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Abstract
This paper proposes a new mechanism for sam-
pling training instances for stochastic gradient
descent (SGD) methods by exploiting any side-
information associated with the instances (for
e.g. class-labels) to improve convergence. Previ-
ous methods have either relied on sampling from
a distribution defined over training instances or
from a static distribution that fixed before train-
ing. This results in two problems a) any dis-
tribution that is set apriori is independent of
how the optimization progresses and b) main-
taining a distribution over individual instances
could be infeasible in large-scale scenarios. In
this paper, we exploit the side information as-
sociated with the instances to tackle both prob-
lems. More specifically, we maintain a distribu-
tion over classes (instead of individual instances)
that is adaptively estimated during the course of
optimization to give the maximum reduction in
the variance of the gradient. Intuitively, we sam-
ple more from those regions in space that have
a larger gradient contribution. Our experiments
on highly multiclass datasets show that our pro-
posal converge significantly faster than existing
techniques.

1. Introduction
Stochastic Gradient Descent (SGD) based methods (Rob-
bins & Monro, 1951) are among the choice methods for
optimizing the average of a large number of functions. We
consider the typical setup where we want to solve,

arg min
θ
F (θ) =

1

N

N∑
i=1

f(i; θ) (1)

Typically, each f(i; θ) is convex and denotes the misfit be-
tween the ith training instance and its corresponding tar-
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get output. Throughout this paper, we will assume that
there N training instances and associated target outputs
{xi, yi}Ni=1, where xi ∈ Rd and the target yi could be a
label or real value. Moreover we assume that each train-
ing instance xi is associated with some side information ci
where ci ∈ C ≡ {1, 2, . . .K}. The side information could
represent a class-label or time-stamp or any tag associated
with xi. The side information ci is essentially used as a
way to partition the N instances into K bins. Note that ci
is not the same as yi although it could be. To give a con-
crete example, lets assume each xi is associated with one
of 100 different class-labels (numbered from 1 to 100) and
we are learning a binary logistic regression to distinguish
between class-labels {1− 50} vs {51− 100}. In this case,
the side information ci is the class-label from 1 to 100 and
the target yi ∈ {+1,−1}. The function f(i; θ) is

f(i; θ) = log
(
1 + exp

(
−yiθ>xi

))
Similar situations arise when we take the popular one-
versus-rest approach for performing multiclass classifica-
tion (Rifkin & Klautau, 2004).

To solve such optimization problems, in the standard SGD
setting (Bottou, 2010), the tth iteration involves picking an
instance it uniformly sampled over all instances and per-
forming the following update,

dt = ∇f(it; θt−1) (2)

θt = θt−1 − γtdt (3)

where γt is the step size at the t’th iteration. In the presence
of any additional penalty term r(θ) like L1 regularizer, the
following proximal update (Beck & Teboulle, 2009) is pre-
ferred instead of (3),

θt = Proxγtr(θ
t−1 − γtdt) (4)

Despite working with only one instance an iteration, this
procedure still converges to the optima as long as γt is ap-
propriately set (Bottou, 2010; Robbins & Monro, 1951).
This is because, the descent direction dt at each iteration is
an unbiased estimate of the true gradient,

Eit
[
dt|θt−1

]
=

1

N

N∑
i=1

∇f(i; θt−1) = ∇F (θ)
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However, the downside of SGD methods is that the ora-
cle rate of convergence is known to be O( 1

T ) for strongly-
convex and O( 1√

T
) for convex objectives respectively;

which are slower than the corresponding rates for standard
gradient descent (Shamir & Zhang, 2012). One of the main
reasons for this suboptimality is the variance introduced by
the descent direction - instead of averaging over all the N
instances we descend in a direction determined by a single
training instance. Nevertheless, these are the best possi-
ble rates of convergence when f(i; θ) can be any arbitrary
convex function.

