional distributions. Then the influ-
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ence measure C is a function of the conditional distribution
to non-negative real numbers: C : P(Y|X ) → R+. We
postulate that the function C satisfies five axioms on P , and
show that CMI satisfies all five axioms:

0. Independence: The measure C(PY |X) = 0 if and
only if PY=y|X=x only depends on y.

1. Data Processing: If PZ=z|X=x =∑
y∈Y PZ=z|Y=yPY=y|X=x, i.e., X → Y → Z be

a processing chain, then the natural data processing
inequalities should hold: (a) C(PY |X) ≥ C(PZ|X);
and (b) C(PZ|Y ) ≥ C(PZ|X).

2. Additivity: For a parallel channel PY1,Y2|X1,X2
:=

PY1|X1
PY2|X2

, we need C(PY1,Y2|X1,X2
) =

C(PY1|X1
) + C(PY2|X2

).

3. Monotonicity: A causal relationship is strong if many
possible values of PY are achievable by varying the
input probability distribution PX . Thus if we consider
PY |X as a map from the probability simplex in X to
the probability simplex in Y , the larger the range of
this map, the stronger should be the causal strength.

(a) C should only depend on the range of the map,
Range(PY |X), the convex hull of the output dis-
tributions PY |X=x.

(b) C should be a monotonic function of the range
of the map. If PY |X and QY |X are such
that, Range(PY |X) ⊆ Range(QY |X) then:
C(PY |X) ≤ C(QY |X).

4. Maximum value: The maximum value over all pos-
sible conditional distributions for a particular output
alphabet Y should be achieved exactly when the re-
lationship is fully causal, i.e., each Y = y can be
achieved by setting X = x for some x.

We begin our exploration of appropriate influence mea-
sures with the alphabets for X and Y being discrete. Let
I(PXY ) := D(PXY ||PXPY ) denote the mutual informa-
tion with respect to the joint distribution PXY . Since we
are looking at potential influence measures, Shannon ca-
pacity, defined as the maximum over input probability dis-
tributions of the mutual information, is a natural choice:

CMI(PY |X) := max
PX

I(PXPY |X). (1)

Our first claim is that

CMI satisfies all the axioms of causal influence.

The proof (omitted in this conference version) is available
in the full version (Gao et al., 2016a).

Axiomatic View of UMI : Now consider an alternative
metric: Uniform Mutual Information (UMI) which is de-
fined as the mutual information with uniform input distri-
bution,

UMI(PY |X) := I(UXPY |X), (2)

where UX is the uniform distribution on X . This estimator
is motivated by the recent work in (Krishnaswamy et al.,
2014). We investigate how this estimator fares in terms of
the proposed axioms.

• UMI clearly satisfies Axiom 0. It also satisfies Ax-
ioms 1a. Data-processing inequality for mutual infor-
mation on the joint distribution UXPY |XPZ|Y implies
that I(UXPY |X) ≥ I(UXPZ|X), which is the same
as UMI(PY |X) ≥ UMI(PZ|X). Thus I(UY PZ|Y ) ≥
I(UXPZ|X).

• UMI however does not satisfy Axiom 1b in general.
However, if the transition matrices PY |X and PZ|Y
are both doubly stochastic, then a straightforward cal-
culation shows that UMI satisfies Axiom 1b too.

• UMI satisfies Axiom 2 since the uniform distribution
on X1, X2 naturally factors as UX1,X2

= UX1
UX2

and we have UMI(PY1,Y2|X1,X2
)

= I(UX1,X2
PY1,Y2|X1,X2

) (3)
= I(UX1

UX2
PY1|X1

PY2|X2
) (4)

= UMI(PY1|X1
) + UMI(PY2|X2

). (5)

• UMI does not satisfy Axiom 3a since multiple re-
peated values of PY |X=x does not alter the convex
hull but alters the UMI value.

• Interestingly, UMI does satisfy Axiom 4 for the same
reason as CMI.

