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Abstract
This paper considers the problem of canonical-
correlation analysis, and more broadly, the gener-
alized eigenvector problem for a pair of symmet-
ric matrices. We consider the setting of finding
top-k canonical/eigen subspace, and solve these
problems through a general framework that sim-
ply requires black box access to an approximate
linear system solver. Instantiating this frame-
work with accelerated gradient descent we obtain
a running time ofO

(
zk
√
κ

ρ log(1/ε) log (kκ/ρ)
)

where z is the total number of nonzero entries,
κ is the condition number and ρ is the relative
eigenvalue gap of the appropriate matrices. Our
algorithm is linear in the input size and the num-
ber of components k up to a log(k) factor, which
is essential for handling large-scale matrices that
appear in practice. To the best of our knowledge
this is the first such algorithm with global linear
convergence. We hope that our results prompt
further research improving the practical running
time for performing these important data analysis
procedures on large-scale data sets.

1. Introduction
Canonical-correlation analysis (CCA) and the generalized
eigenvector problem are fundamental problems in scien-
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tific computing, data analysis, and statistics (Barnett &
Preisendorfer, 1987; Friman et al., 2001).

These problems arise naturally in statistical settings. Let
X,Y ∈ Rn×d denote two large sets of data points,
with empirical covariance matrices Sx = 1

nX
>X, Sy =

1
nY
>Y, and Sxy = 1

nX
>Y and suppose we wish to find

features x,y ∈ Rd that best encapsulate the similarity or
dissimilarity of the data sets. CCA is the problem of maxi-
mizing the empirical correlation

max
x>Sxxx=1 and y>Syyy=1

x>Sxyy (1)

and thereby extracts common features of the data sets. On
the other hand the generalized eigenvalue problems

max
x 6=0

x>Sxxx

x>Syyx
and max

y 6=0

y>Syyy

y>Sxxy

compute features that maximizes discrepancies between
the data sets. Both these problems are easily extended to
the k-feature case (See Section 3). Algorithms for solving
them are commonly used to extract features to compare and
contrast large data sets and are used commonly in regres-
sion (Kakade & Foster, 2007), clustering (Chaudhuri et al.,
2009), classification (Karampatziakis & Mineiro, 2013),
word embeddings (Dhillon et al., 2011) and more.

Despite the prevalence of these problems and the breadth
of research on solving them in practice ((Barnett &
Preisendorfer, 1987; Barnston & Ropelewski, 1992; Sherry
& Henson, 2005; Karampatziakis & Mineiro, 2013)
to name a few), there are relatively few results on
obtaining provably efficient algorithms. Both prob-
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lems can be reduced to performing principle compo-
nent analysis (PCA), albeit on complicated matrices e.g
S
−1/2
yy S>xyS

−1
xxSxyS

−1/2
yy for CCA and S

−1/2
yy SxxS

−1/2
yy for

generalized eigenvector. However applying PCA to these
matrices traditionally involves the formation of S−1/2

xx and
S
−1/2
yy which is prohibitive for sufficiently large datasets if

we only want to estimate top-k eigenspace.

A natural open question in this area is to what degree can
the formation of S−1/2

xx and S
−1/2
yy can be bypassed to ob-

tain efficient scalable algorithms in the case where the num-
ber of features k is much smaller than the dimensions of
the problem n and d. Can we develop simple iterative
practical methods that solve this problem in close to linear
time when k is small and the condition number and eigen-
value gaps are bounded? While there has been recent work
on solving these problems using iterative methods (Avron
et al., 2014; Paul, 2015; Lu & Foster, 2014; Ma et al., 2015)
we are unaware of previous provable global convergence
results and more strongly, linearly convergent scalable al-
gorithms.

The central goal of this paper is to answer this question in
the affirmative. We present simple globally linearly con-
vergent iterative methods that solve these problems. The
running time of these problems scale well as the number
of features and conditioning of the problem stay fixed and
the size of the datasets grow. Moreover, we implement the
method and perform experiments demonstrating that the
techniques may be effective for large scale problems.

Specializing our results to the single feature case we show
how to solve the problems all in time O( z

√
κ
ρ log 1

ρ log 1
ε ),

where κ is the maximum of condition numbers of Sxx and
Syy and ρ is the eigengap of appropriate matrices and men-
tioned above, and z is the number of nonzero entries in
X and Y. To the best of our knowledge this is the first
such globally linear convergent algorithm for solving these
problems.

