
A Kronecker-factored approximate Fisher matrix for convolution layers

A. Conv net notation and GPU
implementation

For modern large-scale vision applications, it’s necessary
to implement conv nets efficiently for a GPU (or some
other massively parallel computing architecture). We pro-
vide a very brief overview of the low-level efficiency is-
sues which are relevant to K-FAC. We base our discussion
on the Toronto Deep Learning ConvNet (TDLCN) package
(Srivastava, 2015), whose convolution kernels we use in
our experiments. Like many modern implementations, this
implementation follows the approach of Chellapilla et al.
(2006), which reduces the convolution operations to large
matrix-vector products in order to exploit memory local-
ity and efficient parallel BLAS operators. We describe the
implementation explicitly, as it is important that our pro-
posed algorithm be efficient using the same memory layout
(shuffling operations are extremely expensive). As a bonus,
these vectorized operations provide a convenient high-level
notation which we will use throughout the paper.

The ordering of arrays in memory is significant, as it deter-
mines which operations can be performed efficiently with-
out requiring (very expensive) transpose operations. The
activations are stored as a M ⇥ |T |⇥ J array ˜

A`�1, where
M is the mini-batch size, |T | is the number of spatial lo-
cations, and J is the number of feature maps.7 This can
be interpreted as an M |T | ⇥ J matrix. (We must assign
orderings to T and �, but this choice is arbitrary.) Simi-
larly, the weights are stored as an I ⇥ |�| ⇥ J array W`,
which can be interpreted either as an I ⇥ |�|J matrix or a
I|�| ⇥ J matrix without reshuffling elements in memory.
We will almost always use the former interpretation, which
we denote W`; the I|�|⇥ J matrix will be denoted ˘

W`.

The naive implementation of convolution, while highly par-
allel in principle, suffers from poor memory locality. In-
stead, efficient implementations typically use what we will
term the expansion operator and denote J·K. This operator
extracts the patches surrounding each spatial location and
flattens them into vectors. These vectors become the rows
of a matrix. For instance, J˜A`�1K is a M |T |⇥J |�| matrix,
defined as

J˜A`�1KtM+m, j|�|+� = [

˜

A`�1](t+�)M+m, j = a(m)
j,t+�,

(25)
for all entries such that t + � 2 T . All other entries are
defined to be 0. Here, m indexes the data instance within
the mini-batch.

In TDLCN, the forward pass is computed as

˜

A` = �(˜S`) = �
⇣
J˜A`�1KW>

` + 1b

>
`

⌘
, (26)

where � is the nonlinearity, applied elementwise, 1 is a
vector of ones, and b is the vector of biases. In backpropa-

7The first index of the array is the least significant in memory.

gation, the activation derivatives are computed as:

D ˜

A`�1 = JD˜

S`K ˘

W`. (27)

Finally, the gradient for the weights is computed as

DW` = D˜

S

>
` J˜A`�1K (28)

The matrix products are computed using the cuBLAS func-
tion cublasSgemm. In practice, the expanded matrix
J˜A`�1K may be too large to store in memory. In this case, a
subset of the rows of J˜A`�1K are computed and processed
at a time.

We will also use the |T |⇥ J matrix A`�1 and the |T |⇥ I
matrix S` to denote the activations and pre-activations for
a single training case. A`�1 and S` can be substituted for
˜

A`�1 and ˜

S` in Eqns. 26-28.

For fully connected networks, it is often convenient to ap-
pend a homogeneous coordinate to the activations so that
the biases can be folded into the weights (see Section 2.2).
For convolutional layers, there is no obvious way to add
extra activations such that the convolution operation simu-
lates the effect of biases. However, we can achieve an anal-
ogous effect by adding a homogeneous coordinate (i.e. a
column of all 1’s) to the expanded activations. We will
denote this J˜A`�1KH . Similarly, we can prepend the bias
vector to the weights matrix: ¯

W` = (b` W`). The ho-
mogeneous coordinate is not typically used in conv net im-
plementations, but it will be convenient for us notationally.
For instance, the forward pass can be written as:

˜

A` = �
⇣
J˜A`�1KH ¯

W

>
`

⌘
(29)

Table 1 summarizes all of the conv net notation used in this
paper.

