Rich Component Analysis

Rong Ge

RONGGE @ CS.DUKE.EDU

Duke University, Computer Science Department, 308 Research Dr, Durham NC 27708

James Zou

Microsoft Research, One Memorial Dr, Cambridge MA 02139

Abstract

In many settings, we have multiple data sets
(also called views) that capture different and
overlapping aspects of the same phenomenon.
We are often interested in finding patterns that
are unique to one or to a subset of the views.
For example, we might have one set of molec-
ular observations and one set of physiological
observations on the same group of individuals,
and we want to quantify molecular patterns that
are uncorrelated with physiology. Despite being
a common problem, this is highly challenging
when the correlations come from complex dis-
tributions. In this paper, we develop the general
framework of Rich Component Analysis (RCA)
to model settings where the observations from
different views are driven by different sets of la-
tent components, and each component can be a
complex, high-dimensional distribution. We in-
troduce algorithms based on cumulant extraction
that provably learn each of the components with-
out having to model the other components. We
show how to integrate RCA with stochastic gra-
dient descent into a meta-algorithm for learning
general models, and demonstrate substantial im-
provement in accuracy on several synthetic and
real datasets in both supervised and unsupervised
tasks. Our method makes it possible to learn la-
tent variable models when we don’t have samples
from the true model but only samples after com-
plex perturbations.

1. Introduction

A hallmark of modern data deluge is the prevalence of com-
plex data that capture different aspects of some common

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

JAMESYZOU @GMAIL.COM

phenomena. For example, for a set of patients, it’s common
to have multiple modalities of molecular measurements for
each individual (gene expression, genotyping, etc.) as well
as physiological attributes. Each set of measurements cor-
responds to a view on the samples. The complexity and the
heterogeneity of the data is such that it’s often not feasible
to build a joint model for all the data. Moreover, if we are
particularly interested in one aspect of the problem (e.g.
patterns that are specific to a subset of genes that are not
shared across all genes), it would be wasteful of compu-
tational and modeling resources to model the interactions
across all the data.

More concretely, suppose we have two sets (views) of data,
U and V, on a common collection of samples. We model
thisas U = S+ .52 and V = AS; + S5, where S captures
the latent component specific to U, Ss is specific to V, and
S5 is common to both U and V' and is related in the two
views by an unknown linear transformation A. Each com-
ponent .S; can be a complex, high-dimensional distribution.
The observed samples from U and V' are component-wise
linear combinations of the unobserved samples from S;. To
model all the data, we would need to jointly model all three
S;, which can have prohibitive sample/computation com-
plexity and also prone to model misspecification. Ideally,
if we are only interested in the component that’s unique to
the first view, we would simply write down a model for Sy
without making any parametric assumptions about Sy and
S3, except that they are independent.

In this paper, we develop a general framework of
Rich Component Analysis (RCA) to explore such multi-
component, multi-view datasets. Our framework allows for
learning an arbitrarily complex model of a specific compo-
nent of the data, S;, without having to make parametric
assumptions about other components ;. This allows the
analyst to focus on the most salient aspect of data analy-
sis. The main conceptual contribution is the development
of new algorithms to learn parameters of complex distri-
butions without any samples from that distribution. In the
two-view example, we do not observe samples from our

Rich Component Analysis

model of interest, S;. Instead the observations from U are
compositions of true samples from S; with complex sig-
nal from another process Sy which is shared with V. Our
approach performs consistent parameter estimation of S
without modeling So, Ss.

1.1. Related models

Understanding signals as compositions of different compo-
nents or factors is a widely studied problem. Many previ-
ous works address different aspects of this problem through
different modeling assumptions. RCA differs from previ-
ous works in following important aspects:

1. Each component S; can be a very complicated multi-
dimensional distribution.

2. It is possible to learn the parameters for a specific
component without specifying a parametric model for
any of the other components.

3. The number of components can be much larger than
the number of observations.

Some previous approaches that achieve a subset of these
desirable properties, however to our best knowledge RCA
is the only approach that has all three. Satifysing these
three properties enable RCA to be more robust to model
misspecification.

Independent component analysis (ICA)(Comon & Jutten,
2010) may appear similar to our model, but it is actually
quite different. In ICA, let s = [s1,...,s,] be a vector
of latent sources, where s;’s are one dimensional indepen-
dent, non-Gaussian random variables. There is an unknown
mixture matrix A and the observations are x = As. Given
many samples x(*), the goal of ICA is to deconvolve and
recover each sample s;. In our setting, each s; can be a
high-dimensional vector with complex correlations. It is
information-theoretically not possible to deconvolve and
recover the individual samples s;. Instead we aim to learn
the distribution S, (#) without having explicit samples from
it. There are indeed algorithms for overcomplete ICA that
works even when the number of components is much larger
than the number of observations (e.g. (De Lathauwer et al.,
2007)), they still need to assume that the individual com-
ponents are one dimensional.

Another related model is canonical correlation analysis
(CCA)(Hotelling, 1936). One way to interpret CCA is
by the following generative model: there is a common
signal z ~ N(0,I), and view-specific signals z("™) ~
N(0,I). Each view z(" is then sampled according to
N(A™) z 4 Bm)z(m) 51(M)) where m index the view.
CCA is equivalent to maximum likelihood estimation of
A™M) in this generative model. In our framework, CCA
corresponds to the very restricted setting where S1, Sa, S3

are all Gaussians. RCA learns S; without making such
parametric assumptions about Sy and S3. Moreover, us-
ing CCA, it is not clear how to learn the distribution Sy if
it is not orthogonal to the shared subspace So. In our ex-
periments, we show that the naive approach of performing
CCA (or kernel CCA) followed by taking the orthogonal
projection leads to very poor performance.

Factor analysis (FA)(Harman, 1976) also corresponds to a
multivariate Gaussian model, and hence does not address
the general problem that we solve. In FA, latent variables
are sampled z ~ N(0,I) and the observations are x|z ~
N(p+ Az, 7).

It is also natural to consider a probabilistic model for
all the components S7,S5,S3, and perform learning by
algorithms like EM. When we have simple model for
all the components this might be feasible. However in
many cases Se and S3 may either correspond to noise or
have very complicated distributions, and we may not have
enough knowledge about their distribution or enough sam-
ple/computation resources to model them. In these cases
RCA model allows us to still get a reasonable estimate on
the component that we are most interested in. See Section 5
for more discussions and experiments.

A different notion of contrastive learning was introduced
in (Zou et al., 2013). They focused on settings where there
are two mixture models with overlapping mixture compo-
nents. The method there applies only for Latent Dirichlet
allocation and Hidden Markov Models and requires explicit
parametric models for each component.

Outline. RCA consists of two stages: 1) from the ob-
served data, extract all the cumulants of the component
that we want to model; 2) using the cumulants, perform
method-of-moments or maximum likelihood estimation
(MLE) of model parameters via polynomial approxima-
tions to gradient descent. We introduce the relevant prop-
erties of cumulants and tensors in Section 2. In Section 3,
we develop the formal models for Rich Component Anal-
ysis (RCA) and the cumulant extraction algorithms. Sec-
tion 4 shows how to integrate the extracted cumulants with
method-of-moments or maximum likelihood inference. We
test RCA on many data sets and show its performance gain
in Section 5. All the proofs are in the Appendix.

2. Preliminaries

In this section we introduce the basics of cumulants. For
more information please refer to Appendix A. Cumulants
provide an alternative way to describe the correlations of
random variables. Cumulants have a nice additive prop-
erty: the cumulant of sum of independent random variables
is equal to the sum of cumulants. More formally, for a ran-
dom variable X € R the cumulant is defined to be the co-
efficients of the cumulant generating function log E[e*X].

Rich Component Analysis

We can also define cross-cumulants which are cumulants
for different variables (e.g. covariance). For n variables
Xi, ..., Xy, their cross-cumulant can be computed using
the following formula:

R (X1, e X0) = 3 (] = DD T E([T X0

T Ber ie€B

In this formula, 7 is enumerated over all partitions of [¢],
|| is the number of parts and B runs through the list of
parts. We also use k¢(X) = k(X ..., X) when it’s the
same random variable.