We achieve our results through a general and versatile
framework that allows us to utilize fast linear system
solvers in various regimes. We hope that by initiating this
theoretical and practical analysis of CCA and the general-
ized eigenvector problem we can promote further research
on the problem and ultimately advance the state-of-the-art
for efficient data analysis.

1.1. Our Approach

To solve the problems motivated in the previous section we
first directly reduce CCA to a generalized eigenvector prob-
lem (See Section 5). Consequently, for the majority of the
paper we focus on the following:

Definition 1 (Top-k Generalized Eigenvector1). Given
symmetric matrices A,B where B is positive definite com-
pute w1, · · · ,wk defined for all i ∈ [k] by

wi ∈ argmax
w

∣∣w>Aw
∣∣ s.t.

w>Bw = 1 and
w>Bwj = 0 ∀ j ∈ [i− 1].

The generalized eigenvector is equivalent to the problem of
computing the PCA of A in the B norm. Consequently, it is
the same as computing the top k eigenvectors of largest ab-
solute value of the symmetric matrix M = B−1/2AB−1/2

and then multiplying by B−1/2.

Unfortunately, as we have discussed, explicitly computing
B−1/2 is prohibitively expensive when n is large and there-
fore we wish to avoid forming M explicitly. One natu-
ral approach is to develop an iterative methods to approx-
imately apply B−1/2 to a vector and then use that method
as a subroutine to perform the power method on M. Even
if we could perform the error analysis to make this work,
such an approach would likely require at least a suboptimal
Ω(log2(1/ε)) iterations to achieve error ε.

To bypass these difficulties, we take a closer look at
the power method. For some initial vector x, let y =
B−1/2Mix be the result of i iterations of power method
on M followed by multiplying B−1/2. Clearly y =
(B−1A)iB−1/2x. Furthermore, since we typically ini-
tialize the power method by a random vector and since
B is positive definite, if we instead we computed y =
(B−1A)ix for random x we would likely converge at the
same rate as the power method at the cost of just a slightly
worse initialization quality.

Consequently, we can compute our desired eigenvectors
by simply alternating between applying A and B−1 to a
random initial vector. Unfortunately, computing B−1 ex-
actly is again outside our computational budget. At best we
should only attempt to apply B−1 approximately by linear
system solvers.

One of our main technical contributions is to argue about
the effect of inexact solvers in this method. Whereas solv-
ing every linear system to target accuracy ε would again
require O(log(1/ε)) time per linear system, which leads to
a sub-optimal O(log2(1/ε)) overall running time, i.e. sub-
linear convergence, we instead show how to warm start the
linear system solvers and obtain a faster rate. We exploit
the fact that as we perform many iterations of power meth-
ods, points at time t converge to eigenvectors and therefore
we can initialize our linear system solver at time t carefully
using our points at time t− 1. Ultimately we show that we
only need to make fixed multiplicative progress in solving

1We use the term generalized eigenvector to refer to a non-
zero vector v such that Av = λBv for symmetric A and B, not
the general notion of eigenvectors for asymmetric matrices.
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the linear system in every iteration of the power method,
thus the runtime for solving each linear system is indepen-
dent of ε.

Putting these pieces together with careful error analysis
yields our main result. Our algorithm only requires the
ability to apply A to a vector and an approximate linear
system solver for B, which in turn can be obtained by just
applying B to vectors. Consequently, our framework is ver-
satile, scalable, and easily adaptable to take advantage of
faster linear system solvers.

1.2. Previous Work

While there has been limited previous work on provably
solving CCA and generalized eigenvectors, we note that
there is an impressive body of literature on performing
PCA(Rokhlin et al., 2009; Halko et al., 2011; Musco &
Musco, 2015; Garber & Hazan, 2015; Jin et al., 2015)
and solving positive semidefinite linear systems(Hestenes
& Stiefel, 1952; Nesterov, 1983; Spielman & Teng, 2004).
Our analysis in this paper draws on this work extensively
and our results should be viewed as the principled applica-
tion of them to the generalized eigenvector problem.