B. Optimization methods
B.1. KFC as a preconditioner for SGD

The first optimization procedure we used in our experi-
ments was a generic natural gradient descent approxima-
tion, where ˆ

F

(�) was used to approximate F. This proce-
dure is like SGD with momentum, except that ˆrh is substi-
tuted for the Euclidean gradient. One can also view this as
a preconditioned SGD method, where ˆ

F

(�) is used as the
preconditioner. To distinguish this optimization procedure
from the KFC approximation itself, we refer to it as KFC-
pre. Our procedure is perhaps more closely analogous to
earlier Kronecker product-based natural gradient approxi-
mations (Heskes, 2000; Povey et al., 2015) than to K-FAC
itself.

In addition, we used a variant of gradient clipping (Pas-
canu et al., 2013) to avoid instability. In particular, we
clipped the approximate natural gradient update v so that

A Kronecker-factored approximate Fisher matrix for convolution layers

j input map index
J number of input maps
i output map index
I number of output maps

T1 ⇥ T2 feature map dimension
t spatial location index
T set of spatial locations

= {1, . . . , T1}⇥ {1, . . . , T2}
R radius of filters
� spatial offset
� set of spatial offsets (in a filter)

= {�R, . . . , R}⇥ {�R, . . . , R}
� = (�1, �2) explicit 2-D parameterization

(�1 and �2 run from �R to R)
aj,t input layer activations
si,t output layer pre-activations

Dsi,t the loss derivative @L/@si,t
� activation function (nonlinearity)

wi,j,� weights
bi biases

M(j) mean activation
⌦(j, j0, �) uncentered autocovariance of

activations
�(i, i0, �) autocovariance of

pre-activation derivatives
�(�, �0) function defined in Theorem 1

⌦ Kronecker product
vec Kronecker vector operator

` layer index
L number of layers
M size of a mini-batch
A` activations for a data instance
Ã` activations for a mini-batch

JA`K expanded activations
JA`KH expanded activations with

homogeneous coordinate
S` pre-activations for a data instance
S̃` pre-activations for a mini-batch

DS` the loss gradient rS`L
✓ vector of trainable parameters

W` weight matrix
b` bias vector

W̄` combined parameters = (b` W`)
F exact Fisher matrix
F̂ approximate Fisher matrix
F̂` diagonal block of F̂ for layer `
⌦` Kronecker factor for activations
�` Kronecker factor for derivatives
� weight decay parameter
� damping parameter

F̂(�) damped approximate Fisher matrix
⌦(�)

` , �(�)
` damped Kronecker factors

Table 1. Summary of convolutional network notation used in this paper. The left column focuses on a single convolution layer, which
convolves its “input layer” activations with a set of filters to produce the pre-activations for the “output layer.” Layer indices are omitted
for clarity. The right column considers the network as a whole, and therefore includes explicit layer indices.

⌫ , v

>
Fv < 0.3, where F is estimated using 1/4 of the

training examples from the current mini-batch. One mo-
tivation for this heuristic is that ⌫ approximates the KL
divergence of the predictive distributions before and after
the update, and one wouldn’t like the predictive distribu-
tions to change too rapidly. The value ⌫ can be computed
using curvature-vector products (Schraudolph, 2002). The
clipping was only triggered near the beginning of optimiza-
tion, where the parameters (and hence also the curvature)
tended to change rapidly.8 Therefore, one can likely elimi-
nate this step by initializing from a model partially trained
using SGD.

Taking inspiration from Polyak averaging (Polyak & Judit-
sky, 1992; Swersky et al., 2010), we used an exponential
moving average of the iterates. This helps to smooth out
the variability caused by the mini-batch selection. The full
optimization procedure is given in Algorithm 1.

B.2. Kronecker-factored approximate curvature

The central idea of K-FAC is the combination of ap-
proximations to the Fisher matrix described in Section

8This may be counterintuitive, since SGD applied to neural
nets tends to take small steps early in training, at least for com-
monly used initializations. For SGD, this happens because the
initial parameters, and hence also the initial curvature, are rela-
tively small in magnitude. Our method, which corrects for the
curvature, takes larger steps early in training, when the error sig-
nal is the largest.