We can similarly define cumulants for multivariate distri-
butions. For random vector X € R<, the ¢-th order cu-
. . . t
mulant (and ¢-th order moment) is an object in RY (a t-
th order tensor). The (i1, ..., 4;)-th coordinate of cumu-
lant tensor is k¢ (X;,, X Xi,). We often unfold ten-
. . dt . .
sors into matrices. Tensor 7" € R% unfolds into matrix
t—1

M = unfold(T) € RT x4 M, ,oi)yie = T
Cumulants have several nice properties that we summarize
below.

i27 ceey

Fact Suppose X1, ..., X; are random variables in R?. The
t-th order cumulant (X1, ..., X¢) is a tensor in R? that
have the following properties:

1. (Independence) If (Xy,...,X;) and (Y1,...,Y:) are
independent, then ry(X; + Y1,... Xy + V) =
Ht(Xl,...,Xt)—|—I€t(Y1,...,}/t).

2. (Linearity) r¢(c1 X1, ..y e Xt) = C1Co - - - Cy
ke(X1,...,X¢), we can apply linear transforma-
tions to multi-variate cumulants (see Appendix A).

3. (Computation) The cumulant (X7, ..., X;)can be
computed in O((td)?) time.

The second order cross-cumulant, k2(X,Y") is equal to
the covariance E[(X — E[X])(Y — E[Y])]. Higher cumu-
lants measures higher-order correlations and also provide a
measure of the deviation from Gaussianity.Cumulants and
moments can be converted using Faa di Bruno’s formula.
We estimates cumulants using k-statistics(Rose & Smith,
2002).

3. Rich Component Analysis

In this section, we show how to use cumulant to disentan-
gle complex latent components. The key ideas and most
applications of RCA are captured in the contrastive learn-
ing setting when there are two views. We introduce this
model first and then extend it to general settings.

3.1. RCA for contrastive learning

Recall the example in the introduction where we have two
views of the data, formally,

U=81+853,V=AS+ Ss. (D

Here, S;, 55,53 € RY are independent random variables
that can have complicated distributions; A € R4%4 is an
unknown linear transformation'. The observations consist
of pairs of samples (u, v). Each pair is generated by draw-
ing independent samples s; ~ S;,;7 = 1,2,3 and adding
these samples component-wise to obtain u = s; + s and
v = Ass + s3. Note that the same s5 shows up in both «
and v, introducing correlation between the two views. We
are interested in learning properties about S;, for example
learning its maximum likelihood (MLE) parameters. For
concreteness, we focus our discussion on learning S; al-
though our techniques also apply to S and Ss.

The main difficulty is that we don’t have any samples from
S1. The observations of U involves a potentially compli-
cated perturbation by S5. In fact, even if we know exactly
the distributions S, Ss, Ss3, the true value of s; is often not
determined because we only have two equations and three
variables. Our hope is to remove the effect of perturbation
So by utilizing the second view V, and we would like to do
this without assuming a particular model for S5 or Ss.

Note that the problem is inherently under-determined: it
is impossible to find the means of S1, S3, S3 without any
additional information. This is in some sense the only am-
biguity, as we will see if we know the mean of one dis-
tribution it is possible to extract all order cumulants of
S1,S52,53. For simplicity throughout this section we as-
sume the means of 57, S2, S are 0 (given the mean of any
of S1, 52, 53, we can always use the means of U and V to
compute the means of other distributions, and shift them to
have mean 0).

Determining linear transformation First we can find A
by the following formula:

AT =unfold(rks(V,U, U, U)) unfold(ry(V,U,U,V)).
2

Lemma 3.1. Suppose the unfolding of the 4-th order cu-
mulant un fold(ky4(ASa, Sa, Sa, S2)) has full rank, given
the exact cumulants k4(V,U,U,U) and k4(V,U,U, V), the
above algorithm finds the correct linear transformation A
in time O(d®).

Intuitively, since only So appears in both U and V, the
cross-cumulants x4 (V, U, U,U) and k4(V, U, U, V') depend
only on Sa. Also, by linearity of cumulants we must have
unfold(ky(V,U,U,V)) = wunfold(rs(V,U,UU))AT
(see Appendix B.1). In the lemma we could have
used 3rd order cumulants, however for many distributions
(e.g. all symmetric distributions) the 3rd order cumu-
lant is 0. Most distributions satisfy the condition that
unfold(ka(ASa, Sa,Sa,S2)) is full rank, the only natu-

"Here we assume A is square for simplicity. Our algorithm
can work as long as A has full column rank.

Rich Component Analysis

ral distribution that does not satisfy this constraint is the
Gaussian distribution (where k4 is 0).

Note: Although the running time of this algorithm seems to
be a large polynomial, in practice we can randomly select
a O(d) x d submatrix of the two unfolded cumulants, and
the running time would be O(d?). The number of samples
we need for real instances also appears low, even with 1000
samples we can often obtain reasonable estimates for A €
R39%30 (see Section 5 for experiments).

Extracting camulants Even when the linear transforma-
tion A is known, in most cases it is still information theoret-
ically impossible to find the values of the samples s1, s2, s3
as we only have two views. However, we can still hope to
learn useful information about the distributions Sy, S, S3.
In particular, we derived the following formulas to estimate
the cumulants of the distributions:

ke(S1) = wke(U)—re(UU,..,U AV, (3)
ke(S2) = wk(U,U,...,U ATV), “)
Iit(S3) = l{t(v) - K:t(AUa ‘/7‘/7 ey V) (5)

Theorem 3.2. For all t > 1, Equations (3)-(5) compute
the t-th order cumulants for Sy, Sz, S3 in time O((td)'*+?)

Proof of Theorem 3.2 relies on the fact that since
only Sy appears in both U and V, the cross-cumulant
ke(U, U, ...,U, A=*V) captures the cumulant of So. More-
over, by independence, x:(U) = kt(S1) + £+(S2), so we
can recover £:(.S1) by subtracting off the estimated x(S2)
(and similarly for x;(S3)). When the dimension of U is
smaller than the dimension of V and A € R% *4v has full
column rank, the above formula with pseudo-inverse At in
place of A~" still recovers all cumulants. In Appendix B.1,
we prove that both the formulas for computing A and for
extracting the cumulants are robust to noise. In particular,
we give the sample complexity for learning A and r¢(S7)
from samples of U and V, both are polynomial in relevant
quantities.

Note that the exponential dependency on ¢ is necessary, be-
cause even storing the tensor requires d time. Most follow-
up algorithms only require low order tensor (e.g. ¢t = 3).

Given k(S), we can use standard algorithms to compute
moments of S;. Many learning algorithms are based on
method-of-moments and can be directly applied (see Sec-
tion 4.1). Other optimization-based algorithms can also be
adapted (Section 4.2).

3.2. General model of Rich Component Analysis

We can extend the cumulant extraction algorithm in con-
trastive learning to general settings with more views and
components. The ideas are very similar, but the algorithm
is more technical in order to keep track of all the compo-
nents. We present the intuition and the main results here

and defer the details to Appendix B.2. Consider a set of
observations U, Us, ..., U € R4, each is linearly related
to a subset of variables S1,.5,...,5, € R?, the variable
S; appears in a subset Q; C [k] of the observations. That
is,

p
Vielk] U;=)» A0S, (6)
j=1

where A7) ¢ R4%d are unknown linear transformations,
and A7) = 0if i ¢ Q;. For simplicity we assume all
the linear transformations are invertible. The variable S;
models the latent source of signal that is common to the
subset of observations {U;|i € Q,}. The matrix A(7)
models the transformation of latent signal S; in view 7. In
order for the model to be identifiable, it is necessary that all
the subsets ();’s are distinct (otherwise the latent sources
with identical ; can be collapsed into one S;). In the
most general setting, we have a latent signal that is uniquely
associated with every subset of observations. In this case,
p = 2% — 1 and {Q;} corresponds to all the non-empty
subsets of [k]. In some settings, only specific subset of
views U; share common signals and {Q;} can be a small
set. We measure the complexity of the set system using the
following notion:

Definition 3.1 (L-distinguishable). We say a set system
{Q,} is L-distinguishable, if for every set Q);, there exists
a subset T C Q; of size at most L (called the distinguish-
ing set) such that for any other set Q; (j' # j), either

Qj C Qj/ orT ¢ Qj/.

