
Stochastic Block BFGS: Squeezing More Curvature out of Data

Robert M. Gower GOWERROBERT@GMAIL.COM
Donald Goldfarb GOLDFARB@COLUMBIA.EDU
Peter Richtárik PETER.RICHTARIK@ED.AC.UK

Abstract

We propose a novel limited-memory stochastic
block BFGS update for incorporating enriched
curvature information in stochastic approxima-
tion methods. In our method, the estimate of
the inverse Hessian matrix that is maintained by
it, is updated at each iteration using a sketch
of the Hessian, i.e., a randomly generated com-
pressed form of the Hessian. We propose several
sketching strategies, present a new quasi-Newton
method that uses stochastic block BFGS updates
combined with the variance reduction approach
SVRG to compute batch stochastic gradients,
and prove linear convergence of the resulting
method. Numerical tests on large-scale logis-
tic regression problems reveal that our method is
more robust and substantially outperforms cur-
rent state-of-the-art methods.

1. Introduction
We design a new stochastic variable-metric (quasi-Newton)
method—the stochastic block BFGS method—for solving
the Empirical Risk Minimization (ERM) problem:

minx∈Rd f(x)
def
= 1

n

∑n
i=1 fi(x). (1)

We assume the loss functions fi : Rd → R to be convex
and twice differentiable and focus on the setting where the
number of data points (examples) (n) is very large.

To solve (1), we employ iterative methods of the form

xt+1 = xt − ηHtgt, (2)

where η > 0 is a stepsize, gt ∈ Rd is an estimate of the gra-
dient∇f(xt) andHt ∈ Rd×d is a positive definite estimate
of the inverse Hessian matrix, that isHt ≈ ∇2f(xt)

−1. We

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

refer to Ht as the metric matrix 1.

The most successful classical optimization methods fit the
format (2), such as gradient descent (Ht = I), Newton’s
method

(
Ht = ∇2f(xt)

−1
)
, and the quasi-Newton meth-

ods
(
Ht ≈ ∇2f(xt)

−1
)
; all with gt = ∇f(xt). The diffi-

culty in our setting is that the large number of data points
makes the computational costs of a single iteration of these
classical methods prohibitively expensive.

To amortize these costs, the current state-of-the-art meth-
ods use subsampling, where gt and Ht are calculated using
only derivatives of the subsampled function

fS(x)
def
= 1
|S|
∑
i∈S fi(x),

where S ⊆ [n]
def
= {1, 2, . . . , n} is a subset selected uni-

formly at random. Using the subsampled gradient ∇fS(x)
as a proxy for the gradient is the basis for the stochastic gra-
dient descent (SGD) method, but also for many successful
variance reduced methods (Schmidt et al., 2013; Shalev-
Shwartz & Zhang, 2013; Johnson & Zhang, 2013; Konečný
& Richtárik, 2014; Defazio et al., 2014; Shalev-Shwartz &
Zhang, 2016; Konečný et al., 2016) that make use of the
subsampled gradient in calculating gt.

Recently, there has been an effort to calculateHt using sub-
sampled Hessian matrices ∇2fT (xt), where T ⊆ [n] is
sampled uniformly at random and independently of S (Er-
dogdu & Montanari, 2015; Roosta-Khorasani & Mahoney,
2016).

One fairly successful solution to these issues (Byrd
et al., 2015; Moritz et al., 2016) is to use a single
Hessian-vector product ∇2fT (xt)v, where v ∈ Rd is
a suitably selected vector, to update Ht by the limited-
memory (L-BFGS) (Nocedal, 1980) version of the classi-
cal BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1971) method. Calculating this Hessian-vector
product can be done inexpensively using the directional

1Methods of the form (2) can be seen as estimates of a gradi-
ent descent method under the metric defined by Ht. Indeed, let
〈x, y〉Ht

def
=

〈
H−1

t x, y
〉

for any x, y ∈ Rd denote an inner prod-
uct, then the gradient of f(xt) in this metric is Ht∇f(xt).

Stochastic Block BFGS

derivative

∇2fT (xt)v =
d

dα
∇fT (xt + αv)

∣∣∣∣
α=0

. (3)

In particular, when using automatic differentiation tech-
niques (Christianson, 1992; Griewank & Walther, 2008) or
backpropagation on a neural network (Pearlmutter, 1994),
evaluating the above costs at most five times as much as the
cost of evaluating the subsampled gradient∇fT (xt).

Using only a single Hessian-vector product to update Ht

yields only a very limited amount of curvature information,
and thus may result in an ineffective metric matrix. The
block BFGS method addresses this issue.

The starting point for the development of the block BFGS
method is the simple observation that, ideally, we would
like the metric matrix Ht to satisfy the inverse equation

Ht∇2fT (xt) = I,

since then Ht would be the inverse of an unbiased estimate
of the Hessian. But solving the inverse equation is compu-
tationally expensive. So instead, we propose thatHt satisfy
a sketched version of this equation, namely

Ht∇2fT (xt)Dt = Dt, (4)

where Dt ∈ Rd×q is a randomly generated matrix which
has relatively few columns (q � d). The sketched sub-
sampled Hessian∇2fT (xt)Dt can be calculated efficiently
through q directional derivatives of the form (3).

Note that (4) has possibly an infinite number of solu-
tions, including the inverse of ∇2fT (xt). To determine Ht

uniquely, we maintain a previous estimate Ht−1 ∈ Rd×d
and projectHt−1 onto the space of symmetric matrices that
satisfy (4). The resulting update, applied to Ht−1 to arrive
at Ht, is the block BFGS update.