There has been much recent interest in designing scalable
algorithms for CCA(Ma et al., 2015; Wang et al., 2015;
Wang & Livescu, 2015; Michaeli et al., 2015). To our
knowledge, there are no provable guarantees for approxi-
mate methods for this problem. Heuristic-based approachs
(Witten et al., 2009; Lu & Foster, 2014) compute effi-
ciently, but only give suboptimal result due to coarse ap-
proximation. The work in (Ma et al., 2015) provides one
natural iterative procedure, where the per iterate compu-
tational complexity is low. This work only provides local
convergence guarantees and does not provide guarantees of
global convergence.

Also of note is that many recent algorithms (Ma et al.,
2015; Wang et al., 2015) have mini-batch variations, but
there’s no guarantees for mini-batch style algorithm for
CCA yet. Our algorithm can also be easily extends to a
mini-batch version. While we do not explicitly analyze this
variation, and we believe our analysis and techniques are
helpful for extensions to this setting. We also view this as
an important direction for future work.

We hope that by establishing the generalized eigenvector
problem and providing provable guarantees under moder-
ate regularity assumptions that our results may be further
improved and ultimately this may advance the state-of-the-
art in practical algorithms for performing data analysis.

1.3. Our Results

Our main result in this paper is a linearly convergent algo-
rithm for computing the top generalized eigenvectors (see

Definition 1). In order to be able to state our results we in-
troduce some notation. Let λ1, · · · , λd be the eigenvalues
of B−1A (their existence is guaranteed by Lemma 9 in the
appendix). The eigengap ρ def

= 1 − |λk+1|
|λk| and γ def

= |λ1|
|λk| .

Let z denote the number of nonzero entries in A and B.
Theorem 2 (Informal version of Theorem 6). Given two
matrices A and B ∈ Rd×d, there is an algorithm that com-
putes the top-k generalized eigenvectors up to an error ε in

time Õ(
zk
√
κ(B)

ρ log 1
ε ), where κ (B) is the condition num-

ber of B and Õ (·) hides logarithmic terms in d, γ, κ (B)
and ρ, and nothing else.

Here is a comparison of our result with previous work.

Table 1. Runtime Comparison - Generalized Eigenvectors

GENELINK(THIS PAPER) Õ(
d2k
√
κ(B)

ρ
log 1

ε
)

FAST MATRIX INVERSION O(d2.373...)

Turning to the problem of CCA, cf. (1), the relevant pa-
rameters are κ def

= max (κ (Sxx) , κ (Syy)) i.e., the maxi-

mum of the condition numbers of Sxx and Syy, γ def
= |λ1|
|λk|

where λ1, · · · , λk are the eigenvalues of S−1
yy SyxS

−1
xxSxy

in decreasing absolute value. Let z denote the number of
nonzeros in X and Y. Our main results are a reduction
from CCA to the generalized eigenvector problem.
Theorem 3 (Informal version of Theorem 7). Given data
matrices X ∈ Rd1×n and Y ∈ Rd2×n, there is an al-
gorithm that performs top-k CCA up to error ε in time
Õ( zk

√
κ

ρ log 1
ε ), where d = d1 + d2 and Õ (·) hides log-

arithmic terms in d, γ, κ and ρ, and nothing else.

Table 2 compares our result with existing results. 2

Table 2. Runtime Comparison - CCA

THIS PAPER Õ(ndk
√
κ

ρ
log 1

ε
)

S-APPGRAD (MA ET AL., 2015) Õ(ndkκ
ρ2

log 1
ε
)

FAST MATRIX INVERSION O(nd1.373...)

We should note that the actual bounds we obtain are some-
what stronger than the above informal bounds. Some of
the terms in logarithm also appear only as additive terms.
Finally we also give natural stochastic extensions of our
algorithms where the cost of each iteration may be much
smaller than the input size. The key idea behind our ap-
proach is to use an approximate linear system solver as a

2(Ma et al., 2015) only shows local convergence for S-
AppGrad. Starting within this radius of convergence requires us
to already solve the problem to a high accuracy.
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black box inside power method on an appropriate matrix.
We show that this dependence on a linear system solver is
in some sense essential. In Section A we show that the gen-
eralized eigenvector problem is strictly more general than
the problem of solving positive semidefinite linear systems
and consequently our dependence on the condition number
of B is in some cases optimal.