2.1. Real-valued alphabets

For real-valued X , the Shannon capacity is not finite with-
out additional regularizations. This is also true of other
measures of relation such as the Renyi correlation (Rényi,
1959), and in each case the measure is studied in the con-
text of some form penalty term. Typically this is done via a
cost constraint on the real-valued input parameters. In this
context, one possibility is to consider the following norm-
constrained optimization to ensure the causal effect is finite
valued:

CMI(PY |X , a) := max
PX :E‖X‖22≤a

I(PXPY |X). (6)

In practice, a is chosen from the empirical moments of
X from samples: a := 1

N

∑N
i=1 ‖Xi‖22 for samples

X1, . . . , XN . This regularization turns to be the so-called
power constraint on the input, common in treatments of ad-
ditive noise communication channels.
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3. Estimators
Although the definition of UMI and CMI seamlessly ap-
plies to both discrete and continuous random variables, the
estimation becomes relatively straightforward when both
X and Y are discrete; the estimation of the conditional dis-
tribution pY |X and the the computation of UMI and CMI
can be separated in a straightforward manner. For this rea-
son and also due to the motivation in genomic biology that
we study, we focus on the more challenging regime Y is
continuous. Due to certain subtleties in the estimation pro-
cess, we provide separate estimators each customized for
each case of discrete and continuous X , respectively.

3.1. Uniform Mutual Information

The idea of applying UMI to infer the strength of con-
ditional dependence was first proposed in (Krishnaswamy
et al., 2014). Off-the-shelf 2-dimensional kernel density es-
timators (KDE) are used to first estimate the joint distribu-
tion PXY from given samples. Subsequently, the channel
PY |X is computed directly from the joint, and then UMI
is computed via either numerical integration or sampling
from UX and PY |X . This approach suffers from known
drawbacks of KDE, such as sensitivity to the choice of the
bandwidth and increased bias in higher dimensional X and
Y . However, a more critical challenge in using KDE to
estimate the joint at all points (and not just at samples) is
the overkill nature: we only need to compute a single func-
tional (UMI) of the joint distribution, which could in princi-
ple be computed more efficiently directly from the samples.
It is not at all clear how to directly estimate UMI, where X
is changed to uniform.

Perhaps surprisingly, we bring together ideas from three
topics in statistical estimation to introduce novel estimators
that are also provably convergent. Our estimator is based
on (a) k-nearest neighbor estimators, e.g. (Kozachenko
& Leonenko, 1987); (b) the correlation boosting idea of
the estimator from (Kraskov et al., 2004)–which is widely
adopted in practice (Khan et al., 2007); and (c) the impor-
tance sampling techniques to adjust for the uniform prior
for UMI. We explain each idea below.

Consider a simpler task of computing the mutual informa-
tion from samples; several approaches exist for this esti-
mation: (Paninski, 2003; Kraskov et al., 2004; Wang et al.,
2009; Pál et al., 2010; Sricharan et al., 2010; Póczos et al.,
2012; Gao et al., 2014; 2015; Kandasamy et al., 2015).
Note that three applications of the entropy estimator, such
as those from (Beirlant et al., 1997), gives an estimate of
the mutual information, i.e. Î(X;Y ) = Ĥ(X) + Ĥ(Y )−
Ĥ(X,Y ). Each entropy term can be computed using, for
example, a KDE based approach, which suffers from the
same challenges, as in UMI. Alternatively, to bypass esti-

mating PXY at every point, the differential entropy estima-
tion can be done via k nearest neighbor (kNN) methods (pi-
oneering work in (Kozachenko & Leonenko, 1987)). This
KL entropy estimator provides the first step in designing
the UMI estimator. However, taking the route of estimating
the mutual information via estimating the three differential
entropies (two marginals and one joint), it is entirely un-
clear how to estimate two of these quantities (differential
entropy of Y and that of (U, Y )) directly from samples.