For example, the set system of the contrastive model is
{{1},{1,2},{2}} and it is 2-distinguishable. Intuitively,
for any set (Q; in the set system, there is a subset T of size
at most L that distinguishes ; from all the other sets (ex-
cept the supersets of ();). We use Algorithm 1 to recover all
the linear transformations A7) (for more details of the al-
gorithm see Algorithm 2 in Appendix). Algorithm 1 takes
as input a set system {Q);} that captures our prior belief
about how the datasets are related. When we don’t have
any prior belief, we can input the most general {Q;} of
size 2¢ — 1, which is k-distinguishable. The algorithm au-
tomatically determines if certain variable S; = 0. In the
algorithm, min(@Q);) is the smallest element of Q).

Lemma 3.3. Given observations U;’s as defined in Equa-
tion 6, suppose the sets Q);’s are L-distinguishable, all the
unknown linear transformations AW s are invertible, un-
foldings unfold(kr+1(S;)) is either 0 (if S; = 0) or have
full rank, then given the exact L + 1-th order cumulants,
Algorithm 1 outputs all the correct linear transformations
A9 in time poly(L!, (dk)™).

Once all the linear transformations A9 are recovered, we
follow the same strategy as in the contrastive analysis case
in Section 3.1.

Rich Component Analysis

Algorithm 1 FindLinear
Require: setsystem {(); } thatis L-distinguishable, L+1-
th order moments
repeat
Pick set (); that is not a subset of any remaining sets
LetT = {w1, ws, ..., w } be distinguishing set for Q) ;
Compute cumulants for all ¢ € @Q;: M; =
unfold(kp+1(Uwy s s Uy, Us).
If Min Q; = 0, then set S; = 0; continue the loop.
Let A = (M1 M;)T foralli € Q;, AU =

min Q; "
Oforalli & Q. ’
Mark @; as processed, subtract all cumulants of @;.

until all sets are processed

Theorem 3.4. Under the same assumption as Lemma 3.3,
for any t > L Algorithm 3 computes the correct t-th

order cumulants for all the variables in time poly((L +
), (dk)E+?).

Note that in the most general case it is impossible to find
cumulants with order ¢ < L, because there can be many
different variables S;’s but not enough views. Both Algo-
rithms 1 and 3 are robust to noise, with sample complexity
that depends polynomially on the relevant condition num-
bers, and exponential in the order of cumulant considered.
For more details see Appendix B.2.

4. Using Cumulants in learning applications

The cumulant extraction techniques of Section 3 constructs
unbiased estimators for the cumulants of S;. In this section
we show how to use the estimated cumulants/moments to
perform maximum likelihood learning of .S;. For concrete-
ness, we frame the discussion on the contrastive learning
setting, where we want to learn .S;. For general RCA the
method works when L (see Definition 3.1) is small or the
distributions have specific relationship between lower and
higher cumulants.

4.1. Method-of-Moments

RCA recovers the cumulants of S;, from which we can
construct all the moments of S; in time O((td)*). This
makes it possible to directly combine RCA with any
estimation algorithm based on the method-of-moments.
Method-of-moments have numerous applications in ma-
chine learning. The simplest (and most commonly used)
example is arguably principal component analysis, where
we want to find the maximum variance directions in Sj.
This is only related to the covariance matrix E[S;S]].
RCA removes the covariance due to S and constructs an
unbiased estimator of E[S;.S] |, from which we can extract
the top eigen-space.

The next simplest model is least squares regression (LSR).

Suppose the distribution S; contains samples and labels
(X,Y) € R? x R, and only the samples are corrupted by
perturbations, i.e. Y is independent of So. LSR tries to find
a parameter /3 that minimizes E[(Y — 37 X)2]. The optimal
solution again only depends on the moments of (X,Y):
B* = (E[XX T])"!E[Y X]. Using the second-order cu-
mulants/moments extracted from RCA , we can efficiently
estimate 5*.

Method-of-moment estimators, especially together with
tensor decomposition algorithms have been successfully
applied to learning many latent variable models, including
Mixture of Gaussians (GMM), Hidden Markov Model, La-
tent Dirichlet Allocation and many others (see (Anandku-
mar et al., 2014)). RCA can be used in conjunction with all
these methods. We’ll consider learning GMM in Section 5.

4.2. Approximating Gradients

There are many machine learning models where it’s not
clear how to apply method-of-moments. Gradient descent
(GD) and stochastic gradient descent (SGD) are general
purpose techniques for parameter estimation across many
models. Here we show how to combine RCA with gra-
dient descent. The key idea is that the extracted cumu-
lants/moments of S; forms a polynomial basis. If the gra-
dient of the log-likelihood can be approximated by a low-
degree polynomial in S7, then the extracted cumulants from
RCA can be used to approximate this gradient.

Consider the general setting where we have a model D
with parameter 0, and for any sample s; the likelihood is
L(0,s1). The maximum likelihood estimator tries to find
the parameter that maximizes the likelihood of observed
samples: 6* = argmaxE[log £(0, s1)]. In many appli-
cations, this is solved using stochastic gradient descent,
where we pick a random sample and move the current
guess to the corresponding gradient direction: #(+1) =
6 4 1, Vglog L8, sgt)), where 7 is a step size and sgt)
is the t-th sample. For convex functions this is known to
converge to the optimal solution (Shalev-Shwartz et al.,
2009). Even for non-convex functions this is often used
as a heuristic.

If the gradient of log-likelihood V¢ log £(6, s1) is a low de-
gree polynomial in s1, then using the lower order moments
we can obtain an unbiased estimator for E[Vg log £(6, S1)]
with bounded variance, which is sufficient for stochastic
gradient to work. This is the case for linear least-squares
regression, and its regularized forms using either ¢; or {5
regularizer.

In the case when log-likelihood is not a low degree poly-
nomial in S, we approximate the gradient by a low de-
gree polynomial, either through simple Taylor’s expansion
or other polynomial approximations (e.g. Chebyshev poly-
nomials, see more in (Powell, 1981)). This will give us a

Rich Component Analysis

biased estimator for the gradient whose bias decreases with
the increasing degree we use. In general, when the (nega-
tive) log-likelihood function is strongly convex we can still
hope to find an approximate solution:

Lemma 4.1. Suppose the negative log-likelihood function
F(0) = —E[logL(0,51)] is p-strongly convex and H-
smooth, given an estimator G(0) for the gradient such that
IG(0) — VFE(9)|| < e gradient descent using G(0) with

i, 1 : 2 ~ 8¢
step size 5y converges to a solution 0 s.t. ||0 —0.]|* < e

When high degree polynomials are needed to approximate
the gradient, our algorithm requires number of samples that
grows exponentially in the degree.

Logistic Regression We give a specific example to illus-
trate using RCA and low degree polynomials to simulate
gradient descent. Consider the basic logistic regression set-
ting, where the samples 51 = (x,y) € R? x {0, 1}, and the

40T
ey& x

14ef "

log-likelihood function is log £(6, s1) = log

Ta
We can then approximate the function liﬁ using a
low degree polynomial in #T2. As an example, we use
T’I‘,
3rd degree Chebychev: liﬁ ~ 0.5 + 0.2450 T2 —

0.014(0 " x)3. The gradient we take in each step is
E[Vs log £(0, S1)] ~

E[Y X] — 0.5E[X] — 0.245E[X (/" X)] 4+ 0.014E[X (0" X)3].

To estimate this approximation, we only need quadratic
terms E[X (07 X)] and a projection of the 4-th order mo-
ment E[X (07 X)3]. These terms are computed from the
projected 2nd and 4-th order cumulants of X that are ex-
tracted from the cumulants of U and V' via Section 3. Even
though these quantities are of high degree, they can be esti-
mated in linear time in the number of samples because they
are lower-dimensional projections.

5. Experiments

In the experiments, we focus on the contrastive learning
setting where we are given observations of U = S7 + So
and V = AS5 + S3. The goal is to estimate the pa-
rameters for the S; distribution. Our approach can also
learn the shared component Sy as well as S3. We tested
our method in five settings, where S7 corresponds to: low
rank Gaussian (PCA), linear regression, mixture of Gaus-
sians (GMM)), logistic regression and the Ising model. The
first three settings illustrate combining RCA with method-
of-moments and the latter two settings requires RCA with
polynomial approximation to stochastic gradient. In each
setting, we compared the following four algorithms:

1. The standard learning algorithm using the actual sam-
ples s1 ~ S1(0) to learn the parameters 6. This is the

gold-standard, denoted as ‘true samples’.