In the remainder of the paper we detail the block BFGS
update, present a new limited-memory block BFGS up-
date and introduce several new sketching strategies. We
conclude by presenting the results of numerical tests of a
method that combines the limited-memory block BFGS up-
date with the SVRG method of Johnson & Zhang (2013),
and demonstrate that our new method yields dramatically
better results when compared to SVRG, or the SVRG
method coupled with the classical L-BFGS update as pro-
posed by Moritz et al. (2016).

1.1. Contributions

This paper makes five main contributions.

(a) New metric learning framework. We develop a
stochastic block BFGS update2 for approximately tracking
the inverse of the Hessian of f . This technique is novel in
two ways: the update is more flexible than the traditional
BFGS update as it works by employing the actions of a sub-
sampled Hessian on a set of random vectors rather than just
on a single deterministic vector, as is the case with standard
BFGS. That is, we use block sketches of the subsampled
Hessian.

(b) Stochastic block BFGS method. Our block BFGS
update is capable of incorporating enriched second-order
information into gradient based stochastic approximation
methods for solving problem (1). In this paper we illus-
trate the power of this strategy in conjunction with the strat-
egy employed in the SVRG method of (Johnson & Zhang,
2013) for computing variance-reduced stochastic gradients.
We prove that the resulting combined method is linearly
convergent and empirically demonstrate its ability to sub-
stantially outperform current state-of-the-art methods.

(c) Limited-memory method. To make the stochastic
block BFGS method applicable to large-scale problems,
we devise a new limited-memory variant of it. As is the
case for L-BFGS (Nocedal, 1980), our limited-memory ap-
proach allows for a user-defined amount of memory to be
set aside. But unlike L-BFGS, our limited-memory ap-
proach allows one to use the available memory to store
more recent curvature information, encoded in sketches of
previous Hessian matrices. This development of a new lim-
ited block BFGS method should also be of general interest
to the optimization community.

(d) Factored form. We develop a limited-memory factored
form of the block BFGS update. No such method existed
before. Factored forms are important as they can be used
to enforce positive definiteness of the metric even in the
presence numerical imprecision. Furthermore, we use the
factored form in calculating new sketching matrices.

(e) Adaptive sketching. Not only can sketching be used
to tackle the large dimensions of the Hessian, but it can
also simultaneously precondition the inverse equation (4).
We present a self-conditioning (i.e., adaptive) sketching
that also makes use of the efficient factored form of the
block BFGS method developed earlier. We also present a
sketch based on using previous search directions. Adap-
tive sketching can in practice lead to significant speedup in
comparison with sketching from a fixed distribution.

2In this paper we use the word “update” to denote metric learn-
ing, i.e., an algorithm for updating one positive definite matrix
into another.

Stochastic Block BFGS

1.2. Background and Related Work

The first stochastic variable-metric method developed
that makes use of subsampling was the online L-BFGS
method (Schraudolph et al., 2007). In this work the au-
thors adapt the L-BFGS method to make use of subsampled
gradients, among other empirically verified improvements.
The regularized BFGS method (Mokhtari & Ribeiro, 2014;
2015) also makes use of stochastic gradients, and further
modifies the BFGS update by adding a regularizer to the
metric matrix.

The first method to use subsampled Hessian-vector prod-
ucts in the BFGS update, as opposed to using differences
of stochastic gradients, was the SQN method (Byrd et al.,
2015). Recently, (Moritz et al., 2016) propose combin-
ing SQN with SVRG. The resulting method performs very
well in numerical tests. In our work we combine a novel
stochastic block BFGS update with SVRG, and prove lin-
ear convergence. The resulting method is more versatile
and superior in practice to SQN as it can capture more use-
ful curvature information.

The update formula that we refer to as the block BFGS up-
date has a rather interesting background. The formula first
appeared in 1983 in unpublished work (Schnabel, 1983) on
designing quasi-Newton methods that make use of multiple
secant equations. Schnabel’s method requires several mod-
ifications that stem from the lack of symmetry and positive
definiteness of the resulting update. Later, and completely
independently, the block BFGS update appears in the do-
main decomposition literature (Mandel & Brezina, 1993)
as a preconditioner, where it is referred to as the balancing
preconditioner. In that work, the motivation and deduction
are very different from those used in the quasi-Newton lit-
erature; for instance, no variational interpretation is given
for the method. The balancing preconditioner was subse-
quently taken out of the PDE context and tested as a gen-
eral purpose preconditioner for solving a single linear sys-
tem and systems with changing right hand side (Gratton
et al., 2011). Furthermore, Gratton et al. (2011) present a
factored form of the update in a different context, which
we adapt for limited-memory implementation. Finally, and
again independently, a family of block quasi-Newton meth-
ods that includes the block BFGS is presented by Gower
& Gondzio (2014) through a variational formulation and
by Hennig (2015) using Bayesian inference.

2. Stochastic Block BFGS Update
The stochastic block BFGS update, applied to Ht−1 to ob-
tain Ht, is defined by the weighted projection

Ht = arg min
H∈Rn×n

‖H −Ht−1‖2t

subject to H∇2fT (xt)Dt = Dt, H = HT , (5)

where ‖H‖2t
def
= Tr

(
H∇2fT (xt)H

T∇2fT (xt)
)
, and

Tr (·) denotes the trace. The method is stochastic since
Dt is a random matrix. The constraint in (5) serves as a
fidelity term, enforcing that Ht satisfies a sketch of the in-
verse equation (4). The objective in (5) acts as a regular-
izer, and ensures that the difference between Ht and Ht−1

is a low rank update. The choice of the objective is special
yet in another sense: recent results show that if the iteration
determined by (5) is applied to a fixed invertible matrix A
in place of the subsampled Hessian, then the matrices Ht

would converge to the inverse A−1 at a linear rate. This is
yet one more reason to expect that in our setting the matri-
ces Ht approximately track the inverse Hessian.