Perhaps surprisingly, an innovative approach undertaken in
(Kraskov et al., 2004) to improve upon three applications
of KL estimators provides a solution. The KSG estima-
tor of (Kraskov et al., 2004) is based on kNN distance
ρk,i defined as the distance to the k-th nearest neighbor
from (Xi, Yi) in `∞ distance, i.e. ρk,i = max{‖Xjk −
Xi‖∞, ‖Yjk − Yi‖∞} where (Xjk , Yjk) is the k-th near-
est neighbor to (Xi, Yi). Precisely, the KSG estimator is
Î(X;Y ) =

1

N

N∑
i=1

(
ψ(k) + ψ(N)− ψ(nx,i)− ψ(ny,i)

)
, (7)

where ψ(x) is the digamma function, ψ(x) = Γ′(x)/Γ(x)
(for large x, ψ(x) ≈ log x−1/(2x)), and the kNN statistics
nx,i and ny,i are defined as

nx,i ≡
∑
j 6=i

I{‖Xj −Xi‖∞ < ρk,i} , and (8)

ny,i ≡
∑
j 6=i

I{‖Yj − Yi‖∞ < ρk,i}. (9)

Note that the number of nearest neighbors in X and Y are
computed with respect to ρk,i in the joint space (X,Y ).
This innovative idea, not only gives a simple estimator, but
also has an advantage of canceling correlations in three en-
tropy estimates, giving an improved performance. How-
ever, despite its popularity in practice due to its simplicity,
no convergence result is known.

Inspired by the innovative mutual information estimator in
(7), we combine importance sampling techniques to adjust
for the uniform prior for UMI, and propose a novel esti-
mator. On top of the provable convergence, our estima-
tor has only one hyper-parameter k (besides the choice of
bandwidth hN for estimating the marginal distribution PX
which is a significantly simpler task compared to estimat-
ing the joint), which is the number of nearest neighbors to
consider; in practice k is set to a small integer such as 4 or
5.

Continuous X . We propose a novel UMI estimator based
on the Kraskov mutual information estimator. For a con-
ditional probability density fY |X , we want to compute
the uniform mutual information from N i.i.d. samples
(X1, Y1), . . . , (XN , YN ) that are generated from fY |XfX
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for some prior on X . Our UMI estimator is based on
k nearest neighbor (kNN) statistics. Given a choice of
k ∈ Z+ and N samples,

ÛMI ≡ 1

N

N∑
i=1

wi

(
ψ(k) + log

Ncdxcdy
cdx+dy nx,i ny,i

)
, (10)

where X ⊆ Rdx , Y ⊆ Rdy , cd = π
d
2 /Γ(d2 + 1) is

the volume of d-dimensional unit ball, and wi is the self-
normalized importance sampling estimate (Cornuet et al.,
2012) of u(Xi)

f(Xi)
:

wi ≡
N/f̃(Xi)∑N

j=1

(
1/f̃(Xj)

) , (11)

where f̃ : X → R is the estimate of fX(x). We use the
standard kernel density estimator with a bandwidth hN :

f̃(x) ≡ 1

NhdxN

N∑
i=1

K
(Xi − x

hN

)
. (12)

We define the kNN statistics nx,i and ny,i as follows. For
each sample (Xi, Yi), calculate the Euclidean distance ρk,i
(as opposed to the `∞ distance proposed by Kraskov et al.
(2004)) to the k-th nearest neighbor. This determines the
(random) number of samples within ρk,i in X : first nx,i is
defined as the same as in (8), but with Euclidean distance;
second we have a weighted number of samples within ρk,i
in Y as

ny,i ≡
∑
j 6=i

wjI{‖Yj − Yi‖ < ρk,i}. (13)

Compared to (7), we first exchange log function for the
digamma functions of N , nx,i, and ny,i. This step (espe-
cially for nx,i, and ny,i) is crucial for proving convergence.
We use ideas from importance sampling and introduce new
variables wi’s that capture the correction for the mismatch
in the prior. The constants cdx , cdy , and cdx+dy correct for
the volume measured in `2.

Discrete X . Similarly, for a discrete random variable
X , the joint probability density function is denoted by
f(x, y) = pX(x)fY |X(y|x). We propose a UMI estima-
tor, and overload the same notation for this discrete case.