However, in practice, f(i; θ) are not arbitrary and often
have some latent structure. For e.g., in the same binary
classification task {1 − 50} vs {51 − 100}, it might be
the case that the decision boundary is largely determined
by classes 50 and 51 and that all the other classes play lit-
tle or no role. This means that faster convergence can be
achieved by concentrating more near the decision bound-
ary, i.e. sampling more instances from classes 50, 51 than
from other classes. These observations lead to two impor-
tant questions,

1. Can we automatically infer such latent structure ?

2. Since variance is the limiting factor, can we exploit
such side information ci to improve convergence ?

In this paper, we propose to use the side information ci to
reduce the variance of the descent direction. More specif-
ically, we learn an optimal sampling distribution over the
bins i.e. class-labels (instead of individual training in-
stances) that gives the maximum reduction in the variance
of the descent direction. We show that reducing the vari-
ance automatically uncovers such latent structures in the
data. In fact the optimal sampling distribution corresponds
to sampling more instances from those bins which have a
larger gradient contribution in the objective. Intuitively, in-
stances with larger gradients correspond to the more con-
fusable instances w.r.t the current decision boundary. Un-
like other work (Zhao & Zhang, 2014b;a; Needell et al.,
2013; Zhang & Xiao, 2014) where the sampling distribu-
tion is fixed apriori, we relearn the distribution once in
several iterations. Overall, this has two important conse-
quences (a) maintaining a distribution over bins instead of
instances reduces the memory complexity from O(N) to
O(K) (using the efficient walker-alias sampling method
(Walker, 1977)) and (b) the distribution is adaptive to how
the optimization progresses.

Although our proposal does not improve the theoretical
convergence rate for arbitrary convex functions f , it ex-
ploits the structure in the problem and in practice exhibits
faster convergence. Our preliminary experiments show
promising results and are of practical importance,

1. Additional side information about the instance for e.g.

class-labels are almost always available - but this has
never been exploited in improving the convergence.

2. To date, most of the proposed schemes to reduce vari-
ance do not directly adapt to how the optimization pro-
gresses for e.g. do not actively learn which subset of
training instances to sample.

2. Related Work
Despite the suboptimal convergence of SGD, they have
been extensively used to train both convex (Bottou, 2010)
and non-convex objectives (Bottou, 1991). Recently, there
has been many work that improve the convergence of SGD
in practice or theory by resorting to one or a combination
of the following techniques,

1. Averaging the parameters: In these methods, the op-
timal solution is represented as an average of the iter-
ates θ1, θ2, . . . (Polyak & Juditsky, 1992). Averaging
introduces a notion of stability of the solution. A par-
tial averaging scheme was also proposed in (Rakhlin
et al., 2011) that achieves the oracleO( 1

T ) for strongly
convex objectives.

2. Tweaking the learning rate: The learning rate is
a one parameter approximation to the inverse of the
Hessian (Bousquet & Bottou, 2008). Setting the learn-
ing rate to decay as γt = γ0(1 + λγ0t)−1 has been
empirically found to work well (Xu, 2011). Using
dimension-specific learning rates based on first order
gradient information was proposed in (Duchi et al.,
2011) and further improved in (Zeiler, 2012). Other
work on setting the learning rate based on the local
curvature and gradients include (Amari et al., 2000;
Schaul et al., 2012; Roux & Fitzgibbon, 2010).

3. Averaging the gradients: One way to reduce the vari-
ance of the descent direction is to average gradients
from multiple training instances. The simplest is to
average the gradients over all instances which corre-
sponds to the standard gradient descent. An alter-
native is to average over a mini batch of instances,
which can be implemented efficiently and also im-
proves the convergence for certain mini batch sizes(Li
et al., 2014; Cotter et al., 2011).

4. Momentum methods Recently, there have been a
slew of methods (Schmidt et al., 2013), (Konečnỳ
& Richtárik, 2013; Defazio et al., 2014; Johnson &
Zhang, 2013; Konečnỳ et al., 2014) where the descent
direction uses some momentum from past gradients.
For example, in one of the variants (Johnson & Zhang,
2013), the descent direction at the t’th iteration is de-
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fined as,

dt = ∇f(it; θt−1)−∇f(it; θ̃) +
1

N

∑
i

∇f(i; θ̃)

(5)

where it represents the instance chosen at the t’th step,
and θ̃ represents some historical snapshot of θ updated
periodically. In this variant dt is an unbiased estimate
of the gradient but with a lower variance than in (2).
On finite datasets, non asymptotic analysis yields ex-
ponential and O( 1

T ) convergence of strongly convex
and convex objectives.