The solution to (5) is

Ht = Dt∆tD
T
t

+
(
I −Dt∆tY

T
t

)
Ht−1 (I − Yt∆tDt) , (6)

where ∆t
def
= (DT

t Yt)
−1 and Yt

def
= ∇2fT (xt)Dt. This solu-

tion was given in (Gower & Gondzio, 2014; Hennig, 2015)
and in (Schnabel, 1983) for multiple secant equations.

Note that the stochastic block BFGS (6) yields the same
matrixHt ifDt is replaced by any other matrix D̃t ∈ Rd×q
such that span(D̃t) = span(Dt). It should also be
pointed out that the matrix Ht produced by (6) is not what
would be generated by a sequence of q rank-two BFGS up-
dates based on the q columns of Dt. That is, unless the
columns of Dt are ∇2fT (xt)-conjugate, as would be the
case if they were generated by the BFGS method applied
to a the minimization of a strictly convex quadratic func-
tion xT∇2fT (xt)x using exact line-search.

We take this opportunity to point out that stochastic block
BFGS can generate the metric used in the Stochastic Dual
Newton Ascent (SDNA) method (Qu et al., 2016) as a spe-
cial case. Indeed, when Ht−1 = 0, then Ht is given by

Ht = Dt(D
T
t ∇2fT (xt)Dt)

−1DT
t . (7)

When the sketching matrix Dt is a random column sub-
matrix of the identity, then (7) is the positive semidefi-
nite matrix used in calculating the iterates of the SDNA
method (Qu et al., 2016). However, SDNA operates in the
dual of (1).

3. Stochastic Block BFGS Method
The goal of this paper is to design a method that uses a
low-variance estimate of the gradient, but also gradually in-
corporates enriched curvature information. To this end, we
propose to combine the stochastic variance reduced gradi-
ent (SVRG) approach (Johnson & Zhang, 2013) with our
novel stochastic block BFGS update, described in the pre-
vious section. The resulting method is Algorithm 1.

Stochastic Block BFGS

Algorithm 1 has an outer loop in k and an inner loop in
t. In the outer loop, the outer iterate wk ∈ Rd and the
full gradient∇f(wk) are computed. In the inner loop, both
the estimate of the gradient gt and our metric Ht are up-
dated using the SVRG update and the block BFGS update,
respectively.

To form the sketching matrix Dt we employ one of the fol-
lowing three strategies:

a) Gaussian sketch. Dt has standard Gaussian entries
sampled i.i.d at each iteration. b) Previous search direc-
tions delayed. Let us write dt = −Htgt for the search
direction used in step t of the method. We store L search
directions Dt = [dt+1−L, . . . , dt] and then update Ht only
once every L inner iterations.

c) Self-conditioning. We sample Ct ⊆ [d] uniformly
at random and set Dt = Lt−1I:Ct = [Lt−1]:Ct , where
Lt−1L

T
t−1 = Ht−1 and I:Ct

denotes the concatenation
of the columns of the identity matrix indexed by a set
Ct ⊂ [d]. Thus the sketching matrix is formed with a ran-
dom subset of columns of a factored form of Ht. The idea
behind this strategy is that the ideal sketching matrix should
be Dt = (∇2fT (xt))

−1/2 so that the sketch compresses
and acts as a preconditioner on the inverse equation (4). It
was also shown (Gower & Richtárik, 2015) that this choice
of sketching matrix can accelerate the convergence of Ht

to the inverse of a fixed matrix. In Section 3.2 we detail
how to efficiently maintain and update the factored form.

3.1. Block Limited-Memory BFGS

When d is large, we cannot store the d × d matrix Ht.
Instead, we store M block triples, consisting of previous
block curvature pairs and the inverse of their products

(Dt+1−M , Yt+1−M ,∆t+1−M) , . . . , (Dt, Yt,∆t) . (8)

With these triples we can form the Ht operator implicitly
by using a block limited-memory two loop recurrence. To
describe this two loop recurrence, let Vt

def
= I −Dt∆tY

T
t .

The block BFGS update (6) with memory parameter M
can be expanded as a function of the M curvature triples
(8) and of Ht−M as

Ht = VtHt−1V
T
t +Dt∆tD

T
t

= Vt · · ·Vt+1−MHt−MV
T
t+1−M · · ·V Tt

+

t+1−M∑
i=t

Vt · · ·Vi+1Di∆iD
T
i V

T
i+1 · · ·V Tt ,

Since we do not store Ht for any t, we do not have access
to Ht−M . In our experiments we simply set Ht−M = I to
the identity matrix (other, more sophisticated, choices are
possible, but we do not explore them further here). Using
the above expansion, the action of the operator Ht on a

Algorithm 1 Stochastic Block BFGS Method
inputs: w0 ∈ Rd, stepsize η > 0, s = subsample size,
q = sample action size, and variance reduction incre-
ment m.
initiate: H−1 = I
for k = 0, 1, 2, . . . do

Compute the full gradient µ = ∇f(wk)
Set x0 = wk
for t = 0, . . . ,m− 1 do

Sample St, Tt ⊆ [n], independently
Compute a variance-reduced stochastic gradient

gt = ∇fSt
(xt)−∇fSt

(wk) + µ
Form Dt ∈ Rd×q so that rank(Dt) = q
Compute Yt = ∇2fTt(xt)Dt

Compute Dt
TYt and its Cholesky factorization

(this implicitly forms ∆t = (DT
t Yt)

−1)
Option I: Use (6) to obtain Ht and set dt = −Htgt
Option II: Compute dt = −Htgt via Algorithm 2
Set xt+1 = xt + ηdt

end for
Option I: Set wk+1 = xm
Option II: Set wk+1 = xi, where i is selected uni-
formly at random from [m] = {1, 2, . . . ,m}

end for
output wk+1

vector v can be efficiently calculated using Algorithm 2.