2.2. While one could potentially perform standard natu-
ral gradient descent using the approximate natural gradi-
ent ˆrh, perhaps with a fixed learning rate and with fixed
Tikhonov-style damping/reglarization, Martens & Grosse
(2015) found that the most effective way to use ˆrh was
within a robust 2nd-order optimization framework based
on adaptively damped quadratic models, similar to the one
employed in HF (Martens, 2010). In this section, we de-
scribe the K-FAC method in detail, while omitting certain
aspects of the method which we do not use, such as the
block tri-diagonal inverse approximation.

K-FAC uses a quadratic model of the objective to dynam-
ically choose the step size ↵ and momentum decay pa-
rameter µ at each step. This is done by taking v =

↵ ˆrh + µvprev where vprev is the update computed at the
previous iteration, and minimizing the following quadratic
model of the objective (over the current mini-batch):

M(✓ + v) = h(✓) +rh>
v +

1

2

v

>
(F+ rI)v. (30)

where we assume the h is the expected loss plus an `2-
regularization term of the form r

2k✓k
2. Since F behaves

like a curvature matrix, this quadratic function is similar
to the second-order Taylor approximation to h. Note that
here we use the exact F for the mini-batch, rather than the
approximation ˆ

F. Intuitively, one can think of v as being it-
self iteratively optimized at each step in order to better min-
imize M , or in other words, to more closely match the true

A Kronecker-factored approximate Fisher matrix for convolution layers

Algorithm 1 Using KFC as a preconditioner for SGD

Require: initial network parameters ✓(0)

weight decay penalty �
learning rate ↵
momentum parameter µ (suggested value: 0.9)
parameter averaging timescale ⌧ (suggested value: number of mini-batches in the dataset)
damping parameter � (suggested value: 10�3, but this may require tuning)
statistics update period Ts (see Appendix B.3)
inverse update period Tf (see Appendix B.3)
clipping parameter C (suggested value: 0.3)

k 0

p 0

⇠ e�1/⌧

¯✓
(0) ✓(0)

Estimate the factors {⌦`}L�1
`=0 and {�`}L`=1 on the full dataset using Eqn. 23

Compute the inverses {[⌦(�)
`]

�1}L�1
`=0 and {[�(�)

`]

�1}L`=1 using Eqn. 21
while stopping criterion not met do
k k + 1

Select a new mini-batch

if k ⌘ 0 (mod Ts) then
Update the factors {⌦`}L�1

`=0 and {�`}L`=1 using Eqn. 23
end if
if k ⌘ 0 (mod Tf) then

Compute the inverses {[⌦(�)
`]

�1}L�1
`=0 and {[�(�)

`]

�1}L`=1 using Eqn. 21
end if

Compute rh using backpropagation
Compute ˆrh = [

ˆ

F

(�)
]

�1rh using Eqn. 22
v �↵ ˆrh

{Clip the update if necessary}
Estimate ⌫ = v

>
Fv + �v>

v using a subset of the current mini-batch
if ⌫ > C then

v v/
p
⌫/C

end if

p

(k) µp(k�1)
+ v {Update momentum}

✓(k) ✓(k�1)
+ p

(k) {Update parameters}
¯✓
(k) ⇠¯✓

(k�1)
+ (1� ⇠)✓(k) {Parameter averaging}

end while
return Averaged parameter vector ¯✓(k)

A Kronecker-factored approximate Fisher matrix for convolution layers

natural gradient (which is the exact minimum of M). In-
terestingly, in full batch mode, this method is equivalent to
performing preconditioned conjugate gradient in the vicin-
ity of a local optimum (where F remains approximately
constant).

To see how this minimization over ↵ and µ can be done
efficiently, without computing the entire matrix F, con-
sider the general problem of minimizing M on the sub-
space spanned by arbitrary vectors {v1, . . . ,vR}. (In our
case, R = 2, v1 =

ˆrh and v2 = vprev .) The coefficients
↵ can be found by solving the linear system C↵ = �d,
where Cij = v

>
i Fvj and di = rh>

vi. To compute the
matrix C, we compute each of the matrix-vector products
Fvj using automatic differentiation (Schraudolph, 2002).