Finally, we also run experiments to demonstrate the practi-
cal effectiveness of our algorithm on both small and large
scale datasets.

1.4. Paper Overview

In Section 2, we present our notation. In Section 3, we
formally define the problems we solve and their relevant
parameters. In Section 4, we present our results for the
generalized eigenvector problem. In Section 5, we present
our results for the CCA problem. In Section A we argue
that generalized eigenvector computation is as hard as lin-
ear system solving and that our dependence on κ(B) is near
optimal. In Section 6, we present experimental results of
our algorithms on some real world data sets. Due to space
limitations, proofs are deferred to the appendix.

2. Notation
We use bold capital letters (A,B, · · · ) to denote matri-
ces and bold lowercase letters (u,v, · · · ) for vectors. For
symmetric positive semidefinite (PSD) matrix B, we let
‖u‖B

def
=
√
u>Bu denote the B-norm of u and we let

〈u,v〉B
def
= u>Bv denotes the inner product of u and v in

the B-norm. We say that a matrix W is B-orthonormal if
W>BW = I. We let σi(A) denotes the ith largest singu-
lar value of A, σmin (A) and σmax (A) denote the smallest
and largest singular values of A respectively. Similarly we
let λi(A) refers to the ith largest eigenvalue of A in magni-
tude. We let nnz (A) denotes the number of nonzeros in A.
We also let κ(B) denote the condition number of B (i.e.,
the ratio of the largest to smallest eigenvalue).

3. Problem Statement
In this section, we recall the generalized eigenvalue prob-
lem, define our error metric, and introduce all relevant pa-
rameters. Recall that the generalized eigenvalue problem is
to find k vectors wi, i ∈ [k] such that

wi ∈ argmax
w

∣∣w>Aw
∣∣ s.t.

w>Bw = 1 and
w>Bwj = 0 ∀ j ∈ [i− 1].

Using stationarity conditions, it can be shown that the vec-
tors wi are given by wi = vi, where vi is an eigenvec-
tor of B−1A with eigenvalue λi such that |λ1| ≥ · · · ≥
λn. Our goal is to recover the top-k eigen space i.e.,

span{v1, · · · ,vk}. In order to quantify the error in estimat-
ing the eigenspace, we use largest principal angle, which is
a standard notion of distance between subspaces (Golub &
Van Loan, 2012).

Definition 4 (Largest principal angle). LetW and V be two
k dimensional subspaces, W and V their B-orthonormal
basis respectively. The largest principal angle θ (W,V) in
the B-norm is defined to be

θ (W,V)
def
= arccos

(
σmin

(
V>BW

))
,

Intuitively, the largest principal angle corresponds to the
largest angle between any vector in the span of W and
its projection onto the span of V. In the special case
where k = 1, the above definition reduces to our choice
in the top-1 setting. Given two matrices W and V, we
use θ (W,V) to denote the largest principle angle between
the subspaces spanned by the columns of W and V. We
say that W achieves an error of ε if W>BW = I and
sin θ (W,V) ≤ ε, where V is the d × k matrix whose
columns are v1, · · · ,vk. The relevant parameters for us
are the eigengap, i.e. the relative difference between kth

and (k + 1)th eigenvalues, ρ def
= 1 − |λk+1|

|λk| , and κ(B), the
condition number of B.

4. Our Results
In this section, we provide our algorithms and results for
solving the generalized eigenvector problem. We present
our results for the special case of computing the top gen-
eralized eigenvector (Section 4.1) followed by the general
case of computing the top-k generalized eigenvectors (Sec-
tion 4.2). However, first we formally define a linear system
solver as follows:

Linear system solver: In each of our main results (Theo-
rems 5 and 6) we assume black box access to an approxi-
mate linear system solver. Given a PSD matrix B, a vector
b, an initial estimate u0, and an error parameter δ, we re-
quire to decrease the error by a multiplicative δ, i.e. output
u1 with ‖u1 −B−1b‖2B ≤ δ‖u0 −B−1b‖2B. We let T (δ)
denote the time needed for this operation. Since the error
metric ‖u1 −B−1b‖2B is equivalent to function error on

minimizing the convex quadratic f(u)
def
= 1

2u
>Bu−u>b

up to constant scaling, an approximate linear system solver
is equivalent to an optimization algorithm for f(u). We
also specialize our results using Nesterov’s accelerated gra-
dient descent to state our bounds. Stating our results us-
ing linear system solver as a blackbox allows the user to
choose an efficient solver depending on the structure of B
and helps pass any improvements in linear system solvers
on to the problem of generalized eigenvectors.
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4.1. Top-1 Setting

Our algorithm for computing the top generalized eigenvec-
tor, GenELin is given in Algorithm 1.