Algorithm 2 Block L-BFGS Update (Two-loop Recursion)
inputs: gt ∈ Rd, Di, Yi ∈ Rd×q and ∆i ∈ Rq×q

for i ∈ {t+ 1−M, . . . , t}.
initiate: v ← gt
for i = t, . . . , t−M + 1 do
αi ← ∆iD

T
i v, v ← v − Yiαi

end for
for i = t−M + 1, . . . , t do
βi ← ∆iY

T
i v, v ← v +Di(αi − βi)

end for
output Htgt ← v

The total cost in floating point operations of executing Al-
gorithm 2 is Mq(4d+ 2q). In our experiments M = 5 and
q will be orders of magnitude less than d, typically q ≤

√
d.

Thus the cost of applying Algorithm 2 is approximately
O(d3/2). This does not include the cost of computing the
product Dt

TYt (O(q2d) operations) and its Cholesky fac-
torization (O(q3) operations), which is done outside of Al-
gorithm 2. The two places in Algorithm 2 where multi-
plication by ∆i is indicated is in practice performed by
solving two triangular systems using the Cholesky factor
of Di

TYi. We do this because it is more numerically stable
than explicitly calculating the inverse matrix ∆i.

Stochastic Block BFGS

3.2. Factored Form

Here we develop a new efficient method for maintaining
and updating a factored form of the metric matrix. This
facilitates the development of a novel idea which we call
self-conditioning sketch.

Let Lt−1 ∈ Rd×d be invertible such that Lt−1L
T
t−1 =

Ht−1. Further, let Gt = (DT
t L
−T
t−1L

−1
t−1Dt)

1/2 and Rt =

∆
1/2
t . An update formula for the factored form of Ht, i.e.,

for Lt for which Ht = LtL
T
t , was recently given (in a dif-

ferent context) by Gratton et al. (2011):

Lt = VtLt−1 +DtRtG
−1
t DT

t L
−T
t−1. (9)

This factored form of Ht is too costly to compute be-
cause it requires inverting Lt−1. However, if we let Dt =
Lt−1I:Ct , where Ct ⊂ [d], then (9) reduces to

Lt = VtLt−1 +DtRtICt: (10)

which can be computed efficiently. Furthermore, this up-
date of the factored form (10) can be expanded as

Lt = Vt
(
Vt−1Lt−2 +Dt−1Rt−1ICt−1:

)
+DtRtICt:

= Vt · · ·Vt+2−MVt+1−MLt−M

+ Vt · · ·Vt+2−MDt+1−MRt+1−MICt+1−M :

+DtRtICt: (11)

By storing M previous curvature triples (8) and addition-
ally the sets Ct+1−M , . . . , Ct, we can calculate the action
of Lt on a matrix V ∈ Rd×q by using (11), see Algo-
rithm 3. To the best of our knowledge, this is the first
limited-memory factored form in the literature. Since we
do not store Lt explicitly for any t we do not have access
to Lt−M , required in computing (11). Thus we simply use
Lt−M = I . Again, we can implement a more numeri-

Algorithm 3 Block L-BFGS Update (Factored loop recur-
sion)

inputs: V , Di, Yi,∆i ∈ Rd×q and Ci ⊂ [d],
for i ∈ {t+ 1−M, . . . , t}.

initiate: W ← V
for i = t+ 1−M, . . . , t do
W = W −Di∆iY

T
i W +DiRiWCi:

end for
output LtV ←W

cally stable version of Algorithm 3 by storing the Cholesky
factor of DT

i Yi and using triangular solves, as opposed to
calculating the inverse matrix ∆i = (DT

i Yi)
−1.

4. Convergence
In this section we prove that Algorithm 1 converges lin-
early. Our analysis relies on the following assumption,
and is a combination of novel insights and techniques from

(Konečný & Richtárik, 2014) and (Moritz et al., 2016).

Assumption 1. There exist constants 0 < λ ≤ Λ such that

λI � ∇2fT (x) � ΛI (12)

for all x ∈ Rd and all T ⊆ [n].

We first need two technical lemmas.

Lemma 1. Let Ht be the result of applying the limited-
memory Block BFGS update with memory M , as implicitly
defined by Algorithm 2. Then there exists positive constants
0 < γ ≤ Γ such that for all t we have

γI � Ht � ΓI, (13)

where
1

1 +MΛ
≤ γ ≤ Γ ≤ (1 +

√
κ)2M (1 +

1

λ(2
√
κ+ κ)

),

and κ
def
= Λ/λ.

A proof of this lemma is given in Section 7.

The spectral bound provided by Lemma 1 is many orders of
magnitude tighter than the bound provided in (Moritz et al.,
2016). As a result, our convergence rate is many orders of
magnitude better than the one provided in (Moritz et al.,
2016).

We now state a bound on the norm of the SVRG variance-
reduced gradient for minibatches.