ÛMI ≡ 1

N

N∑
i=1

wXi

(
ψ(k) + log

N

nXi nyi

)
, (14)

where nXi = |{j ∈ [N ] : j 6= i,Xj = Xi}| is the
number of samples j such that Xj = Xi, wXi

is the self-
normalizing estimate of 1/(|X |pX(Xi)) defined as

wx ≡ N

|X |nx
, (15)

and ny,i is the weighted kNN statistics defined as follows.
For each sample (Xi, Yi), let the distance to the k-th near-
est neighbor be ρk,i, where those samples that have the
same X value as Xi is considered and the Euclidean dis-
tance is measured in Y . We define the weighted number of
samples within ρk,i in Y as

ny,i ≡
∑
j 6=i

wXj
I{‖Yj − Yi‖ < ρk,i}. (16)

3.2. Capacitated Mutual Information

Given standard estimators for mutual information and en-
tropy, it is not at all clear how to directly estimate CMI
where fX is changed to the (unknown) optimal input dis-
tribution. However, combining the mutual information es-
timator in (7) with importance sampling techniques, we de-
sign a novel estimator as a solution to an optimize over the
space of the weights. Our estimator has only one hyper-
parameter k, the number of nearest neighbors to consider.

Continuous X . For a conditional distribution fY |X ,
we compute an estimate of CMI from i.i.d. samples
(X1, Y1), . . . , (XN , YN ) generated from fY |XfX for some
prior on X . We introduce a novel CMI estimator that is
based on our UMI estimator. Given a choice of k ∈ Z+

and N samples, the estimated CMI is the solution of the
following constrained optimization:

ĈMI = max
w∈Ta,N

1

N

N∑
i=1

wi

(
ψ(k) + log(

Ncdxcdy
cdx+dynx,iny,i

)
)
,

where dx, dy , nx,i, ny,i and cd are defined in the same as
in (10). We optimize over w1, . . . , wN under the second
moment constraint, i.e. Ta,N = {w ∈ RN |wi ≥ 0,∀i ∈
[N ], (1/N)

∑N
i=1 wi = 1, (1/N)

∑N
i=1 wi‖Xi‖2 ≤ a2}.

Observe that no KDE of PX is needed for CMI estimation,
making it particularly simple and robust.

Discrete X . Similarly, we define the CMI estimate ĈMI as
the solution of the following constrained optimization:

ĈMI = max
w∈T∆

1

N

N∑
i=1

wXi

(
ψ(k) + log(

N

nx,iny,i
)
)

where nx,i and ny,i are defined in (14). T∆ is the set of
quantized version of an interval [C1, C2] with step size ∆,
i.e. T∆ =

{
w ∈ {C1 + mi∆}|X |

∣∣(1/N)
∑|X |
x=1 wx ∈

[1 − |X |∆, 1 + |X |∆], and mi ∈ {0, 1, . . . , d(C2 −
C1)/C1e} for all i

}
. Such a quantization is crucial in prov-

ing consistence in Theorem 2.

4. Convergence Guarantees
We show both UMI and CMI estimators we propose are
consistent under typical assumptions on the distribution.
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Uniform Mutual Information: As our estimators use the
off-the-shelf kernel density estimator of PX (Devroye &
Penrod, 1984; Sheather & Jones, 1991) and also the ideas
from the nearest-neighbor methods (Kozachenko & Leo-
nenko, 1987), we make assumptions on the conditional
density fY |X that are typical in these literature. One extra
assumption we make for UMI is that the Radon-Nikodym
derivative dPU

dPX
is uniformly bounded over the support. This

is necessary for controlling the importance-sampling esti-
mates of wi’s. We refer to the Assumption 1 provided in
the longer version of this paper (Gao et al., 2016a) for a
precise description.
Theorem 1. Under the Assumption 1 in (Gao et al.,
2016a), the UMI estimator converges to the true value in
probability, i.e. for all ε > 0 and all δ > 0,

lim
N→∞

P
( ∣∣ÛMI−UMI(fY |X)

∣∣ > ε
)

= 0 , (17)

if k > max{dy/dx, dx/dy} for continuous X and
(logN)(1+δ)dy < k <

√
N/(5 logN) for discrete X .