5. Selective sampling: These methods are most closely
related to our proposed techniques. The key idea be-
hind these methods is to replace the uniform distri-
bution used for sampling it with a weighted distribu-
tion instead. (Zhao & Zhang, 2014b) and (Needell
et al., 2013) propose picking a training instance with
a probability proportional to the lipschitz constant of
f(i; θ) or∇f(i; θ) respectively. This not only reduces
the variance of the descent direction (Zhao & Zhang,
2014b) but improves the rate of convergence as well
(Needell et al., 2013). In (Zhao & Zhang, 2014a),
a variant of (Zhao & Zhang, 2014b) was proposed
where the dataset was partitioned into clusters and a
minibatch of instances was sampled from each clus-
ter. However, the fundamental limitation of all these
methods are that - (a) all the proposed distributions
are statically set before optimization (b) maintaining
a distribution (i.e. storing as well as updating) over
training instances is infeasible in large-scale scenarios
and (c) the additional side information ci is not ex-
ploited.
During the publication of this work, a very similar
idea was pursued in (Alain et al., 2015), where the
sampling weights are proportional to the L2 norm of
the gradient (similar to our work) but the distribution
is maintained at an instance level (thereby requiring
multiple machines to update/search and sample from
an approximation to this distribution). In our work
the distribution is maintained at a class-level making
a) updating the distribution more tractable (i.e. O(K)
instead of O(N)) and b) better estimates for the gra-
dient norm due to pooling of information. Moreover,
we also show an analysis of why this improves con-
vergence in the convex case (section 3.1).

In this paper we propose a non-uniform adaptive sampling
strategy as an alternative to (Zhao & Zhang, 2014b) or
(Needell et al., 2013). Our work is not an alternative to
other work based on averaging, using momentum or tweak-
ing the learning rates; but should be considered compli-
mentary and if the application allows used in conjunction
(see Experiments).

3. Adaptive Sampling
Let Ck denote that set of all training instances which have
the side-information set to k, that is, Ck = {i : ci =
k}. First, we rewrite (1) as an equivalent minimization of
weighted training instances,

arg min
θ

∑
k∈C

∑
i∈Ck

P (i)f(i; θ), P (i) = pk.
1

|Ck|
, pk =

|Ck|
N

(6)

Here, P (i) is the probability of picking the ith training in-
stance. The above reformulation allows to reinterpret the
uniform sampling as a two stage process - first sample a
bin with probability pk proportional to the number of in-
stances in the bin, and then uniformly sample an instance
from the selected bin. Similar to (2), the descent direction
is given by

dt =
1

N

1

P (it)
∇f(it; θt−1) (7)

It is easy to verify that the expected value of the descent di-
rection E[dt] matches true gradient of the objective (1) for
any distribution pk. Instead of setting pk to a static value
of |Ck|N , we propose to set pk to enable faster convergence.
More specifically, we set p = {p1, p2, . . . pk} so as to re-
duce the total variance of the descent direction,

min
p1,p2,...pK

V(dt) = E[dt
>
dt]− E[dt]>E[dt]

The optimal distribution p at the tth iteration is given by
(see Appendix for the details),

pk ∝
|Ck|
N

√
1

|Ck|
∑
i∈Ck

||∇f(i; θt−1)||2 (8)

The probability of picking a bin is proportional to the
square-root of the sum of squared gradient norms of all the
instances in that bin. Intuitively, we set pk such that we
choose bins which have a larger gradient contribution more
and ignore bins which have lower gradients. For exam-
ple, in a one-versus-rest setting where each bin is a class,
this roughly corresponds to drawing training instances from
those classes which tend to get confused with the training
class-label and ignoring those instances which have been
classified correctly. The same result can be seamlessly ex-
tended to the fully stochastic case where we minimize an
expectation arg minθ Ei[f(i; θ)],

pk ∝ nk
√
sk

where nk =
Ck
N
, sk = Ei∼Ck

[
‖∇f(i; θt−1)‖2

]
(9)
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Algorithm 1 Adaptive Sampling

1: Input: T , δ, J , {xi, yi}Ni=1, where xi ∈ Rd, yi ∈
{+1,−1}

2: Let ssg[1 . . .K]← 0, count[1 . . .K]← 0.
3: for t = 1, 2, . . . T do
4: Sample bin kt from p = {p1, p2, . . . pK}.
5: Sample instance it from bin kt uniformly at ran-

dom.
6: Compute descent direction dt using (7).
7: Compute learning rate γt.
8: Update θt using (3) or (4) accordingly.
9: ssg[kt]← ssg[kt] + ‖∇f(it; θt)‖2