Lemma 2. Suppose Assumption 1 holds, let w∗ be the
unique minimizer of f and let w, x ∈ Rd. Let µ = ∇f(w)
and g = ∇fS(x)−∇fS(w) + µ. Taking expectation with
respect to S, we have

E
[
‖g‖22

]
≤ 4Λ(f(x)− f(w∗))

+ 4(Λ− λ)(f(w)− f(w∗)).

The following theorem guarantees the linear convergence
of Algorithm 1.

Theorem 1. Suppose that Assumption 1 holds. Let w∗ be
the unique minimizer of f . When Option II is used in Algo-
rithm 1, we have for all k ≥ 0 that

E [f(wk)− f(w∗)] ≤ ρkE [f(w0)− f(w∗)] ,

where the convergence rate is given by

ρ =
1/2mη + ηΓ2Λ(Λ− λ)

γλ− ηΓ2Λ2
< 1,

assuming we have chosen η < γλ/(2Γ2Λ2) and that we
choose m large enough to satisfy

m ≥ 1

2η (γλ− ηΓ2Λ(2Λ− λ))
,

which is a positive lower bound given our restriction on η.

Proof. Since gt = ∇fSt(xt)−∇fSt(wk) + µ and xt+1 =

Stochastic Block BFGS

xt − ηHtgt in Algorithm 1, from (12) we have that

f(xt+1) ≤ f(xt) + η∇f(xt)
T dt + η2Λ

2 ‖dt‖
2
2

= f(xt)− η∇f(xt)
THtgt + η2Λ

2 ‖Htgt‖22 .
Taking expectation conditioned on xt (i.e., with respect to
St, Tt and Dt) and using Lemma 1 we have

E [f(xt+1) |xt] ≤ f(xt)− ηE
[
∇f(xt)

THt∇f(xt) |xt
]

+ η2Λ
2 E

[
‖Htgt‖22 |xt

]
≤ f(xt)− ηγ ‖∇f(xt)‖22 + η2Γ2Λ

2 E
[
‖gt‖22 |xt

]
Introducing the notation δf (x)

def
= f(x) − f(w∗) and ap-

plying Lemma 2 and the fact that strongly convex functions
satisfy the inequality ‖∇f(x)‖22 ≥ 2λδf (x) for all x ∈ Rd,
gives

E [f(xt+1) |xt] ≤ f(xt)− 2ηγλδf (xt)

+ 2η2Γ2Λ (Λδf (xt)) + (Λ− λ)δf (wk)))

= f(xt)− αδf (xt) + βδf (wk).

where α = 2η
(
γλ− ηΓ2Λ2

)
and β = 2η2Γ2Λ(Λ − λ).

Taking expectation, summing over t = 0, . . . ,m − 1 and
using telescopic cancellation gives

E [f(xm)] = E [f(x0)]− α
(∑m−1

t=1 E [δf (xt)]
)

+mβE [δf (wk)]

= E [f(wk)]−mαE [δf (wk+1)] +mβE [δf (wk)] ,

where we used that wk = x0 and
∑m
t=1 E [xt] =

mE [wk+1] which is a consequence of using Option II in
Algorithm 1. Rearranging the above gives

0 ≤ E [f(wk)− f(xm)]−mαE [δf (wk+1)] +mβE [δf (wk)]

≤ E [δf (wk)]−mαE [δf (wk+1)] +mβE [δf (wk)]

= −mαE [δf (wk+1)] + (1 +mβ)E [δf (wk)]

where we used that f(w∗) ≤ f(xm). Using that
η < γλ/(2Γ2Λ2), it follows that

E [δf (wk+1)] ≤ 1+2mη2Γ2Λ(Λ−λ)
2mη(γλ−ηΓ2Λ2) E [δf (wk)] .

5. Numerical Experiments
To validate our approach, we compare our Algorithm to the
SVRG and the variable-metric adaption of the SVRG pre-
sented in (Moritz et al., 2016), which we refer to as the MNJ
method. We tested seven empirical risk minimization prob-
lems with a logistic loss and L2 regularizer using data from
LIBSVM (Chang & Lin, 2011). We set the regularization
parameter λ = 1/n for all experiments. All the methods
were implemented in MATLAB.3

3All the code for the experiments can be downloaded from
www.maths.ed.ac.uk/˜prichtar/i software.html.

5 10 15 20 25

10
−2

10
−1

10
0

datapasses

e
rro

r

0 10 20 30 40

time (s)

gauss_18_M_5

prev_18_M_5

fact_18_M_3

MNJ_bH_330

SVRG

(a) gissette scale

5 10 15 20

10
−3

10
−2

10
−1

10
0

datapasses

e
rro

r

0 5 10 15 20 25

time (s)

gauss_8_M_5

prev_8_M_5

fact_8_M_3

MNJ_bH_3815

SVRG

(b) covtype-libsvm-binary

5 10 15 20

10
−20

10
−15

10
−10

10
−5

10
0

datapasses

e
rro

r

0 100 200 300 400

time (s)

gauss_4_M_5

prev_4_M_5

fact_4_M_3

MNJ_bH_16585

SVRG

(c) HIGGS

5 10 15 20

10
−20

10
−15

10
−10

10
−5

10
0

datapasses

e
rro

r

0 20 40 60 80 100

time (s)

gauss_5_M_5

prev_5_M_5

fact_5_M_3

MNJ_bH_9420

SVRG

(d) SUSY

5 10 15 20

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

datapasses

e
rro

r

0 500 1000 1500

time (s)

gauss_45_M_5

prev_45_M_5

fact_45_M_3

MNJ_bH_3165

SVRG

(e) epsilon normalized

Figure 1. (a) gissette scale (d;n) = (5, 000, 6, 000)
(b) covtype-libsvm-binary (d;n) = (54, 581, 012)
(c) HIGGS (d;n) = (28; 11, 000, 000) (d) SUSY
(d;n) = (18; 3, 548, 466) (e) epsilon normalized
(d;n) = (2, 000; 400, 000)