Both the approximate natural gradient ˆrh and the update
v (generated as described above) arise as the minimum,
or approximate minimum, of a corresponding quadratic
model. In the case of v, this model is given by M and
is designed to be a good local approximation to the objec-
tive h. Meanwhile, the quadratic model which is implicitly
minimized when computing ˆrh is designed to approximate
M (by approximating F with ˆ

F).

Because these quadratic models are approximations,
naively minimizing them over Rn can lead to poor results
in both theory and practice. To help deal with this prob-
lem K-FAC employs an adaptive Tikhonov-style damping
scheme applied to each of them (the details of which differ
in either case).

To compensate for the inaccuracy of M as a model of h,
K-FAC adds a Tikhonov regularization term �

2 kvk
2 to M

which encourages the update to remain small in magnitude,
and thus more likely to remain in the region where M is a
reasonable approximation to h. This amounts to replacing
r with r + � in Eqn. 30. Note that this technique is for-
mally equivalent to performing constrained minimization
of M within some spherical region around v = 0 (a “trust-
region”). See for example Nocedal & Wright (2006).

K-FAC uses the well-known Levenberg-Marquardt tech-
nique (Moré, 1978) to automatically adapt the damping pa-
rameter � so that the damping is loosened or tightened de-
pending on how accurately M(✓ + v) predicts the true de-
crease in the objective function after each step. This accu-
racy is measured by the so-called “reduction ratio”, which
is given by

⇢ =

h(✓)� h(✓ + v)

M(✓)�M(✓ + v)

, (31)

and should be close to 1 when the quadratic approximation
is reasonably accurate around the given value of ✓. The
update rule for � is as follows:

�

8
<

:

� · �� if ⇢ > 3/4
� if 1/4  ⇢  3/4
� · �+ if ⇢ < 1/4

(32)

where �+ and �� are constants such that �� < 1 < �+.

To compensate for the inaccuracy of ˆ

F, and encourage ˆrh
to be smaller and more conservative, K-FAC similarly adds
�I to ˆ

F before inverting it. As discussed in Section 2.2, this
can be done approximately by adding multiples of I to each
of the Kronecker factors ` and �` of ˆ

F` before inverting
them. Alternatively, an exact solution can be obtained by
expanding out the eigendecomposition of each block ˆ

F` of
ˆ

F, and using the following identity:
h
F̂` + �I

i�1
=

h
(Q ⌦Q�) (D ⌦D�)

⇣
Q>
 ⌦Q>

�

⌘
+ �I

i�1

(33)

=
h
(Q ⌦Q�) (D ⌦D� + �I)

⇣
Q>
 ⌦Q>

�

⌘i�1

(34)

= (Q ⌦Q�) (D ⌦D� + �I)�1
⇣
Q>
 ⌦Q>

�

⌘
,

(35)

where ` = Q

D

Q

>

and �` = Q

�

D

�

Q

>
�

are the
orthogonal eigendecompositions of ` and �` (which are
symmetric PSD). These manipulations are based on well-
known properties of the Kronecker product which can be
found in, e.g., Demmel (1997, sec. 6.3.3). Matrix-vector
products (

ˆ

F + �I)�1rh can then be computed from the
above identity using the following block-wise formulas:

V1 = Q

>
�

(r
¯

W`
h)Q

(36)

V2 = V1/(d�d
>

+ �) (37)

(

ˆ

F` + �I)�1
vec(r

¯

W`
h) = vec

�
Q

�

V2Q
>

�
, (38)

where d
�

and d

are the diagonals of D
�

and D

and the
division and addition in Eqn. 37 are both elementwise.