10: count[kt]← count[kt] + 1
11: if t mod J = 0 then
12: Set pk ∝ CkN

√
ssg[k]
count[k] , i.e. (8) ∀k

13: Smooth p with the original distribution, i.e,
pk = δpk + (1− δ)CkN ∀k

14: ssg[1 . . .K]← 0, count[1 . . .K]← 0 ∀k
15: end if
16: end for

3.1. Analysis

As such, all the typical convergence guarantees of vanilla
SGD (Robbins & Monro, 1951) follow even when using
any arbitrary sampling distribution P (i), as long as the gra-
dient estimates are unbiased and P (i) is a strictly positive
distribution (Zhao & Zhang, 2014b).

We additionally provide some basic analysis to show where
and when such adaptive sampling helps. Following (Rob-
bins & Monro, 1951), for any arbitrary convex function

f(i; θ), step sizes γt such that
T∑
i=1

γt →∞ and
T∑
i=1

(γt)2 <

∞, andD = ||θ1−θ∗||, the following holds for the stepize-
averaged iterate θ̄t

E[F (θ̄t)− F (θ∗)] ≤

(
4D2 +

T∑
i=1

(γt)2vt

)(
2

T∑
i=1

γt

)−1

Here, vt = E[d>t dt], is the expectation of the squared norm
of the descent direction at the tth step. By using adaptive
sampling, we reduce the magnitude of vt even further. To
see this, we compare vt under a uniform sampling distribu-
tion u vs vt under the optimal distribution p,

vtu =
∑
k∈C

nksk, vtp =

(∑
k∈C

nk
√
sk

)2

(10)

Note that vtp (i.e. the optimal value of (13))is an improve-
ment over vtu, i.e. vtp ≤ vtu ∀t, which can be seen using
the Engel form of Cauchy-Schwarz inequality. The conver-

gence is particularly improved if,

vtp
vtu

=

∑
k∈C

n2ksk +
∑

i,j∈C,j 6=i
njnk

√
sj
√
sj∑

k∈C
nk
√
sk
√
sk

(11)

is lower. Intuitively, adaptive sampling is more beneficial
when the gradients are less correlated between different
classes (numerator) and more correlated within the same
class (denominator). In other words, convergence depends
on how well separated the classes are.

3.2. Computational Cost

In practice, it is impossible to reset or estimate the opti-
mal sampling distribution after each iteration. Estimating
pk requires making a full pass through all the data which is
infeasible. Therefore we propose the following two com-
putationally feasible ways of approximating pk,

1. Stop every J iterations (say J ∼ N/4 iterations), sam-
ple a few training instances from each bin (say 10) and
estimate Ei∼Ck

[
‖∇f(i; θt−1)‖2

]
. The computational

cost dramatically reduces to processing only an addi-
tional O(10) instances per bin every J iterations. The
downside is that there are now two more tweaking pa-
rameters - J and the number of instances to pick from
each bin. However, in some cases, processing even
O(10) instances per bin could be fairly expensive if
the instances have a large feature space.

2. Another alternative is to maintain a running sum of
the squared gradient norms across the K bins during
the optimization. The gradient needs to be computed
anyway, for updating θ, and can simply be reused for
updating the sums. Now, every J iterations (J ∼
N/4), we estimate Ei∼Ck

[
‖∇f(i; θt−1)‖2

]
from the

sums and reset the distribution p according to (9)
(see algorithm (1)). The computational cost is only
O(K logK) every J iterations. The potential down-
side of this approach is that the gradient information
could be stale and the estimated p might not be opti-
mal w.r.t the current θt.