Algorithm 1 Generalized Eigenvector via Linear System
Solver (GenELin)
Input: T , symmetric matrix A, PSD matrix B.
Output: top generalized eigenvector w.
w̃0 ← sample uniformly from unit sphere in Rd
w0 ← w̃0/‖w̃0‖B
for t = 0, · · · , T − 1 do
βt ← w>t Awt/w

>
t Bwt

w̃t+1 ← argminw∈Rd [ 1
2w
>Bw −w>Awt]

{Use an optimization subroutine
with initialization βtwt }

wt+1 ← w̃t+1/‖w̃t+1‖B
end for
Return wT .

The algorithm implements an approximate power method
where each iteration consists of approximately multiplying
a vector by B−1A. In order to do this, GenELin solves
a linear system in B and then scales the resulting vector
to have unit B-norm. Our main result states that given an
oracle for solving the linear systems,3 the number of iter-
ations taken by Algorithm 1 to compute the top eigenvec-
tor up to an accuracy of ε is at most 4

ρ log 1
ε cos θ0

where

θ0
def
= θ (w0,v1).

Theorem 5. Recall that the linear system solver takes time
T (δ) to reduce the error by a factor δ. Given matrices
A and B, GenELin (Algorithm 1) computes a vector wT

achieving an error of ε in T = 2
ρ log 1

ε cos θ0
iterations,

where θ0
def
= θ (w0,v1). The running time of the algorithm

is at most

O

(
1

ρ

(
log

1

cos θ0
· T (

ρ2 cos2 θ0

16
) + log

1

ε
· T (

ρ2

16
)

)
+

1

ρ
(nnz (A) + nnz (B) + d) log

1

ε cos θ0

)
.

Furthermore, if we use Nesterov’s accelerated gradient de-
scent (Algorithm 4) to solve the linear systems in Algo-
rithm 1, the time can be bounded as

O

(
nnz (B)

√
κ(B)

ρ

(
log

1

cos θ0
log

1

ρ cos θ0

+ log
1

ε
log

1

ρ

)
+

1

ρ
nnz (A) log

1

ε cos θ0

)
.

Remarks:
3For example, we could use Nesterov’s accelerated gradient

descent, Algorithm 4

• Since GenELin chooses w0 randomly, Lemma 13 tells
us that cos θ0 ≥ ζ√

dκ(B)
with probability greater than

1− ζ.

• Note that GenELin exploits the sparsity of input ma-
trices since we only need to apply them as operators.

• Depending on computational restrictions, we can also
use a subset of samples in each iteration of GenELin.
In some large scale learning applications using mini-
batches of data in each iteration helps make the
method scalable while still maintaining the quality of
performance.

4.2. Top-k Setting

In this section, we give an extension of our algorithm
and result for computing the top-k generalized eigenvec-
tors. Our algorithm, GenELinK is formally given as Algo-
rithm 2.

Algorithm 2 Generalized Eigenvectors via Linear System
Solvers-K (GenELinK).
Input: T , k, symmetric matrix A, PSD matrix B.

a subroutine GSB(·) that performs Gram-Schmidt pro-
cess, with inner product 〈·, ·〉B.

Output: top k eigen-space W ∈ Rd×k.
W̃0 ← random d × k matrix with each entry i.i.d from
N (0, 1)
W0 ← GSB(W̃0).
for t = 0, · · · , T − 1 do

Γt ← (W>
t BWt)

−1(W>
t AWt)

W̃t+1 ← argminW tr( 1
2W

>BW −W>AWt)
{Use an optimization subroutine
with initialization WtΓt }

Wt+1 ← GSB(W̃t+1)
end for
Return WT .