In practice, we regularize the kNN distance ρk,i in case
it is much smaller than the expected distance of order
N−1/(dx+dy). For continuous X , we require k to be larger
than the ratio of the dimensions, which is a finite constant.
For discrete X , however, the effective dimension of X is
zero, which makes the ratio dy/dx unbounded. Hence, for
concentration of measure to hold, we need k1/dy scaling at
least logarithmically in the number of samples N .

Capacitated Mutual Information: We make analogous
assumptions which are described precisely in Assumption
2 provided in the longer version of this paper (Gao et al.,
2016a). The following theorem establishes consistency
of our estimator when X is discrete and we quantize Y .
Our analysis requires uniform convergence over all pos-
sible choices of the weights w, making the quantization
step inevitable; improvements on this technical condition
are natural future steps.
Theorem 2. Under the Assumption 2 in (Gao et al.,
2016a), the CMI estimator converges in probability to
the true value up to the resolution of the quantization,
i.e. if k > (logN)(1+δ)dy for some δ > 0, and k <√
N/(5 logN), for all ε > 0 and ∆ > 0, there exists

s(∆) = O(∆) such that

lim
N→∞

P
( ∣∣ĈMI− CMI(fY |X)

∣∣ > ε+ s(∆)
)

= 0.

5. Numerical Experiments
5.1. Gene Causal Strength from Single Cell Data

We briefly describe the setup of (Krishnaswamy et al.,
2014) to motivate our numerical experiments. Consider
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Figure 1. CMI and UMI estimators significantly improve over
DREMI in capturing the biological trend in flow-cytometry data:
the figures above refer to the same setting as Figure 6 of (Krish-
naswamy et al., 2014).

a simple genetic pathway: a cascade of genes having ex-
pression values X,Y, Z which interact linearly, i.e., X →
Y → Z. A key question of interest in this case is how
the signaling in the pathway varies in different conditions
of intervention. Let T denote the time after the interven-
tion (for example, after giving a certain drug). Then we
may want to compare the strength of the causal relation-
ship between two genes at different times after the inter-
vention. In the experiments, usually samples are taken at
very few time points, so T has very small cardinality (for
example, before the drug, 10 minutes after the drug and
50 minutes after the drug), but at each given time point,
many cells are interrogated so we get samples from the dis-
tribution PX,Y,Z;T=t = P (Y |X;T = t)P (Z|Y ;T = t).
For each value of T = t, we observe Nt i.i.d. samples
(Xi, Yi, Zi), for i = 1, 2, ..., Nt sampled from PX,Y,Z;T=t.
These samples are obtained using a technique called single-
cell mass flow cytometry, see (Krishnaswamy et al., 2014)
for details. We are interested in obtaining a causal measure
C(X → Y ;T = t) = C(P (Y |X;T = t)) and another
measure C(Y → Z;T = t) = C(P (Z|Y ;T = t)) for each
time point t. This measure serves as a high level summary
of how signaling proceeds in the cascade as a function of
time, and lets one compare the strengths of a given causal
relationship at different points after intervention.

If the drug indeed activates the causal pathway, one may
expect the causal relationship to follow a certain trend, i.e.,
at earlier t, the strength of C(X → Y ;T = t) will be high
and at a later value of t, the strength of C(Y → Z;T = t)
will be high before the effect of the drug wears off, at which
time we expect all the relationships to fall back to its low
nominal value. Such an analysis is conducted in (Krish-
naswamy et al., 2014) where the causal strength function
C is evaluated via the so-called DREMI estimator (essen-
tially a version of UMI estimation with a “channel am-
plification” step and careful choice of hyper parameters
therein – no theoretical properties of this estimator were
evaluated). In that paper, it is shown that, for two ex-
ample pathways, DREMI recovers the correct trend, i.e.,
it correctly identifies the time at which each causal rela-
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tionship is expected to peak as per prior biological knowl-
edge. This demonstrates the utility of DREMI for causal
strength inference in gene networks (see Figure 6 of (Krish-
naswamy et al., 2014)). The authors there also demonstrate
that other metrics which depend on the whole joint distri-
bution, such as mutual information, maximal information
coefficient, and correlation do not capture the trend. As
an aside, we note that a somewhat different set of “trend
spotting” estimators, primarily trying to find genes which
demonstrate a monotonic trend over time from single-cell
RNA-sequencing data, have been proposed very recently in
(Mueller et al., 2015).