In our experiments, approximation (b) worked better as it
had no noticeable increase in training time and also avoided
a tuning parameter. However, one issue with approxima-
tion (b) is that at some point in the optimization it is pos-
sible that pk could be set to zero causing the bin k to be
never visited again. Clearly this is suboptimal; to avoid
such issues as well as for other reasons (see Appendix) we
smooth p with the original distribution to ensure that all
pk are strictly positive at all times. If δ is the smoothing
parameter, the smoothed distribution is given by

psmoothk = δpk + (1− δ)Ck
N

(12)



Adaptive Sampling for SGD by Exploiting Side Information

0 5 10 15 20
10−2.3

10−2.2

10−2.1

10−2

Epochs

Tr
ai

ni
ng

O
bj

ec
tiv

e
AS
US
LIP

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
·10−3

Epochs

V
ar

ia
nc

e
of

O
bj

ec
tiv

e

AS
US
LIP

Figure 1. Binary logistic regression with L1 penalty on ALOI dataset - training objective averaged over 10 runs (left) and its variance
(right).
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Figure 2. Binary logistic regression with L1 penalty on ALOI dataset with a minibatch size of 50- training objective averaged over 10
runs (left) and its variance (right).
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The complete pseudocode is given in Algorithm 1.

4. Experiments
We used three datasets for experimentation - ALOI, CI-
FAR100 and IPC,

1. ALOI 1 : An image database containing 1000 objects
in various illuminations and poses. The features are
128 dimensional color histograms. There are a total
of 97,020 training instances and 10,080 test instances.

2. CIFAR100: A collection of 60,000 32x32 tiny images
of objects labeled across 100 different classes. 50,000
of them were used for training and the rest for test-
ing. We used the patch level features generated using
vector quantization (Coates & Ng, 2012) leading to a
6400 dimensional feature space.

3. IPC 2 : A set of 75,250 patents labeled into one of 451
classes - 46,324 of were used for training and the rest
for testing. We used the top 500 principal components
as features.

For all the experiments, we define ci to be the class-label
associated with the instance. We generically set J = N

4
and δ = 0.5. The choice for J was made so as to ensure
no noticeable increase in the computational cost and δ was
set to a midpoint value between the two distributions. Un-
less otherwise noted, all learning rates were carefully tuned
(using the scheme in (Bottou, 2010)) to achieve the lowest
objective at the cutoff point and the regularization was set
using a 20% validation set.

In the first experiment, we show that using adaptive sam-
pling converges faster than non-adaptive sampling as well
as reduces the variance of the gradient (and thereby the ob-
jective). We use the ALOI dataset and train a binary logistic
regressor (with L1 penalty to introduce non-smoothness) to
distinguish between classes {1, 2} vs {3, 4 . . . 1000}. We
compare our proposed adaptive sampling (AS) outlined in
algorithm 1 against two other baselines,

• uniformly sampling a training instance (US).

• sampling an instance with a probability proportional
to the lipschitz constant of its gradient (LIP) (Needell
et al., 2013). This worked better than using the lips-
chitz constant of the function (Zhao & Zhang, 2014b).
Note that both proposals reduce to uniform sampling
when the instances are unit normed.

We also tried simpler baselines like setting pk to a uniform
distribution, or even binarizing pk (i.e. binning examples
into positive/negative class). We do not report the results

1 http://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/multiclass.html
2 http://gcdart.blogspot.com/2012/08/datasets 929.html

as they were no better than uniformly sampling instances
(and also to prevent clutter in figures).

Figure 1 plots the results over 10 different runs. AS clearly
converges faster than both the baselines (Figure 1, left).
Figure 1 top right, plots the variance of the objective (y
axis) at iteration t for various t (x axis). The variance is sig-
nificantly lesser using AS than US or LIP. Note that there
was no difference in training time between the three meth-
ods - the additional O(K logK) computation every J iter-
ations for AS was insignificant compared to the total com-
putation.

In the second experiment (Figure 2), we study the effect of
using minibatches. Minibatching is known to effectively
reduce the variance of the gradient compared to standard
SGD(Li et al., 2014), is there any further benefit in using
AS? We repeat the same analysis on the ALOI dataset using
a minibatch of 50 instances at each iteration (roughly ∼
.5
√
N ) instead of a single instance. The results provide

similar conclusions and show that AS adds an additional
layer of variance reduction on top of minibatching. We got
similar conclusion when using other minibatch sizes.