2. Our contrastive RCA algorithm using paired samples
from U and V to learn S ().

3. The naive approach that ignores S5 and uses U to learn
S1(0) directly, denoted as ‘naive’.

4. First perform Canonical Correlation Analysis (CCA)
on U and V, and project the samples from U onto
the subspace orthogonal to the canonical correlation
subspace. Then learn S; from the projected samples
of U. We denote this as ‘CCA’.

In all five settings, we let S5 be sampled uniformly from
[—1,1]%, where d is the dimension of S3. The empirical
results are robust to other choices of S5 that we have tried,
e.g. multivariate Gaussian or mixture of Gaussians.

Contrastive PCA. S; was set to have a principal com-
ponent along direction vy, i.e. s1 ~ N(0,v0] + o21).
Sy was sampled from Unif([—1, 1]%) +vov, and vy, vy are
random unit vectors in R%. RCA constructs an unbiased es-
timator of E[S1 S]] from the samples of U and V. We then
report the top eigenvector of this estimator as the estimated
01. We evaluate each algorithm by the mean squared error
(MSE) of the inferred 01 to the true v;.

Contrastive regression. .S; is the uniform distribution,
51 ~ Unif([-1,1]%) and y = BTs; + N(0,1). S
was sampled from Unif([—1,1]%) + vovy and B, vy are
random unit vectors in R?. Our approach gives unbi-
ased estimator of E[S;5]] from which we estimate § =
(E[S1S7])~YE[Y S;]. All algorithms are evaluated by the
MSE between the inferred B and the true .

Contrastive mixture of Gaussians. S; is a mixture of
d spherical Gaussians in R, s; ~ S¢_, 1A/ (uV, 02).
Sy is also a mixture of spherical Gaussians, sp ~
S IN (P 6%). RCA gives unbiased estimators of
the third-order moment tensor, E[s; ® s; ® s1]. We then
use the estimator in (Hsu & Kakade, 2013) to get a low
rank tensor whose components correspond to center vec-
tors, and apply alternating minimization (see (Kolda &
Bader, 2009)) to infer ﬂ,(ﬁl). Algorithms are evaluated by
the MSE between the inferred centers { /l,(cl)} and the true

centers { u,(;) }.

Contrastive logistic
Unif([-1,1]¢) and y =
S, was sampled from Unif([—1, 1]¢) +vyv, , and 3, vy are
unit vectors in R%. We use the 4-th order Chebychev poly-
nomial approximation to the SGD of logistic regression as
in Section 4.2. Evaluation is the MSE error between the
inferred 3 and the true 3.

regression. Let s ~
. oy 1
1 with probablllty 1-&-6775T

Sl.

Rich Component Analysis

Linear reg.

MSE

100 500 1000 1000
samples # samples
d Logistic reg. e Ising

MSE

0
1000 2000 4000 1000
samples # samples
h GMM i Logistic reg
0.18 1
| 0.16
1
7]
0 0
0 1 2 0 1

perturbation scale

perturbation scale

0.2 0.4 B true samples
' EEE RCA
E naive
0.1 0.2 =3 ccA
0 0

1000
samples

Logistic reg. Ising

0.08
0.16 0.2
0.08 0.1
0

2000 4000 20 40
steps # steps
A matrix
—_— d=10
— d=20

= d=30

= 0
0 1.25 2.5 100 1500
perturbation scale # samples

3000

Figure 1. All the y-axis indicate mean squared error (MSE). a-e shows the tradeoff between sample size and MSE for the four algorithms
in each of the five applications. f,g shows the convergence rate of SGD for the logistic and Ising models. h-j shows the tradeoff between
perturbation strength and MSE. k shows the inference accuracy of A. Error bars corresponds to one standard deviation.

Contrastive Ising model. Let S; be a mean-zero Ising
model on d-by-d grid with periodic boundary conditions.
Each of the d? vertices are connected to four neigh-
bors and can take on values {£1}. The edge between
vertices ¢ and j is associated with a coupling J;; ~
Unif[—1, 1]. The state of the Ising model, s1, has probabil-
ity fezﬁ nes i1 D510) where Z is the partition func-
tion. We let Sy also be a d- by -d grid of spins where half of
the spins are independent Bernoulli random variables and
the other half are correlated, i.e. they are all 1 or all -1
with probability 0.5. We use composite likelihood to esti-
mate the couplings J;; of Si, which is asymptotically con-
sistent(Varin et al., 2011). For the gold-standard baseline
(which uses the true samples s;), we use the exact gradient
of the composite likelihood. For RCA , we used the 4-th
order Taylor approximation to the gradient. Evaluation is
the MSE between the true J;; and the estimated jljj.

Results. For the method-of-moment applications—PCA,
linear regression, GMM-we used 10 dimensional samples
for U and V. The tradeoff between inference accuracy
(measured in MSE) and sample size is shown in the top row
of Figure 1. Even with just 100 samples, RCA performs

significantly better than the naive approach and CCA. With
1000 samples, the accuracy of RCA approaches that of the
algorithm using the true samples from S;. It is interest-
ing to note that projecting onto the subspace orthogonal to
CCA can perform much worse than even the naive algo-
rithm. In the linear regression setting, for example, when
the signal of S happens to align with 3, the direction of
prediction, projecting onto the subspace orthogonal to Sy
loses much of the predictive signal.

In the SGD settings, we used a 10 dimensional logistic
model and a 5-by-5 Ising model (50 J;; parameters to in-
fer). RCA also performed substantially better than the two
benchmarks (Figure 1 d, e). In all the cases, the accuracy
of RCA improved monotonically with increasing sample
size. This was not the case for the Naive and CCA al-
gorithms, which were unable to take advantage of larger
data due to model-misspecification. In Figure 1 f and g,
we plot the learning trajectory of RCA over the SGD steps
for representative runs of the algorithm with 1000 samples.
RCA converges to the final state at a rate similar to the true-
sample case. The residual error of RCA is due to the bias
introduced by approximating the sigmoid with low-degree
polynomial. When many samples are available, a higher-

Rich Component Analysis

degree polynomial approximation can be used to reduce
this bias.

We also explored how the algorithms perform as the mag-
nitude of the signal in S is increased compared to S; (Fig-
ure 1 h-j) with fixed 1000 samples. In these plots the z-
axis measures the ratio of standard deviations of S, and
S1.At close to 0, most of the signal of U comes from 57,
and all the algorithms are fairly accurate. As the strength
of the perturbation increases, RCA performs significantly
better than the benchmarks, especially in the Ising model.
Finally we empirically explored the sample complexity of
the subroutine to recover the A matrix from the 4th order
cumulants. Figure 1 k shows the MSE between the true A
(sampled ~ Unif[—1,1]%*?) and the inferred A as a func-
tion of the sample size. Even with 1000 samples, we can
obtain reasonable estimates of A4 € R39%30,

Comparisons to joint modeling and EM. An advantage
of the RCA approach is that we only need to model the part
of the data generating process that we are interested in (or
able to model): if we are interested in the process that is
unique to U, then we only need to write down a model
for S1 without having to model S2 and S3. This not only
reduces the risk of model misspecification but can also re-
duce inference complexity. An alternative is to specify a
fully parametrized, joint model for S7, S, S3 and A, and
perform maximum likelihood inference on all the parame-
ters given U, V. This is only possible if we able to explicitly
model S5 and Sj3.

To test the performance of a joint model, we consider a
friendly setting where we are given the exact parametric
form of S1(61), S2(62), S3(03) and A is the identity matrix.
We used the same datasets as in the mixture of Gaussian
experiments: S; and So are both mixtures of 10 spherical
Gaussians in R and S5 ~ Unif[0, 1]'°. The Gaussians all
have known variance 1 and the goal is to infer the means
of the mixture components of S; from U, V. We used
EM to perform inference on the joint model of Sy, S5, Ss.
With 500 samples, the joint model achieved MSE of 0.016
(s.e. 0.0007) which is 88% larger than the MSE of 0.0085
achieved by RCA. Even with 1000 samples, the joint model
still performed worse: MSE = 0.015 (s.e. 0.0005). While
the joint model outperformed the naive algorithm (MSE =
0.02, see Figure 1c), it is less accurate than RCA even when
the models are correctly specified. This could be due to the
fact that the joint model has a large number of components
and interactions which need to be inferred using approxi-
mations such as EM from a small dataset.