One benefit of this damping strategy is that it automatically
accounts for the curvature contributed by both the quadratic
damping term �

2 kvk
2 and the weight decay penalty r

2k✓k
2

if these are used. Heuristically, one could even set � =p
�+ r, which can sometimes perform well. One should

always choose � at least this large. However, it may some-
times be advantageous to choose � significantly larger, as ˆ

F

might not be a good approximation to F, and the damping
may help reduce the impact of directions erroneously esti-
mated to have low curvature. For consistency with Martens
& Grosse (2015), we adopt their method of automatically
adapting �. In particular, each time we adapt �, we com-
pute ˆrh for three different values �� < � < �+. We
choose whichever of the three values results in the lowest
value of M(✓ + v).

B.3. Efficient implementation

We based our implementation on the Toronto Deep Learn-
ing ConvNet (TDLCN) package (Srivastava, 2015), which
is a Python wrapper around CUDA kernels. We needed to
write a handful of additional kernels:

• a kernel for computing ˆ

⌦` (Eqn. 23)

A Kronecker-factored approximate Fisher matrix for convolution layers

• kernels which performed forward mode automatic dif-
ferentiation for the max-pooling and response normal-
ization layers

Most of the other operations for KFC could be performed
on the GPU using kernels provided by TDLCN. The only
exception is computing the inverses {[⌦(�)

`]

�1}L�1
`=0 and

{[�(�)
`]

�1}L`=1, which was done on the CPU. (The forward
mode kernels are only used in update clipping; as men-
tioned above, one can likely eliminate this step in practice
by initializing from a partially trained model.)

KFC introduces several sources of overhead per iteration
compared with SGD:

• Updating the factors {⌦`}L�1
`=0 and {�`}L`=1

• Computing the inverses {[⌦(�)
`]

�1}L�1
`=0 and

{[�(�)
`]

�1}L`=1

• Computing the approximate natural gradient ˆrh =

[

ˆ

F

(�)
]

�1rh

• Estimating ⌫ = v

>
Fv + �v>

v (which is used for
gradient clipping)

The overhead from the first two could be reduced by only
periodically recomputing the factors and inverses, rather
than doing so after every mini-batch. The cost of estimat-
ing v

>
Fv can be reduced by using only a subset of the

mini-batch. These shortcuts did not seem to hurt the per-
epoch progress very much, as one can get away with us-
ing quite stale curvature information, and ⌫ is only used
for clipping and therefore doesn’t need to be very accurate.
The cost of computing ˆrh is unavoidable, but because it
doesn’t grow with the size of the mini-batch, its per-epoch
cost can be made smaller by using larger mini-batches. (As
we discuss further in Section 5.3, KFC can work well with
large mini-batches.) These shortcuts introduce several ad-
ditional hyperparameters, but fortunately these are easy to
tune: we simply chose them such that the per-epoch cost of
KFC was less than twice that of SGD. This requires only
running a profiler for a few epochs, rather than measuring
overall optimization performance.

Observe that the inverses {[⌦(�)
`]

�1}L�1
`=0 and

{[�(�)
`]

�1}L`=1 are computed on the CPU, while all
of the other heavy computation is GPU-bound. In princi-
ple, since KFC works fine with stale curvature information,
the inverses could be computed asychronously while the
algorithm is running, thereby making their cost almost
free. We did not exploit this in our experiments, however.

C. Relationship with other algorithms
Other neural net optimization methods have been proposed
which attempt to correct for various statistics of the acti-
vations or gradients. Perhaps the most commonly used are

algorithms which attempt to adapt learning rates for indi-
vidual parameters based on the variance of the gradients
(LeCun et al., 1998; Duchi et al., 2011; Tieleman & Hin-
ton, 2012; Zeiler, 2013; Kingma & Ba, 2015). These can
be thought of as diagonal approximations to the curvature.