GenELinK is a natural generalization of GenELin from the
previous section. Given an initial set of vectors W0, the
algorithm proceeds by doing approximate orthogonal iter-
ation. Each iteration involves solving k independent linear
systems4 and orthonormalizing the iterates. The following
theorem is the main result of our paper which gives run-
time bounds for Algorithm 2. As before, we assume access
to a blackbox linear system solver and also give a result
instantiating the theorem with Nesterov’s accelerated gra-
dient descent algorithm.

Theorem 6. Suppose the linear system solver takes time
T (δ) to reduce the error by a factor δ. Given input matrices

4Similarly, as before, we could use Nesterov’s accelerated gra-
dient descent, i.e. Algorithm 4.
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A and B, GenELinK computes a d× k matrix WT which
is an estimate of the top generalized eigenvectors V with
an error of ε i.e., W>

TBWT = I and sin θT ≤ ε, where

θT
def
= θ (WT ,V) in T = 2

ρ log 1
ε cos θ0

iterations where
θ0 = θ (W0,V). The run time of this algorithm is at most

O

(
1

ρ

(
log

1

cos θ0
· T (

ρ2 cos4 θ0

64kγ2
) + T (

ρ2

64kγ2
) log

1

ε

)
+

1

ρ

(
nnz (A) k + nnz (B) k + dk2

)
log

1

ε cos θ0

)
,

where γ def
= |λ1|
|λk| , |λ1| ≥ · · · ≥ |λk| being the top-k eigen-

values of B−1A. Furthermore, if we use Nesterov’s accel-
erated gradient descent (Algorithm 4) to solve the linear
systems in Algorithm 2, the time above can be bounded as

O

(
nnz (B) k

√
κ(B)

ρ

(
log

1

cos θ0
log

kγ

ρ cos θ0

+ log
1

ε
log

kγ

ρ

)
+

(
nnz (A) k + dk2

)
ρ

log
1

ε cos θ0

)
.

Remarks:

• Lemma 13 again tells us that since W0 is chosen to be
normalized after choosing uniformly at random from
the unit sphere, cos θ0 ≥ ζ√

dkκ(B)
with probability

greater than 1− ζ.

• This result recovers Theorem 5 as a special case, since
when k = 1, we also have γ = |λ1|

|λ1| = 1.

5. Application to CCA
We now outline how the CCA problem can be reduced to
computing generalized eigenvectors. The CCA problem is
as follows. Given two sets of data points X ∈ Rn×d1 and
Y ∈ Rn×d2 , let Sx

def
= X>X/n, Sy

def
= Y>Y/n, and

Sxy
def
= X>Y/n. We wish to find vectors φ1, · · · , φk and

ψ1, · · · , ψk which are defined recursively as

(φi, ψi) ∈ argmax
φ,ψ

φ>Sxyψ

s.t.
‖φ‖Sx = 1 and φ>Sxφj = 0 ∀ j ≤ i− 1
‖ψ‖Sy = 1 and ψ>Syψj = 0 ∀ j ≤ i− 1.

where the values of φ>i Sxyψi are called canonical correla-
tions between X and Y.

For reduction, we know any stationary point of this opti-
mization problem satisfies Sxyψi = λiSxφi, and Syxφi =
µiSyψi, where λi and µi are two constants. Combined
with the constraints, we also see that λi = µi. This

can be written in matrix form as
(

0 Sxy
Syx 0

)(
φi
ψi

)
=

λi

(
Sx 0
0 Sy

)(
φi
ψi

)
. Suppose the generalized eigenval-

ues of the above matrices are −λ1 < −λ2 < · · · < λ2 <
λ1. The top 2k-dimensional eigen-space of this gener-
alized eigenvalue problem corresponds to the linear sub-
space spanned by the eigenvectors of λi and −λi, which

are
(
φi
ψi

)
,

(
−φi
ψi

)
∀ i ∈ [k]. Once we solve the

top-2k generalized eigenvector problem for the matrices(
0 Sxy

Syx 0

)
and

(
Sxx 0
0 Syy

)
, we can pick any or-

thonormal basis that spans the output subspace and choose
a random k-dimensional projection of those vectors. The
formal algorithm is given in Algorithm 3. Combining this
with our results for computing generalized eigenvectors,
we obtain the following result.