Biomarkers experiment. We applied RCAto a real
dataset of DNA methylation biomarkers. Twenty biomark-
ers (10 test and 10 control) measured the DNA methyla-
tion level (a real number between 0 and 1) at twenty ge-

nomic loci across 686 individuals (Zou et al., 2014). Each
individual was associated with a binary disease status Y.
Logistic regression on the ten test biomarkers was used to
determine the weight vector, 3, which quantifies the con-
tribution of the methylation at each of these ten locus to
the disease risk. The other ten independent loci are con-
trol markers. Getting accurate estimates for the values of
£ is important for understanding the biological roles of
these loci. In this dataset, all the samples were measured
on one platform, leading to relatively accurate estimate of
(. In many cases samples are collected from multiple fa-
cilities (or by different labs). We simulated this within our
RCA framework. We let S; be the original data matrix of
the ten test markers across the 686 samples. We let S
be the original data matrix of the ten control markers in
these same samples. We modeled S5 as a mixture model,
where samples are randomly assigned to different compo-
nents that capture lab specific biases. The perturbed ob-
servations are U = S7 4+ Sy and V = ASy + S3,i.e. U
and V simulate the measurements for the test and control
markers, respectively, when the true signal has been per-
turbed by this mixtures distribution of lab biases. We as-
sume that we can only access U and V' and do not know
Sa, i.e. where each sample is generated. Running logistic
regression directly on U and the phenotype Y obtained a
MSE of 0.24 (std 0.03) between the inferred B and the true
£ measured from directly regressing S; on Y. Directly
using CCA also introduce significant errors with MSE of
0.25 (std 0.02). Using all the control markers as covariates
in the logistic regression, the MSE of the test markers’ 3
was 0.14 (std 0.03). In general, adding V' as covariates to
the regression can eliminate S5 at the expense of adding S,
and can reduce accuracy when Sj is larger than S;. Using
our RCA logistic regression on U and V', we obtained sig-
nificantly more accurate estimates of 8, with MSE 0.1 (std
0.03). See Appendix for more analysis of this experiment.

Discussion We proposed the framework of Rich Compo-
nent Analysis in this paper. RCA generalizes the widely-
used Independent Component Analysis/Factor Analysis
models in several directions: 1) each latent source is al-
lowed to be a high dimensional distribution and 2) there
could be many more latent sources than there are obser-
vations. These two extensions make it not possible to de-
convolve and recover the samples from each independent
source. Our approach based on cumulant extraction and ap-
proximate SGD provides a theoretically sound and practi-
cal solution. Additionally it allows the algorithm to recover
a particularly interesting component without modeling all
the other components, which can be very complex. These
properties makes RCA more robust to model misspecifica-
tion. We demonstrate the accuracy of RCA on several sim-
ulations and on the real problem of bio-marker discovery.
RCA perform better than the most natural competitors.

Rich Component Analysis

References

Anandkumar, Animashree, Ge, Rong, Hsu, Daniel,
Kakade, Sham M., and Telgarsky, Matus. Tensor decom-
positions for learning latent variable models. Journal of
Machine Learning Research, 15:2773-2832, 2014.

Arora, Sanjeev, Ge, Rong, Ma, Tengyu, and Moitra, Ankur.
Simple, efficient, neural algorithms for dictionary learn-
ing. In Proceedings of The 28th Conference on Learning
Theory, COLT, 2015.

Bulinskii, AV. Bounds for mixed cumulants and higher-
order covariances of bounded random variables. Theory
of Probability & Its Applications, 19(4):835-839, 1975.

Comon, Pierre and Jutten, Christian. Handbook of Blind
Source Separation: Independent component analysis
and applications. Academic press, 2010.

De Lathauwer, L., Castaing, J., and Cardoso, J.-F. Fourth-
order cumulant-based blind identification of underdeter-

mined mixtures. Signal Processing, IEEE Transactions
on, 55(6):2965-2973, 2007.

Harman, Harry H. Modern factor analysis. University of
Chicago Press, 1976.

Hotelling, Harold. Relations between two sets of variates.
Biometrika, pp. 321-377, 1936.

Hsu, Daniel and Kakade, Sham M. Learning mixtures of
spherical gaussians: moment methods and spectral de-
compositions. In Proceedings of the 4th conference on
Innovations in Theoretical Computer Science, pp. 11—
20. ACM, 2013.

Kenney, John Francis and Keeping, Ernest Sydney. Math-
ematics of statistics-part i. 1954.

Kolda, Tamara G and Bader, Brett W. Tensor decompo-
sitions and applications. SIAM review, 51(3):455-500,
2009.

Powell, Michael James David. Approximation theory and
methods. Cambridge university press, 1981.

Rose, Colin and Smith, Murray D. Mathematical statistics
with Mathematica, volume 1. Springer New York, 2002.

Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and
Sridharan, Karthik. Stochastic Convex Optimization.
In Proceedings of the Conference on Learning Theory
(COLT), 2009.

Varin, Cristiano, Reid, Nancy, and Firth, David. A
overview of composite likelihood methods. Statistica
Sinica, 21:5-42, 2011.

Zou, James, Hsu, Daniel, Parkes, David, and Adam, Ryan.
Contrastive Learning Using Spectral Methods. In Pro-
ceedings of the Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2013.

Zou, James, Lippert, Christoph, Heckerman, David, Aryee,
Martin, and Listgarten, Jennifer. Epigenome-wide asso-
ciation studies without the need for cell-type composi-
tion. Nature Methods, 11(3), 2014.

Rich Component Analysis

A. More Tensor and Cumulant Notations

In this section we introduce the notations and basics for tensors and cumulants.

Matrix Notations For a matrix M € R™*™ we use || M| to denote its spectral norm supy =y [|Mz||, || M||r to denote
its Frobenius norm [M|[r = />, ; M} j»and oy (M) to denote its smallest singular value.

When n > m and the matrix M has full column rank, we use M1 to denote its Moore-Penrose pseudoinverse which in
particular satisfy MM = I.

We also sometimes use the Kronecker product of matrices, for A € R™*™ and B € RP*?, A ® B is a matrix in R™P*"4
that has the following block structure:

Ay B AoB - AB

Ay B AypB -+ Ay,.B
AR B = . . .

Am1B ApmpoB - AnnB

The singular values of A ® B is just the product of singular values of A and B.

Tensor Notations A tensor T € R?' is a ¢-dimensional array, and is frequently used to represent higher order moments
or cumulants. We index the elements in the tensor using a ¢-tuple (i1, 42, ...,4;) € [d]'. The entries of tensor product
[u1 @Ua®- - - U] (i, 4,... i) 18 simply the product of corresponding entries H;Zl w; (7). We use u®" to denote uQu®- - -®u
t times.

For a distribution X € R?, the t-th order moment is a tensor E[X®4], whose (i1, i2,...,%;)-th entry is equal to
E[X;, X, - - - X;,]. Later we shall see cumulants can also be conveniently represented as tensors.

A tensor can be viewed as a multi-linear form (just as a matrix M can be viewed as a bilinear form u” Mwv). For a tensor
T we define T'(My, Ms, ..., M) to be

t
T(MlaM27'"7Mt)(i1,...,7it) = Z T(j1;~-7jt)HMl(jl7il)'
(41,4t €[d]t =1

This multi-linear form works well with the moment tensors, especially for matrices My, ..., M; we always have

E[X®)(My, ..., M) =E[(M] X)) ® (M) X)®---® (M, X)].