Stochastic Block BFGS

method description
guass q M Dt ∈ Rd×q with i.i.d Gaussian entries

prev L M
Dt = [dt, . . . , dt−L+1]. Updated ev-
ery L inner iterations

fact q M
Dt = Lt−1I:C where C ⊂ [n] sam-
pled uniformly at random and |C| = q

MNJ |T |
Algorithm 1 in (Moritz et al., 2016)
where |T | = size of Hessian subsam-
pling

Table 1. A key to the abbreviation of each method

5 10 15 20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

datapasses

e
rro

r

0 10 20 30 40

time (s)

gauss_10_M_5

prev_10_M_5

fact_10_M_3

MNJ_bH_715

SVRG

(a) rcv1-train.binary

5 10 15 20

10
−3

10
−2

10
−1

10
0

datapasses

e
rro

r

0 2000 4000 6000 8000 10000

time (s)

gauss_2_M_5

prev_2_M_5

fact_2_M_3

MNJ_bH_7740

SVRG

(b) url-combined

Figure 2. (a) rcv1-train.binary (d;n) =
(47, 236; 20, 242) (b) url-combined (d;n) =
(3, 231, 961; 2, 396, 130).

We tested three variants of Algorithm 1 with three different
sketching matrices, each specified by the use of a different
sketching matrix. In Table 1 we present a key to the ab-
breviations used in all our figures. The first three methods,
gauss, prev and fact, are implementations of the three
variants (a), (b) and (c), respectively, of Algorithm 1 using
the three different sketching methods discussed at the start
of Section 3. In these three methods the M stands for the
number of stored curvature triples (8) used. In all our vari-
ants, for simplicity, we use the same subsampling for the
gradient and Hessian, that is St = Tt.

We set the subsampling size |St| =
√
n throughout our

tests. We tested each method with a stepsize

η ∈ {100, 5 · 10−1, 10−1, . . . , 10−6, 5 · 10−7, 10−7}
for the best outcome, and used the resulting η. Finally, we
used m = bn/|St|c for the number of inner iterations, so
that the SVRG method performs an entire pass over the data
before recalculating the gradient.

For the MNJ method, we used the suggestion of the authors
of both (Byrd et al., 2015) and (Moritz et al., 2016), and
choose |Tt| ≈ L|St| so that the computational workload
of performing L inner iterations of the SVRG method was
approximately equal to that of applying the L-BFGS metric
once. The exact rule we used was

|Tt| =
⌊
min

{
L|St|

2 , n2/3
}⌋

.

We set the memory to 10 for the MNJ method in all tests,
which is a standard choice for the L-BFGS method.

In Figures 1 and 2 we plot the error f(xt)− f(w∗) against
datapasses and time for each method4. While measur-
ing time is implementation dependent, we decided to in-
clude these time plots in order to offer further insight into
the methods performance. Note that we did not use any
sophisticated implementation tricks such as “lazy” gradi-
ent updates (Konečný & Richtárik, 2014), but instead im-
plemented each method as originally designed so that the
methods could be compared on a equal footing.

On the problems with d significantly smaller then n, such
as those in Figures 1(c) and 1(d), all the methods that
make use of curvature information performed similarly and
significantly better than the SVRG method. The prev
method proved to be the best overall and the most robust,
performing comparably well on problems with d � n in-
cluding Figures 1(c) and 1(d), but was also the most ef-
ficient method in Figures 1(a), 1(b), 1(e) (shared being
most efficient with MNJ) and Figure 2(a). The only prob-
lem on which the prev method was not the most efficient
method was on the url-combined problem in Figure
2(b), where the MNJ method proved to be the most effi-
cient.

In general, Algorithm 1 and its variants perform very well
in terms of time taken, but better still in terms of data
passes. This is because our methods are able to better uti-
lize the available stochastic information in each iteration
than competing methods. We do this by performing more
expensive computations aimed at collecting more curvature
information. This approach pays its dividends in regimes
where data access is costly, relative to the time spent on
processing the data.

6. Proof of Lemma 2
Let hS(w) = fS(w)−fS(w∗)−∇fS(w∗)

T (w−w∗). Note
that hS(w) achieves its minimum at w∗ and hS(w∗) = 0.
Furthermore, ∇2hS(w) � ΛI from Assumption 1. Conse-
quently, for every b ∈ Rd we have

0 = hS(w∗) ≤ hS(w + b) ≤ hS(w) +∇hS(w)T b+ Λ
2 ‖b‖

2
2 .

4Thanks to Mark Schmidt, whose code
prettyPlot was used to generate all figures:
https://www.cs.ubc.ca/˜schmidtm/

Stochastic Block BFGS

Minimizing the right hand side of the above in b gives

0 = hS(w∗) ≤ hS(w)− 1
2Λ ‖∇hS(w)‖22 .

Re-arranging the above and switching back to f , we have

‖∇fS(w)−∇fS(w∗)‖22
≤ 2Λ

(
fS(w)− fS(w∗)−∇fS(w∗)

T (w − w∗)
)
.