Algorithm 3 CCA via Linear System Solvers (CCALin)
Input: T , k, data matrix X ∈ Rn×d1 ,Y ∈ Rn×d2
Output: top k canonical subspace Wx ∈ Rd1×k,Wy ∈

Rd2×k.
Sxx ← X>X/n, Syy ← Y>Y/n, Sxy ← X>Y/n.

A←
(

0 Sxy
S>xy 0

)
, B←

(
Sxx 0
0 Syy

)
(

W̄x ∈ Rd1×2k

W̄y ∈ Rd2×2k

)
← GenELinK(A,B).

U← 2k × k random Gaussian matrix
W̃x ← W̄xU.
W̃y ← W̄yU.
Wx = GSSxx

(W̃x),Wx = GSSyy
(W̃y)

Return Wx,Wy .

Theorem 7. Suppose the linear system solver takes time
T (δ) to reduce the error by a factor δ. Given inputs X
and Y, with probability greater than 1 − ζ, then there is
some universal constant c, so that Algorithm 3 outputs Wx

and Wy such that sin θ(span (φi; i ∈ [k]) ,Wx) ≤ ε, and
sin θ(span (ψi; i ∈ [k]) ,Wy) ≤ ε, in time

O

(
1

ρ

(
log

dκ

ζ
· T (

cζ6ρ2

d2k5κ2γ2
) + T (

cζ2ρ2

k3γ2
) log

1

ε

)
+

1

ρ

(
nnz (X,Y) k + dk2

)
log

dκ

ζε

)
,

where nnz (X,Y)
def
= nnz (X) + nnz (Y) and κ

def
=

max (κ (Sxx) , κ (Syy)) and γ def
= λ1

λk
. If we use Nesterov’s

accelerated gradient descent (Algorithm 4) to solve the lin-



Efficient Algorithms for Large-scale Generalized Eigenvector Computation and CCA

ear systems in GenELink, then the total runtime is

O

(
nnz (X,Y) k

√
κ

ρ

(
log

dκ

ζ
log

dκγ

ζρ
+ log

1

ε
log

kγ

ρ

)
+

2dk2

ρ
log

dκ

ζε

)
,

Remarks:

• Note that we depend on the maximum of the condition
numbers of Sxx and Syy since the linear systems that
arise in GenELinK decompose into two separate linear
systems, one in Sxx and the other in Syy .

• We can also exploit sparsity in the data matrices X
and Y since we only need to apply Sxx,Sxy or Syy
only as operators, which can be done by applying X
and Y in appropriate order.

6. Simulations
In this section, we present our experiment results perform-
ing CCA on three benchmark datasets which are summa-
rized in Table 3. We wish to demonstrate two things via
these simulations: 1) the behavior of CCALin verifies our
theoretical result on relatively small-scale dataset, and 2)
scalability of CCALin comparing it with other existing al-
gorithms on a large-scale dataset.

Table 3. Summary of Datasets

DATASET d1 d2 n SPARSITY 5

MNIST 392 392 6× 104 0.19
PENN TREE BANK 104 104 5× 105 1× 10−4

URL REPUTATION 105 105 1× 106 5.8× 10−5

Let us now specify the error metrics we use in our ex-
periments. The first ones are the principal angles be-
tween the estimated subspaces and the true ones. Let Wx

and Wy be the estimated subspaces and Vx, Vy be the
true canonical subspaces. We will use principle angles
θx = θ(Wx,Vx) under Sxx-norm, θy = θ(Wx,Vx) un-

der Syy-norm and θB = θ

((
Vx 0
0 Vy

)
,

(
W̄x

W̄y

))
6, under the

(
Sxx 0
0 Syy

)
norm. Unfortunately, we can-

not compute these error metrics for large-scale datasets
since they require knowledge of the true canonical com-
ponents. Instead we will use Total Correlations Captured
(TCC), which is another metric widely used by practition-
ers, defined to be the sum of canonical correlation between

5Sparsity is given by (nnz (X) + nnz (Y))/(nd1 + nd2).
6See Algorithm 3 for definition of W̄x,W̄y
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Figure 1. Linear convergence of principle angles

two matrices. Also, Proportion of Correlations Captured is
given as

PCC = TCC(XWx,YWy)/TCC(XVx,YVy)

For a fair comparison with other algorithms (which usually
call highly optimized matrix inversion subroutines), we use
number of FLOPs instead of wall clock time to measure the
performance.