Another class of approaches attempts to reparameterize a
network such that its activations have zero mean and unit
variance, with the goals of preventing covariate shift and
improving the conditioning of the curvature (Cho et al.,
2013; Vatanen et al., 2013; Ioffe & Szegedy, 2015). Cen-
tering can be viewed as an approximation to natural gra-
dient where the Fisher matrix is approximated with a di-
rected Gaussian graphical model (Grosse & Salakhutdinov,
2015). As discussed in Section 4.1, KFC is invariant to re-
centering of activations, so it ought to automatically enjoy
the optimization benefits of centering. However, batch nor-
malization (Ioffe & Szegedy, 2015) includes some effects
not automatically captured by KFC. First, the normaliza-
tion is done separately for each mini-batch rather than aver-
aged across mini-batches; this introduces stochasticity into
the computations which may serve as a regularizer. Second,
it discourages large covariate shifts in the pre-activations,
which may help to avoid dead units. Since batch normaliza-
tion is better regarded as a modification to the architecture
than an optimization algorithm, it can be combined with
KFC; we investigated this in our experiments.

Projected Natural Gradient (PRONG; Desjardins et al.,
2015) goes a step further than centering methods by fully
whitening the activations in each layer. In the case of fully
connected layers, the activations are transformed to have
zero mean and unit covariance. For convolutional layers,
they apply a linear transformation that whitens the activa-
tions across feature maps. While PRONG includes clever
heuristics for updating the statistics, it’s instructive to con-
sider an idealized version of the method which has ac-
cess to the exact statistics. We can interpret this idealized
PRONG in our own framework as arising from following
two additional approximations:

• Spatially uncorrelated activations (SUA). The acti-
vations at any two distinct spatial locations are uncor-
related, i.e. Cov(aj,t, aj0,t0) = 0 for t 6= t0. Also
assuming SH, the correlations can then be written as
Cov(aj,t, aj0,t) = ⌃(j, j0).

• White derivatives (WD). Pre-activation derivatives
are uncorrelated and have spherical covariance,
i.e. �(i, i0, �) / 1i=i01�=0. We can assume WLOG
that the proportionality constant is 1, since any scalar
factor can be absorbed into the learning rate.

Theorem 4. Combining approximations IAD, SH, SUA,
and WD results in the following approximation to the en-
tries of the Fisher matrix:

E [Dwi,j,�Dwi0,j0,�0] = �(�, �0) ˜⌦(j, j0, �0 � �)1i=i0 ,
(39)

A Kronecker-factored approximate Fisher matrix for convolution layers

where 1 is the indicator function and ˜

⌦(j, j0, �) ,
⌃(j, j0)1�=0 + M(j)M(j0) is the uncentered autocovari-
ance function. (� is defined in Theorem 1. Formulas for the
remaining entries are given in Appendix E.) If the �(�, �0)
term is dropped, the resulting approximate natural gradi-
ent descent update rule is equivalent to idealized PRONG,
up to rescaling.

As we later discuss in Section 5.1, assumption WD appears
to hold up well empirically, while SUA appears to lose a lot
of information. Observe, for instance, that the input images
are themselves treated as a layer of activations. Assump-
tion SUA amounts to modeling each channel of an image
as white noise, corresponding to a flat power spectrum. Im-
ages have a well-characterized 1/fp power spectrum with
p ⇡ 2 (Simoncelli & Olshausen, 2001), which implies that
the curvature may be much larger in directions correspond-
ing to low-frequency Fourier components than in directions
corresponding to high-frequency components.

D. Experiments
D.1. Evaluating the probabilistic modeling assumptions

In order to analyze the reasonableness of our spatially
uncorrelated derivatives (SUD) assumption, we investi-
gated the autocorrelation functions for networks trained
on CIFAR-10 and SVHN, each with 50 epochs of SGD.
(These models were trained long enough to achieve good
test error, but not long enough to overfit.) Derivatives were
sampled from the model’s distribution as described in Sec-
tion 2.2. Figure 3(a) shows the autocorrelation functions
of the pre-activation gradients for three (arbitrary) feature
maps in all of the convolution layers of both networks. Fig-
ure 3(b) shows the correlations between derivatives for dif-
ferent feature maps in the same spatial position. Evidently,
the derivatives are very weakly correlated, both spatially
and cross-map, although there are some modest cross-map
correlations in the first layers of both models, as well as
modest spatial correlations in the top convolution layer of
the CIFAR-10 network. This suggests that SUD is a good
approximation for these networks.