Recalling the notation δf (x)
def
= f(x) − f(w∗) and taking

expectation with respect to S gives

E
[
‖∇fS(w)−∇fS(w∗)‖22

]
≤ 2Λδf (w). (14)

Now we apply the above to obtain

E
[
‖g‖22

]
≤ 2E

[
‖∇fS(x)−∇fS(w∗)‖22

]
+ 2E

[
‖∇fS(w)−∇fS(w∗)− µ‖22

]
≤ 2E

[
‖∇fS(x)−∇fS(w∗)‖22

]
+ 2E

[
‖∇fS(w)−∇fS(w∗)‖22

]
− 2 ‖∇f(w)‖22 .

where we used ‖a+ b‖22 ≤ 2 ‖a‖22 + 2 ‖b‖22 in the first
inequality and µ = E [∇fS(wk)−∇fS(w∗)]. Finally,

E
[
‖g‖22

] (14)
≤ 4Λ (δf (x) + δf (w))− 2 ‖∇f(w)‖22
≤ 4Λδf (x) + 4(Λ− λ)(δf (w)).

In the last inequality we used the fact that strongly convex
functions satisfy ‖∇f(x)‖22 ≥ 2λ δf (x) for all x ∈ Rd.

7. Proof of Lemma 1
To simplify notation, we define G def

= ∇2fT (xt), ∆ = ∆t,
Y = Yt, H = Ht−1, H+ = Ht, B = H−1, B+ =
(H+)−1 and V = Y∆DT . Thus, the block BFGS up-
date (6) can be written as

H+ = H − V TH −HV + V THV +D∆DT .

Proposition 2.2 in (Gower & Gondzio, 2014) proves that so
long as G and H (and hence B) are positive definite and D
has full rank, thenH+ is positive definite and non-singular,
and consequently, B+ is well defined and positive definite.
Using the Sherman-Morrison-Woodbury identity the up-
date formula for B+, as shown in the Appendix in (Gower
& Gondzio, 2014), is given by

B+ = B + Y∆Y
T

−BD(D
T

BD)−1D
T

B. (15)

We will now bound λmax(H+) = ‖H+‖2 from above and
λmin(H+) = 1/‖B+‖2 from below.

Let C = BD(D
T

BD)−1D
T

B. Then since C � 0, B −
C � B and hence, ‖B − C‖2 ≤ ‖B‖ and

‖B+‖2 ≤ ‖B‖2 + ‖Y∆Y
T

‖2.

Now, lettingG
1
2 and G−

1
2 denote the unique square root of

G and its inverse, and defining U = G
1
2D, we have

D∆D
T

= G−
1
2U(U

T

U)−1U
T

G−
1
2 = G−

1
2PG−

1
2 ,

whereP = U(U
T

U)−1U
T

is an orthogonal projection ma-
trix. Moreover, it is easy to see that

Y∆Y
T

= G
1
2PG

1
2 and V = Y∆D

T

= G
1
2PG−

1
2 .

Since ‖MN‖2 ≤ ‖M‖2‖N‖2 and ‖P‖2 = 1, we
have ‖D∆D

T ‖2 ≤ ‖G−1‖2, ‖Y∆Y
T ‖2 ≤ ‖G‖2 and

‖Y∆D
T ‖2 ≤ ‖G−

1
2 ‖2‖G

1
2 ‖2.

Hence, ‖B+‖2 ≤ ‖B‖2 + ‖G‖2
(12)
≤ ‖B‖2 + Λ. Further-

more,

‖H+‖2 ≤ ‖H‖2 + 2‖H‖2‖G−
1
2 ‖2‖G

1
2 ‖2

+ ‖H‖2‖G−1‖2‖G‖2 + ‖G−1‖2,
≤ (1 + 2

√
κ+ κ)‖H‖2 + 1

λ = α‖H‖2 + 1
λ ,

where κ = Λ/λ and α = (1 +
√
κ)2.

Since we use a memory of M block triples (Di, Yi,∆i),
and the metric matrix Ht is the result of applying, at most,
M block updates BFGS (6) to H0, we have that

λmax(Bt) = ‖Bt‖ ≤ ‖Bt−M‖+MΛ, (16)

and hence that

γ = λmin(Ht) ≥ 1
‖Bt−M‖+MΛ .

Finally, letting α = (1 +
√
κ)2, we have

Γ = λmax(Ht) = ‖Ht‖ ≤ αM‖Ht−M‖+ 1
λ

∑M−1
i=0 αi

= αM‖Ht−M‖+ 1
λ
αM−1
α−1

≤ (1 +
√
κ)2M (‖Ht−M‖+ 1

λ(2
√
κ+κ)

).

The bound now follows by observing that Ht−M = I.

8. Extensions
This work opens up many new research avenues. For in-
stance, sketching techniques are increasingly successful
tools in large scale machine learning, numerical linear alge-
bra, optimization and computer science, and thus one could
employ a number of new sketching methods in the block
BFGS method, such as the Walsh-Hadamard matrix (Pi-
lanci & Wainwright, 2016; Lu et al., 2013). Using new
sophisticated sketching methods, combined with the block
BFGS update, could result in even more efficient and accu-
rate estimates of the underlying curvature.

While in this work we have for simplicity focused on uti-
lizing our metric learning techniques in conjunction with
SVRG, they can be used with other optimization algorithms
as well, including SGD, SAG, SAGA, SDCA and more.

Stochastic Block BFGS

Acknowledgements
Peter Richtárik would like to acknowledge support from
EPSRC Grant EP/K02325X/1 and EPSRC Fellowship
EP/N005538/1. Donald Goldfarb would like to acknowl-
edge support from NSF Grant CCF-1527809.

References
Broyden, C. G. Quasi-Newton methods and their applica-

tion to function minimisation. Mathematics of Compu-
tation, 21(99):368–381, 1967.