6.1. Small-scale Datasets

MNIST dataset(LeCun et al., 1998) consists of 60,000
handwritten digits from 0 to 9. Each digit is a image rep-
resented by 392 × 392 real values in [0,1]. Here CCA is
performed between left half images and right half images.
The data matrix is dense but the dimension is fairly small.

Penn Tree Bank (PTB) dataset comes from full Wall Street
Journal Part of Penn Tree Bank which consists of 1.17 mil-
lion tokens and a vocabulary size of 43k(Marcus et al.,
1993), which has already been used to successfully learn
the word embedding by CCA(Dhillon et al., 2011). Here,
the task is to learn correlated components between two con-
secutive words. We only use the top 10,000 most frequent
words. Each row of data matrix X is an indicator vector
and hence it is very sparse and X>X is diagonal.

Since the input matrices are very ill conditioned, we add
some regularization and replace Sxx by Sxx + λI (and
similarly with Syy). In CCALin, we run GenELinK with
k = 10 and accelerated gradient descent (Algorithm 4 in
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Figure 2. Global convergence of PCC and principle angles

the supplementary material) to solve the linear systems.
The results are presented in Figure 2 and Figure 1.

Figure 2 shows a typical run of CCALin from random ini-
tialization on both MNIST and PTB dataset. We see al-
though θx, θy may be even 90 degree at some point respec-
tively, θB is always monotonically decreasing (as cos θB
monotonically increasing) as predicted by our theory. In
the end, as θB goes to zero, it will push both θx and θy
go to zero, and PCC go to 1. This demonstrates that our
algorithm indeed converges to the true canonical space.

Furthermore, by a more detailed examination of experi-
mental data in Figure 2, we observe in Figure 1 that sin θB
is indeed linearly convergent as we predicted in the theory.
In the meantime, sin θx and sin θy may initially converge
a bit slower than sin θB, but in the end they will be upper
bounded by sin θB times a constant factor, thus will even-
tually converge at a linear rate at least as fast as sin θB.

6.2. Large-scale Dataset

URL Reputation dataset contains 2.4 million URLs and
3.2 million features including both host-based features and
lexical based features. Each feature is either real valued
or binary. For experiments in this section, we follow the
setting of (Ma et al., 2015). We use the first 2 million
samples, and run CCA between a subset of host based fea-
tures and a subset of lexical based features to extract the
top 20 components. Although the data matrix X is rela-
tively sparse, unlike PTB, it has strong correlations among

different coordinates, which makes X>X much denser
(nnz

(
X>X

)
/d2

1 ≈ 10−3).

Classical algorithms are impractical for this dataset on a
typical computer, either running out of memory or requir-
ing prohibitive amount of time. Since we cannot estimate
the principal angles, we will evaluate TCC performance of
CCALin.

We compare our algorithm to S-AppGrad (Ma et al., 2015)
which is an iterative algorithm and PCA-CCA (Ma et al.,
2015), NW-CCA (Witten et al., 2009) and DW-CCA (Lu &
Foster, 2014) which are one-shot estimation procedures.
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Figure 3. Comparison with existing algorithms

In CCALin, we employ GenELinK using stochastic accel-
erated gradient descent for solving linear systems using
minibatches in each of the gradient steps and also lever-
age sparsity of the data to deal with the large data size. The
result is shown in Figure 3. It is clear from the plot that
our algorithm takes fewer computations than the other al-
gorithms to achieve the same accuracy.

7. Conclusion
In summary, we have provided the first provable glob-
ally linearly convergent algorithms for solving canonical
correlation analysis and the generalized eigenvector prob-
lems. We have shown that for recovering the top k compo-
nents our algorithms are much faster than traditional meth-
ods based on fast matrix multiplication and singular value
decomposition when k � n and the condition numbers
and eigenvalue gaps of the matrices involved are moderate.
Moreover, we have provided empirical evidence that our al-
gorithms may be useful in practice. We hope these results
serve as the basis for further improvements in performing
large scale data analysis both in theory and in practice.
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