In this paper, we have studied influence measures axiomat-
ically and proposed the UMI and CMI measures. It is nat-
ural to apply our estimators to each time point in the same
setting as (Krishnaswamy et al., 2014) – and look to under-
stand two distinct issues in our experiments with the flow-
cytometry data. The first is whether the proposed quantities
of UMI and CMI are able to capture the same biological
trend as DREMI was able to. The second question relates to
the sample complexity: how does the ability to recover the
trend vary as a function of the sample complexity? To study
this, we subsample the original data from (Krishnaswamy
et al., 2014) multiple times (100 in the experiments) at each
subsampling ratio and compute the fraction of times we
recover the true biological trend. This is plotted in Fig-
ure 1. The figure demonstrates that when the whole dataset
is made available, UMI and CMI are able to spot the trend
correctly (just as DREMI does). When fewer samples are
available, UMI uniformly dominates DREMI and, in turn,
CMI uniformly dominates UMI in terms of capturing the
biological trend as a function of number of samples avail-
able. We believe that this strong empirical evidence lends
credence to our approach. For completeness, we note that
the datasets represented in Figure 1 refer to regular T-cells
(left figure) and T-cells exposed with an antigen (right fig-
ure), for which we expect different biological trends, but
both of which are correctly captured by our metrics.

5.2. Synthetic data

We demonstrate the accuracy of the proposed UMI and
CMI estimators on synthetic experiments. We generate N
samples from PXY where X is distributed as beta distri-
bution Beta(1.5, 1.5) and Y = X + N , N ∼ N (0, σ2),
independent of X . We present three results with varying
σ2 ∈ {0.09, 0.36, 1.0}. Figure 2 shows the estimate of
UMI, averaged over 100 instances. This is compared to
the ground truth and the state-of-the-art partition based es-
timators from (Moddemeijer, 1989). The ground truth has
been computed via simulations with 8192 samples from the
desired distribution PY |XUX using Kraskov’s mutual in-
formation estimator (Kraskov et al., 2004). For CMI, we
use exactly the same distribution PXY as in UMI, but with

varying σ2 ∈ {0.36, 1.0, 2.25}, which is illustrated in Fig-
ure 3. Under the power constraint, the ground truth is given
by 1

2 log(1 +
σ2
X

σ2
N

) = 1
2 log(1 + 1/16σ2). The proposed

CMI estimator is compared against Blahut-Arimoto algo-
rithm (Blahut, 1972; Arimoto, 1972) for computing dis-
crete channel capacity, applied to quantized data. Both fig-
ures illustrate that the proposed estimators significantly im-
proves over the state-of-the-art partition based methods, in
terms of sample complexity.

6. Discussion
In this paper we have proposed novel information theo-
retic measures of potential influence of one variable on
another, as well as provided novel estimators to compute
the measures from i.i.d. samples. The technical innova-
tion has been in proposing these estimators, by combining
separate threads of ideas in statistics (including importance
sampling and nearest-neighbor methods). The consistency
proofs suggest that a similar analysis the very popular esti-
mator of (traditional) mutual information in (Kraskov et al.,
2004) can be conducted successfully; such work has been
recently conducted in (Gao et al., 2016b). Several other is-
sues in statistical estimation theory intersect with our cur-
rent work and we discuss some of these topics below.

(a) The main technical results of this paper have been weak
consistency of the proposed estimators. Proving stronger
consistency guarantees and rates of convergence would be
natural improvements, albeit challenging ones. Rates of
convergence in the nearest-neighbor methods are barely
known in the literature even for traditional information
theoretic quantities: for instance, (Tsybakov & Van der
Meulen, 1996) derives a

√
N consistency for the single

dimensional case of differential entropy estimation (under
strong assumptions on the underlying pdf), leaving higher
dimensional scenarios open, and which recently have been
successfully addressed in (Gao et al., 2016b).