Often to simplify operations tensors are unfolded to become matrices. There can be many ways to unfold a tensor, but in
this paper we mostly use a particular unfolding which makes the tensor into a R *d marix:

unfold(T)

(615eemste—1)y0e —

Cumulants Cumulants provide an alternative way to describe the lower order correlations of a random variable. Unlike
moments, cumulants have the nice property that the cumulant of sum of independent random variables equals to the sum
of cumulants. Formally, for a random variable X € R the cumulant is defined to be the coefficients of the cumulant
generating function log E[e!*] (k4(X) is just ¢! times the coefficient in front of X*). When the variables are different the
cross-cumulants (similar to covariance) can similarly be defined, and it can be computed as:

Rich Component Analysis

Re(X1, 0 X0) =Y (v = D(=D) =TT BT T x4 (7)

T Benw i€B

In this formula, 7 is enumerated over all partitions of [¢], |7| is the number of parts in partition and B runs through the list
of all parts.

Similarly, it is possible to define cumulants for multivariate distributions. For random variable X € R? k(X)itsnsic) =
ke(Xiy, -y X5,). This cross cumulant can be computed in a similar way as Equation (7), however the products should be
replaced by tensor products and the ordering of coordinates is important when doing the tensor product.

Fact Suppose X1, ..., X; are random variables in R?. The ¢-th order cumulant kt(X1, ..., X¢) is a tensor in R4 that have
the following properties:

1. (Independence) If (X7, ..., X;) and (Y1, ..., Y;) are independent, then x¢ (X7 + Y1,..., Xi + Y}) = we(Xq, ..., Xp) +
Iit(Yh...,th).
2. (Linearity) (M7 X1, ..., M7 X;) = ry(X1, o, Xo) (M, ..., My).

3. (Relation to Moments) The ¢-th order cumulant is a polynomial over the first £-th order moments. Similarly the ¢-th
order moment is a polynomial over the first ¢-th order cumulants. Further both polynomials can be computed in O(t!)
time. Converting between first ¢-th order moments and cumulants for d-dimensional variables takes O((td)?) time.

Intuitively, cumulants can measure how correlated two distributions are. The simplest case is ko(X,Y") which is equal to
the covariance E[(X — E[X])(Y — E[Y])], and is O only if the two variables are not correlated in second order. For more
detailed introductions to cumulants see books like (Kenney & Keeping, 1954).

B. Details for Section 3

In this section, we prove the equations and algorithms in Section 3 indeed compute the desirable quantity, and further we
give sample complexity bounds.
B.1. Contrastive Learning

We first prove Equation (2) computes the correct linear transformation.

Lemma B.1 (Lemma 3.1 restated). Suppose the unfolding of the 4-th order cumulant un fold(rk4(ASs, S2, S2, S2)) has
Sull rank, given the exact cumulants k4(V,U,U,U) and k4(V,U, U, V'), Equation (2) finds the correct linear transformation

in time O(dP).
Proof. Since U = S1 + Sy and V = ASs 4+ S3, we know

/€4(‘/, U, U, U) = I<C4(ASQ + Sg,S1 + SQ, Sl + SQ,SI + 52)
= I€4(07 Sl, Sl, 51) + I€4(ASQ, SQ, SQ, SQ) + 54(53, O, 0,0)
= K4(A52a52752a52)-

Here the second step uses the fact that cumulants are additive for independent variables, and third step uses the linearity of
cumulants.

Similarly, we know H4(V, U, U, V) = R4(ASQ, 527 SQ, ASQ) = H4(ASQ, 52, SQ, SQ)(I7 I, I, AT)
For the unfoldings of these cumulants, we have

unfold(cumy(V,U,U,V)) = unfold(cumy(V,U, U, U))AT.

Therefore when un fold(cum4(V, U, U, V")) has full rank we can compute A using pseudo-inverse.

For the running time, the main computation is a pseudo-inverse and a matrix product for d® x d matrices, both take O(d®)
time. O

Rich Component Analysis

Next we show given the linear transformation, it is possible to estimate the cumulants using Equations (3 - 5). In fact, we
can also avoid computing the cross-cumulants and work with just the cumulants of variables:

ke(S1) = ke(U) — k(U + A7) ;t Iit(?U) — ke(A™ V)’ -
ke(Sy) = k(U + A V)Q—tfitéU) — k(A V)7 o
Klt(Sg) _ Ht(V) _ I{t(AU + V) 2_t fit(2AU) — Ht(V) . (10)

Theorem B.2 (Theorem 3.2 restated). For all t > 1, Equations (3)-(5) or (8)-(10) compute the correct cumulants for
S1, 8o, Sz in time O((td)**2). Moreover, if V has dimension higher than U and A has full column rank, replacing A~1 by
A still gives correct cumulants.

Proof. The proof of Equations (3)-(5) is very similar to the previous lemma. Note that

Iit(U, U,..,U, A71V) = Ht(Sl + 55,..., 51 + 52,5 + Aing)
= Fct(Sl, ey 51,0) + Ht(SQ, Ss, 59, Sg) + Iit(o, ey O,A_ng)
= I{t(SQ).

So we have Equation (4), and using the fact that x,(U) = k.(S1) + k¢(S2) we get Equation (3). Equation (5) follows
similarly.

In order to get Equations (8)-(10), first note that by the linearity of cumulants, we can write (U + A~1V') as the sum of
2¢ terms:

U +ATV) = Y k(2U+ (1 —20)A7WV, 20U + (1= 29) A7V, 20U + (1= 2) A7),
z€{0,1}*

Among all these terms, one is equal to x¢(U), one is equal to x(A~V), and all the other 2! — 2 terms are cross-cumulants
that involve both U and V. Since S is the only variable that appears in both U and A=V, all the 2¢ — 2 terms are equal
to k¢(S2), therefore we have Equation (9). Equation (8) again follows from the fact that k,(U) = £:(S1) + ¢(S2), and
Equation (10) is very similar.

The moreover part follows by directly replacing A~" with AT in the above argument. Note that in this case we can still
find A because un fold(k4(ASs, Sa,S2,.55)) still has full rank as long as un fold(r4(Ss2, Sz, S2, S2)) has full rank.

For running time, the main bottleneck is computing the cumulants (which takes O((¢d)!) time), and then applying the
matrix A to the cumulants (which takes O(d**?) time). O

Finally, we show the equations are robust under sampling noise. For that we use the following bounds on cumulants

Fact ((Bulinskii, 1975)) For any cross-cumulant ¢ (Ux, ..., Uy), if all the variables have bounded norm ||U;|| < R, then
the cumulant has Frobenius norm bounded by (¢R)%.

In practice we use k-statistics (Rose & Smith, 2002) to estimate the cumulants, the standard deviation of k-statistics is
bounded by a similar formula.

Lemma B.3. Suppose the distributions S1,S2,53 have bounded radius R, the 4-th order cumulant
unfold(ka(V,U,U,U)) has smallest singular value o4, matrix A has smallest singular value o and |A|| > 1,
given 4-th order cumulants that are e-close in Frobenius norm (and ¢ < R*), the linear transformation A is recovered

with accuracy €| A||? R*/a3. Given t-th order cross-cumulants of U,V that are €;-close in Frobenius norm, the cumulants
ellAIP R (tR)"
252

P + %’) using (3). In particular, to estimate the cumulants of S1

of Sy can be computed with accuracy O (
with accuracy 1) the number of samples required is Q((tR)%|| A||*° R /oo n?).

Rich Component Analysis

Proof. First we show the algorithms are robust under perturbation. For that we need the fact that any 4-th order cross-
cumulant with bounded variables always have Frobenius norm of order at most O(R*). As a corollary we know the
cross-cumulant 4 (V, U, U, U) has norm at most O(||A||R*) and 4(V, U, U, V') has norm at most O(|| A||>R*) Let M be
the noisy version of M = unfold(k4(V,U,U,U)), by assumption and by standard matrix perturbation bounds, we know
| Mt — Mt||p < O(e/0?). On the other hand, let N be the noisy version of N = unfold(k4(V,U,U,V)), we know
|N — N|# < e, therefore

IMIN — MIN||p < O(|M" — MY[[|N|[F + [IM[|N = N||r) < O(el|AI*R*/03).
For computing the ¢-th order cumulant, the main source of error is applying A~! to the cross cumulant x;(U, ..., U, V)

to get (U, ...,U, A=1V), as we don’t have the matrix A exactly. Since the norm cross-cumulant is always bounded by
(tR)! , we know when e is small enough the error is roughly (ignoring lower order terms)

IA™ = A7 [5o (U o, U V) + JATHEA(U, ., U V) = (U, ., U V) |

which is bounded by
o <6A|3R4<tR>t)

2 2
010% oA

Also, by the variance bounds for cumulants we know with Z samples, ¢; < (tR)!||A||/v/Z and € < O(R*| A|? /\/>)
therefore when Z = Q((tR)?|| A||'° R® /oo n?), the estimation of S; has desirable error.