Byrd, R H, Hansen, S L, Nocedal, Jorge, and Singer, Y.
A stochastic quasi-Newton method for large-scale opti-
mization. arXiv:1401.7020v2, 2015.

Chang, Chih Chung and Lin, Chih Jen. LIBSVM : a li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2(3):1–27, April
2011.

Christianson, Bruce. Automatic Hessians by reverse ac-
cumulation. IMA Journal of Numerical Analysis, 12(2):
135–150, 1992.

Defazio, Aaron, Bach, Francis, and Lacoste-Julien, Si-
mon. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives.
arXiv:1407.0202, 2014.

Erdogdu, Murat A. and Montanari, Andrea. Convergence
rates of sub-sampled Newton methods. In Cortes, C.,
Lawrence, N. D., Lee, D. D., Sugiyama, M., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 28, pp. 3052–3060. Curran Associates, Inc.,
2015.

Fletcher, Rodger. A new approach to variable metric algo-
rithms. The Computer Journal, 13(3):317–323, 1970.

Goldfarb, Donald. A family of variable-metric methods
derived by variational means. Mathematics of Computa-
tion, 24(109):23–26, 1970.

Gower, Robert M. and Gondzio, Jacek. Action constrained
quasi-Newton methods. arXiv:1412.8045v1, 2014.

Gower, Robert M. and Richtárik, Peter. Stochastic dual as-
cent for solving linear systems. arXiv:1512.06890, 2015.

Gratton, Serge, Sartenaer, Annick, and Ilunga, Jean Tshi-
manga. On a class of limited memory preconditioners
for large-scale nonlinear least-squares problems. SIAM
Journal on Optimization, 21(3):912–935, 2011.

Griewank, Andreas and Walther, Andrea. Evaluating
Derivatives. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, second edi edition,
2008.

Hennig, Philipp. Probabilistic interpretation of linear
solvers. SIAM Journal on Optimization, 25(1):234–260,
2015.

Johnson, Rie and Zhang, Tong. Accelerating stochastic
gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems 26,
pp. 315–323. Curran Associates, Inc., 2013.

Konečný, Jakub and Richtárik, Peter. S2GD: Semi-
stochastic gradient descent methods. arXiv:1312.1666,
2014.

Konečný, Jakub, Liu, Jie, Richtárik, Peter, and Takáč, Mar-
tin. Mini-batch semi-stochastic gradient descent in the
proximal setting. IEEE Journal of Selected Topics in
Signal Processing, 10(2):242–255, 2016.

Lu, Yichao, Dhillon, Paramveer, Foster, Dean P, and Un-
gar, Lyle. Faster ridge regression via the subsampled
randomized Hadamard transform. In Advances in Neural
Information Processing Systems 26, pp. 369–377. 2013.

Mandel, Jan and Brezina, Marian. Balancing domain de-
composition: Theory and performance in two and three
dimensions. Communications in Numerical Methods in
Engineering, 9(3):233–241, 1993.

Mokhtari, Aryan and Ribeiro, Alejandro. Regularized
stochastic BFGS algorithm. IEEE Transactions on Sig-
nal Processing, 62:1109–1112, 2014.

Mokhtari, Aryan and Ribeiro, Alejandro. Global conver-
gence of online limited memory BFGS. The Journal of
Machine Learning Research, 16:3151–3181, 2015.

Moritz, Philipp, Nishihara, Robert, and Jordan, Michael I.
A linearly-convergent stochastic L-BFGS algorithm. In
International Conference on Artificial Intelligence and
Statistics, pp. 249–258, 2016.

Nocedal, Jorge. Updating quasi-Newton matrices with lim-
ited storage. Mathematics of Computation, 35(151):773,
1980.

Pearlmutter, Barak A. Fast exact multiplication by the Hes-
sian. Neural Computation, 6(1):147–160, 1994.

Pilanci, Mert and Wainwright, Martin J. Iterative Hessian
sketch : Fast and accurate solution approximation for
constrained least-squares. Journal of Machine Learning
Research, 17:1–33, 2016.

Qu, Zheng, Richtárik, Peter, Takáč, Martin, and Fercoq,
Olivier. SDNA: Stochastic dual Newton ascent for em-
pirical risk minimization. In Proceedings of the 33rd
International Conference on Machine Learning, 2016.

Stochastic Block BFGS

Roosta-Khorasani, Farbod and Mahoney, Michael W. Sub-
sampled Newton methods I: globally convergent algo-
rithms. arXiv:1601.04737, 2016.

Schmidt, Mark, Le Roux, Nicolas, and Bach, Francis. Min-
imizing finite sums with the stochastic average gradient.
arXiv:1309.2388, 2013.

Schnabel, Robert B. Quasi-Newton methods using multi-
ple secant equations ; cu-cs-247-83. Technical report,
Computer Science Technical Reports. Paper 244, 1983.

Schraudolph, Nicol N, Simon, Gunter, and Yu, Jin. A
stochastic quasi-Newton method for online convex op-
timization. In Proceedings of 11th International Confer-
ence on Artificial Intelligence and Statistics, 2007.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual co-
ordinate ascent methods for regularized loss. Journal of
Machine Learning Research, 14(1):567–599, February
2013.

Shalev-Shwartz, Shai and Zhang, Tong. Accelerated prox-
imal stochastic dual coordinate ascent for regularized
loss minimization. Mathematical Programming, 155(1):
105–145, 2016.

Shanno, D F. Conditioning of quasi-Newton methods for
function minimization. Mathematics of Computation, 24
(111):647–656, 1971.