In the third experiment, we do a fuller-scale analysis on the
ALOI dataset and show that AS gives measurable benefit
in the convergence of both the training objective as well
as the accuracy on the test set. We use the popular one-
versus-rest approach for multiclass classification and train
1000 binary logistic regressors with L1 penalty and Ada-
Grad (Duchi et al., 2011) learning rates (similar conclu-
sions was reached even if AdaGrad was not used). Figure 3
plots the convergence in the training objective and the con-
vergence in accuracy on the test set. For a thorough com-
parison, we also present the results on using ProxSVRG
method (Xiao & Zhang, 2014) instead of standard SGD
(Figure 4). In both cases, AS performs significantly bet-
ter. For instance, in Figure 3 left, AS achieves the best
training objective reached by US in just the 14th iteration
yielding a 4X speedup. Note that the unusual jumps using
ProxSVRG is caused when the historical snapshot θ̃ is up-
dated every 2N iterations (see (Xiao & Zhang, 2014), pg
13) - this update incurs an additional cost of making a full
pass over the data.

In the fourth experiment, we repeat the full-scale analyis on
two other datasets and confirm that our findings are gener-
alizable. We trained 100 binary logistic regressors on CI-
FAR100 and 451 binary classifiers using squared hingeloss
(squared hingeloss worked better than the logistic) on the
IPC dataset. We additionally included a L1 penalty term
and used AdaGrad learning rates. On both of the datasets
sampling using AS converges significantly faster than US
(Figure 5). We omit the results for LIP as it is was much
worse and could not be illustrated well in the same graph.
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4.1. Failure/NOP cases

In general, there is no one-fit all solution and not all tech-
niques work on all kinds of data/scenarios. The intuition
behind AS is to concentrate more on those regions/bins of
training instances which have larger gradient contribution.
However this intuition breaks down when the assignment
of training instances to bins is not informative. For exam-
ple, in the covertype dataset 3 and the 20newsgroup dataset
4, the ratio of bins to instances is too small causing the bins
to be partitioned very coarsely. AS did not give any mea-
surable benefit in both the datasets, there was some mild
improvement in news20 and mildly worse convergence in
covertype dataset. Another extreme case happens when
our hypothesis that f(i; θ) has some latent structure itself
breaks down. For example, if we choose ci uniformly at
random from {1, 2, . . .K}, it is unlikely that AS would
give any benefit as it can learn only spurious correlations
with uniform distribution.

5. Conclusion
In this work, we proposed an adaptive sampling scheme for
drawing training instances for SGD based methods. Our
proposal estimates an optimal distribution over bins of in-
stances to achieve the maximum reduction in the variance
of the gradient. Our experiments establish that AS exhibits
significantly faster convergence than existing schemes on
multiple datasets.
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Appendix
5.1. Proof of equation (8)

We rewrite equation (8) as,

min
p1,p2,...pK

E[dt
>
dt]− E[dt]>E[dt]

where E[dt
>
dt] =

N∑
i=1

P (i)
1

N2

1

P (i)2
‖∇f(i; θt−1)‖2

E[dt] =

N∑
i=1

P (i)

[
1

N

1

P (i)
∇f(i; θt−1)

]

=
1

N

N∑
i=1

∇f(i; θt−1)

Note that E[dt] is independent of the p1, p2, . . . pk and can
be dropped. Using (6), the optimization problem can be

3 https://archive.ics.uci.edu/ml/datasets/Covertype
4 http://qwone.com/ jason/20Newsgroups/

rewritten as,

min
p1,p2,...pK

∑
k∈C

αk
pk

(13)

s.t∑
k∈C

pk = 1 and pk > 0 ∀ k = 1, 2, . . .K

where αk =
|Ck|
N2

∑
i∈Ck

‖∇f(i; θt−1)‖2

Since all αk > 0, we can safely neglect the inequality
constraint (i.e, the optimal solution of the un-inequality-
constrained problem satisfies the inequality constraints
anyway). Introducing the lagrangian variable λ for the
equal constraint,

L(p, λ) =
αk
pk

+ λ

(∑
k∈C

pk − 1

)

and setting ∂L(p,λ)
∂pk

= 0, we get pk =
√
αk√
λ

. Applying the
equality constraint, the optimal p is

p∗k =
√
αk

(∑
k∈C

√
αk

)−1

It is obvious that as along αk > 0, the resulting p∗k satisfies
the inequality constraints. To ensure that all αk > 0, we
add a small ε to all the αks.
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Konečnỳ, Jakub, Qu, Zheng, and Richtárik, Peter.
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