B.2. Rich component analysis

We first give the algorithm for computing the linear transformations and then show it computes the correct quantities.

Algorithm 2 FindLinear

Require: set system {();} that is L-distinguishable, L + 1-th order moments
repeat
Pick a set (); that is not a subset of any remaining sets
Let T = {w1, w2, ..., wr, } be the distinguishing set for @,
Compute cumulants for all ¢ € Q;:

M; =unfold(kr+1(Uw, s -, Uwy , Ui)
— 3 R (S)(A®TD)T L (AWED)T (46D)T))

1:Q;CQ
If Mmi‘n Q; = 0 (or Gmin(Mmin QJ) is too small), then S; = 0; continue the loop.
Let A9 = (M! . M;)T foralli € Q;, A1) =0 foralli & Q;.

min Q;

Mark @; as processed, and let

kr11(85) = kL1 (A0, oy (A2 U, Uing,)

_ Z K,L_H(Sl)((A(wl’l))T(A(wl’j))_T, - (A(wL,l))T(A(wL,j))—T’ (A(mian,l))T).
1:Q;CQy

until all sets are processed

The main idea behind this algorithm is that Since we know the sets are L-distinguishable, if we start from maximal set (),
there must be a distinguishing subset of size L that is only contained in ;. Similar to the contrastive setting, if we consider
a cross-cumulant that contains all the variables in this distinguishing set, then the resulting cumulant must only depend on
this particular variable S;. Further, using different last variable in the cross-cumulants (similar to using x4 (V, U, U, U) and
k4(V,U, U, V)) and exploit the linearity of the cumulants, we can recover the linear transformations.

Note that without loss of generality we can assume A(™*(@3):7) = [because otherwise we can replace S; with the
distribution S = Amin(@).1) 5.

Rich Component Analysis

Lemma B.4 (Lemma 3.3 restated). Given observations U;’s as defined in Equation 6, suppose the sets ();’s are L-
distinguishable, all the unknown linear transformations A7) s are invertible, unfoldings un.f old(cump1(S;)) is either
0 (when S; = 0) or have full rank, then given the exact L + 1-th order cumulants, Algorithm 2 outputs the correct linear
transformations A%9) in time poly(L!, (dk)").

Proof. We prove this by induction using the following hypothesis:
For all the processed variables, Algorithm 2 finds the correct linear transformations A7) and cumulant 7, 1 (S)

This hypothesis is clearly true at the beginning of the algorithm (as no variables are processed). We now show the algorithm
will compute the correct quantities for the next variable S;.

By the algorithm, we know the set (); is not a subset of any remaining sets, and 71" is a distinguishing set. Therefore, for
other remaining set, we know it cannot contain all the elements in 7'. Therefore, by linearity and additivity of cumulants,
we know K741 (U, s ..., U, , Ui)(i € Q;) will only depend on the variable S; and some of the previously processed
variables. In particular,

K141 (Urs ooy Uy Ui) = kip g1 (AW S Aw2d) g Ad) g AGD G

+ Y kpp (A S, Al Aeh g ADg)).
1:Q;CQ

By induction hypothesis, we have already processed all the other terms related to Q; (I # j and Q); C @), so we have the
correct cumulants 7, 1(S;) and linear transformations A(!)’s. Those terms will be subtracted out during the algorithm.
Therefore we know

M; = unfold(kp 41 (AW S;, AW g, | Awed) g, AI)GY)
= unfold(kp 1 (AW S, AW g, Awed) g G))(AG))T
In particular My, = unfold(rpq (AW S Awi) g, Awed) S, SY)). Therefore, the algorithm computes the
correct linear transformations if the matrix My, @, has full rank.

The fact that M ,;,, Qi has full rank is implied by assumptions, because we can write this matrix as
unfold(rip 1 (AWDS;, AW S, AW S, §y) = (AW @ ... @ AWLDVunfold(kry1(S))).

Here ® is the Kronecker product of matrices, and it is well-known that the Kronecker product of invertible matrices are
still invertible. Since un fold(kr1(S;)) is either O or has full rank by assumption, we know we can either detect there is
no component corresponding to set ();, or have a matrix My Q; with full rank. In the latter case the correctness of the
L + 1-th order cumulant calculation then simply follows from the linearity of cumulants.

Finally, we estimate the running time of the algorithm. Computing any cumulant can be done in poly(L!, d*) time. Finding
the distinguishing set (by exhaustive search) takes no more than poly(k”) time. The algorithm runs in at most p < 2%
iterations, each iteration computes a small number of cumulants and does small number of linear-algebraic calculations
(which are all poly in (kd)*), so the total running time is at most poly(L!, (kd)*) O

Now we are ready to give the algorithm for computing cumulants and prove that it works.

Theorem B.5 (Theorem 3.4 restated). Under the same assumption as Lemma 3.3, for any t > L Algorithm 3 computes
the correct t-th order cumulants for all the variables in time poly((L + t)!, (dk)-+?).

Proof. The proof of this lemma is very similar to the previous one. Again we prove the lemma by induction, under the
following induction hypothesis:

For all the processed variables, Algorithm 2 finds the correct cumulant ;(.S;).

This is clearly true before the main loop. We now show that the algorithm successfully compute the cumulant of the next
variable.

Rich Component Analysis

Algorithm 3 ComputeCumulant
Require: set system {Q, } that is L-distinguishable, order t > L
Ensure: ¢-th order cumulant for all the variables
Apply Algorithm 2 to find A(7)’s, remove all sets whose variables do not appear.

repeat
Pick a set); that is not a subset of any remaining sets
Let T = {w1, wa, ..., w } be the distinguishing set for Q);, let wr11 = wrys = -+ = wy = wp,.

Mark @); as processed, let

K(5) = Ru((AH) 7 Uy oy (ACD) 1T,

— > m(S) (AT A =T (A D) T(AleD)=T)
1:Q; CQu

until all sets are processed

Similar as before, since w1, ..., w; contains all the elements of a distinguishing set 7", we know

Foo (AW =IY, (AsI) =1,)

:Ht(Sj)—F Z /@t((A(wl,j))*lA(whl)Sl’(A wa,7)) A(UJ2l S’.”,(A(wt.,j))flA(wt,l)Sl)
1:Q;CQ

=re(S)+ D m(S) (AT (A =T (AleD) T (AweD)=T),
1:Q;CQ

By induction hypothesis all the other terms are computed in previous iterations of the algorithm, so they are subtracted out.
Therefore we get the first term which is equal to x4 (S;). O

Finally we prove the sample complexity bounds.

Lemma B.6. Suppose the distributions S;’s have bounded radius R, the L + 1-th order cumulant unfold(kr11(S;))
has smallest singular value o, nonzero matrices A%9) has smallest singular value o o and spectral norm at most || A).
Also, suppose the longest chain of subsets Q;, C Qj, C --- C Qj, has length q. Given L + 1-th order cumulants
that are e-close in Frobenius norm, the linear transformation A is recovered with accuracy e(pLR| Al|/oa0,)C5).
Given t-th order cumulants that are e-close in Frobenius norm, the cumulants of S; can be computed with accuracy

e(pLR||A|| /o a0,)C9E+90) In particular, to estimate the cumulants of Sy with accuracy 1) the number of samples required
is Q((pPLR| Al /o 40,) O @FFD /).