(b) There is a natural generalization of our estimators
when the alphabet Y is high dimensional, using the kNN
approach (just as in the differential entropy estimator of
(Kozachenko & Leonenko, 1987) or in the mutual infor-
mation estimator of (Kraskov et al., 2004)). However, very
recent works (Gao et al., 2014; 2015; Lombardi & Pant,
2016) have shown that boundary biases common in high
dimensional scenarios is much better handled using local
parametric methods (as in (Loader et al., 1996; Hjort &
Jones, 1996)). Adapting these approaches to the estima-
tors for UMI and CMI is an interesting direction of future
research.

(c) We have considered both the case of discrete and (sin-
gle dimensional) continuous alphabet X . The scenario of
high dimensional X is significantly more challenging for
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number of samples N number of samples N number of samples N

Figure 2. The proposed UMI estimator significantly outperforms partition based methods (Moddemeijer, 1989) in sample complexity.
Additive Gaussian channels are used with varying variances σ2: 0.09 (left), 0.36 (middle), and 1.0 (right).

number of samples N number of samples N number of samples N

Figure 3. The proposed CMI estimator significantly outperforms partition based methods (Blahut, 1972; Arimoto, 1972) in sample
complexity. Additive Gaussian channels are used with varying variances σ2: 0.36 (left), 1.0 (middle), and 2.25 (right).

CMI estimation: this is because of the (vastly) expanded
space of distributions over which the optimization can be
performed. Also challenging is to consider application spe-
cific regularization of the inputs in this scenario.

(d) While the focus of this paper has been on quantify-
ing potential causal influence, a related question involves
testing the direction of causality for a pair of random vari-
ables. This is a widely studied topic with a long lineage
(Pearl, 2009) but also of strong topical interest (Janzing
et al., 2013; 2015; Mooij et al., 2015; Shajarisales et al.,
2015). A natural inclination is to explore the efficacy of
UMI and CMI measures to test for direction of causal-
ity – especially in the context of the benchmark data sets
collected in (Mooij et al., 2015). Our results are as fol-
lows: UMI has a 45% probability to predict the correct di-
rection. CMI gives 53% probability. Directly comparing
the marginal entropy H(X) and H(Y ) by the estimator in
(Kozachenko & Leonenko, 1987) also only provides 45%
accuracy. While in (Mooij et al., 2015), different entropy
estimators (with appropriate hyper parameter choices) were
applied to get an accuracy up to 60%-70%. Further re-
search is needed to shed conclusive light, although we point
out that the benchmark data sets in (Mooij et al., 2015) have
substantial confounding factors that make causal direction
hard to measure in the first place.

(e) The axiomatic derivation of potential causal influence
naturally suggests CMI as an appropriate measure. We are

also able to show (details are in a journal version (Gao
et al., 2016a)) that a more general quantity (the so-called
Rényi capacity, an appropriate maximum over all Rényi di-
vergences) and which simplifies to the Shannon capacity
with a specific parameter choice), also meets the axioms.
It would be interesting to design estimators for the more
general family of Rényi capacity measures, as would be to
understand the role of additional axioms that would lead
to uniqueness of Shannon capacity (in the same spirit as
entropy being uniquely characterized by somewhat similar
axioms (Csiszár, 2008)).

(f) Finally, a comment on the optimization problem in CMI
estimation: the optimization problem involving the wi’s
is not necessarily a concave program for a given sample
realization, although one can show that for large enough
sample size N the program is concave with high proba-
bility (indeed, in the limit of large sample size, this pro-
gram converges to that of Shannon capacity computation
involves maximizing mutual information, which is a con-
cave function of the input probability distribution). Stan-
dard (stochastic) gradient decent is used in our experi-
ments, and we did not face any disparity in convergent val-
ues over the set of synthetic experiments we conducted.
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