Proof. We prove this by induction. For each variable S;, let depth g; be the length of the longest chain such
that ; C Q; C C Qg,—1- We shall prove that the AU:1)°s are recovered with accuracy €A,q;

O(e (p||A||2L+2(LR)t+1/02L 2)‘17_1||A||t+1(tR)L+1/02L 2) and the L + 1-th cumulant is recovered with accuracy
€r.q; = O(Lea g [Min g, lr/0%)-

First we show the base case, when ¢; = 1 and therefore there is no other set that contains this set. In this case, A9

is just equal to (Mx];nn Q, M;)" where the M’s are the unfoldings of L + 1-th order cross-cumulants (so we have them

with accuracy €). By standard matrix perturbation bounds we know the error is bounded by €||M;|| r/0min(Mmin @,)2
and we just need to bound the smallest singular value and Frobenius norm for the M’s. For My, q;, we know it
is equal to a linear transformation of the unfolding of xr11(S;), therefore opin(Mming,) > oko.. Similarly we
have | M;||lr < O(JJA|FHH(LR)L*Y). Therefore €41 = O(e||A|IFTHLR)EH Jo%Lo?). When we compute the
L + 1-th order cumulant, the dominating term is applying the inverses of the A matrices we estimated, and we know
xt = O(Lea [Muing, /03) = O(eL|| APEHL(LR)2E+2 J02E+2g2),

Suppose we have shown this for all of);’s with small depth g; < u. For a set); with ¢; = u + 1, when we compute the
matrices M we need to subtract the cumulants of the previously computed variables. The number of such variables is at

Rich Component Analysis

most p, and each variable has an additional error of O (€,,q,—1[|A||[“T + Lea g, —1 | Al * (LR)ETY) < O(e,q,—1 A ZT).
This (O(ey,q;—1P||A[[“T)) is our new error in estimating the cumulants. Therefore, by the same argument we have
€a,q; = Olen g, 1Pl AP T2 (LR)M T Jot o) = O(e(pl| AIPFF2(LR)M T Jo i o) H AT (LR) M ot o)

The rest of the proof follows from very similar induction on Algorithm 3. O

C. Details for Section 4

In this section we prove Lemma 4.1, which shows for a strongly convex function, given a biased estimator for the gradient
we can still hope to get close to its optimal solution.

Lemma C.1 (Lemma 4.1 restated). Suppose the negative log-likelihood function F(0) = —E[log H(0, S1)] is p-strongly
convex and H-smooth, given an estimator G(0) for the gradient such that ||G(0) — VF(0)| < € gradient descent using

2
G(0) with step size 5= converges to a solution 0 such that || — 6, ||* < EL%.

Before proving this lemma we first introduce basic definitions for strongly convex functions.

Definition C.1 (u-strongly convex). A function F'(0) (whose second order derivatives exist) is pi-strongly convex if for any
two points 6, T we have

F(6) > F(r)+ (VF(r),0 = 7) + £ 6 = 7]]%.

Definition C.2 (H-smooth). A function F(0) (whose second order derivatives exist) is H-smooth if for any two points 0, 7
we have

F(0) < F(r) + (VE(r).0—7) + 20— 7]

The proof of Lemma 4.1 mostly follows from the approximate gradient framework in (Arora et al., 2015). For completeness
we also give the proof here.

Proof. Let 6* be the optimal point. First, by u-strongly convexity we know
(VF(0),0 — 0*) > F(0) — F(6") + %IIG — 0,2

On the other hand, by -smoothness we know
« . . 2 H772 2 1 2
P(8°) < min F(9 ~ 1V F(6)) < min F(@) ~ | VE@)|* + = [VF)| = F(z) = 3 [VF(O)].

Therefore
1 Iz
F(),0 —0%) > —|VFO)|*+ 516 — 0] 11
(VE(0),)2 5 IVEOI + 5 | (1D
Now we prove even when the gradient G(0) is only an approximation, the above equation still holds approximately.

Claim C.1.
1 %
— 0%\ > — 2 Pyp 3 2 _ 92/,
(G(0).0 ~6°) = TGO + 51— 0,17 — 26
Proof. We know

(G(0),0 — 0%) = (VF(6),0 — 0,) + (G(0) — VF(6),0 — 0,)
(VE(0),0 —0.) —€]|0 — 0.

v

(VF(0))~ Blg— g2 —
> (VF(0),0 —0,) — =16 — 6,]]> — —.
> ! ;

Rich Component Analysis

Also, ||G(0)]]? < 2||G(0) — VFE(0)|* + 2|[VF(0)||*. Using these two inequalities in Equation (11), we get
2
(G(9),0 —0") > (VF(0),0 —0.) — %He — 0.2 - %
1 i €2
> 2, Pyg 2 €
2 o IVE@) + 7110 - 6.] P
1 2, M , € €
> VO + 41001 - 5 - <

1 2, M) 2¢
T IVFOI+ o 0.7 ==

O

The above Claim essentially matches the («, 3, €)-approximate condition in (Arora et al., 2015). Now suppose the update
rule is 1
e+ — () _ _—_ (gD,
5 C0)

We can then prove convergence result:

Claim C.2.

8 2
10 — 6% < (1 16O — 0,7 + =
"

- My

4H
Proof. We prove this by induction. Assume this is true for step ¢ (the base case ¢ = 0 is trivial), then for the next step we
have

641 — %] = 09 — 6712 — - (G(O), 00— 6°) + TGO
= 00— 07— S (2(GO0), 00— 0%) — G)
1 4¢?
< 119® _ p* |12 — Hig® _ g2 — 25
<1109 = "I = 55100 —) = =)
2

1 (t) w2, 2€
<(1-- - =
<= flo =0+ 2

Substituting in the bound for [|#(*) — 6*||? we get the exact claim. O

Therefore by carefully choosing the step size gradient descent quickly converges to a nearby point (in fact similar argument
works as long as the learning rate is upper bounded by ﬁ). Similar arguments can be proved for stochastic gradient with
a small enough step size (depending on the variance). O

D. Details for Section 5

Ising model inference. Let ¢ = {.J;;}, the composite log-likelihood I.; of this Ising model can be written as

P(510)
lag(0) =E 1
(0) =Es |) log P(S,S(i) = 1) + P(S,S(i) = —1]9)
icVert
The gradient of the composite log-likelihood with respect to a particular J;; is
25(i)S(J) 25(1)S(J)

14 exp(25(4) Xopeneigh(iy TS (k) 1 +exp(25(7) Xreneigh(s s, s(r))

Q

Es [25(1)S(j) — S()*S() Y. JuS(k) = SHSG)? Y. JuS(k)
keneigh(q) keneigh(j)

Rich Component Analysis

where we have used the 4-th order Taylor expansion. We then use the 2nd and 4th order cumulant tensors from U and V'
to obtain unbiased estimator of terms Eg[S(7)S(j)] and Eg[S(i)2S(5)S(k)]. This gives the approximate gradient used in
SGD. In the experiments, we used batch size of 100 samples to approximate each step of the gradient.

Biomarkers experiment. In the simulation for having samples from multiple facilities, we get two views of the data,
where U = S1 + S5 and V' = S, 4+ S3. Here Sy represents the values for test markers, S3 represents the values for control
markers, and (S, S5) jointly represents the perturbation caused by different labs.

In our set up, we assume the samples come from two different labs, each lab has a bias on all the 20 markers (we use
(p',qY), (p?, ¢*) € R x R1Y to denote the biases). That is

(S, SL) = (p*,q') sample from lab 1
22 (p%,¢%) sample from lab 2

In this case, when the vectors p, g are in general positions, it is easy to see that there is a rank-2 matrix A such that
S = AS,. In particular, let P € R'°*2 be the matrix whose columns are p', p?, @ € R19%2 be the matrix whose columns
are ¢!, g%, then we know A = QP1.

Note that this does not fit directly in our framework as the distribution So has low rank, and therefore the 4-th order
cumulant cannot have full column rank. However, we can consider Sy = PX5 and S, = QX3 (where X5 = (1,0) for
samples from lab 1 and X5 = (0, 1) for samples from lab 2). We show that the algorithm still makes sense in this setting.

Let W = unfold(rk4(QX2, PXa, PXs, X)) € RY009%2 by the linearity of cumulants, we know

My = unfold(rks(V,U,U,U)) = WP,
My = unfold(ks(V,U, U, V)) = WQ".

In this case, M7 does not have full column rank, so the usual definition of pseudo-inverse does not work. However, we can
write P = ZR where Z € R'°%2 is an orthonormal matrix (27 Z = I), and R € R2*2 and then hope to find M, such
that MMy = ZZ (this is possible because we can let M} := Z(WRT)).

When we use this definition of pseudo-inverse, it is easy to check that (MlJr My)T = QR™'ZT = QP?, therefore our
algorithm can still recover the correct rank-2 A matrix.