Interestingly, the lack of correlations between derivatives
appears to be a result of max-pooling. Max-pooling
has a well-known sparsifying effect on the derivatives,
as any derivative is zero unless the corresponding acti-
vation achieves the maximum within its pooling group.
Since neighboring locations are unlikely to simultaneously
achieve the maximum, max-pooling weakens the spatial
correlations. To test this hypothesis, we trained net-
works equivalent to those described above, except that the
max-pooling layers were replaced with average pooling.
The spatial autocorrelations and cross-map correlations are
shown in Figure 3(c, d). Replacing max-pooling with aver-
age pooling dramatically strengthens both sets of correla-
tions.

In contrast with the derivatives, the activations have very

strong correlations, both spatially and cross-map, as shown
in Figure 4. This suggests the spatially uncorrelated ac-
tivations (SUA) assumption implicitly made by some al-
gorithms could be problematic, despite appearing superfi-
cially analogous to SUD.

D.2. Comparison with batch normalization

Batch normalization (BN Ioffe & Szegedy, 2015) has re-
cently had much success at training a variety of neural net-
work architectures. It has been motivated both in terms
of optimization benefits (because it reduces covariate shift)
and regularization benefits (because it adds stochasticity
to the updates). However, BN is best regarded not as
an optimization algorithm, but as a modification to the
network architecture, and it can be used in conjunction
with algorithms other than SGD. We modified the origi-
nal CIFAR-10 architecture to use batch normalization in
each layer. Since the parameters of a batch normalized
network would have a different scale from those of an or-
dinary network, we disabled the `2 regularization term so
that both networks would be optimized to the same objec-
tive function. While our own (inefficient) implementation
of batch normalization incurred substantial computational
overhead, we believe an efficient implementation ought to
have very little overhead; therefore, we simulated an ef-
ficient implementation by reusing the timing data from the
non-batch-normalized networks. Learning rates were tuned
separately for all four conditions (similarly to the rest of our
experiments).

Training curves are shown in Figure 5. All of the meth-
ods achieved worse test error than the original network as a
result of `2 regularization being eliminated. However, the
BN networks reached a lower test error than the non-BN
networks before they started overfitting, consistent with the
stochastic regularization interpretation of BN.9 For both the
BN and non-BN architectures, KFC-pre optimized both the
training and test error and NLL considerably faster than
SGD. Furthermore, it appeared not to lose the regulariza-
tion benefit of BN. This suggests that KFC-pre and BN can
be combined synergistically.

9Interestingly, the BN networks were slower to optimize the
training error than their non-BN counterparts. We speculate that
this is because (1) the SGD baseline, being carefully tuned, didn’t
exhibit the pathologies that BN is meant to correct for (i.e. dead
units and extreme covariate shift), and (2) the regularization ef-
fects of BN made it harder to overfit.

A Kronecker-factored approximate Fisher matrix for convolution layers

(a) (b) (c) (d)

Figure 3. Visualization of the absolute values of the correlations between the pre-activation derivatives for all of the convolution layers
of CIFAR-10 and SVHN networks trained with SGD. (a) Autocorrelation functions of the derivatives of three feature maps from each
layer. (b) Cross-map correlations for a single spatial position. (c, d) Same as (a) and (b), except that the networks use average pooling
rather than max-pooling.

(a) (b)

Figure 4. Visualization of the uncentered correlations ⌦ between activations in all of the convolution layers of the CIFAR-10 and SVHN
networks. (a) Spatial autocorrelation functions of three feature maps in each layer. (b) Correlations of the activations at a given spatial
location. The activations have much stronger correlations than the backpropagated derivatives.

A Kronecker-factored approximate Fisher matrix for convolution layers

(a) (b)

Figure 5. Optimization performance of KFC-pre and SGD on a CIFAR-10 network, with and without batch normalization (BN). (a)
Negative log-likelihood, on a log scale. (b) Classification error. Solid lines represent test error and dashed lines represent training error.
The horizontal dashed line represents the previously reported test error for the same architecture. The KFC-pre training curve is cut off
because the algorithm became unstable when the training NLL reached 4⇥ 10�6.

A Kronecker-factored approximate Fisher matrix for convolution layers

E. Proofs of theorems
E.1. Proofs for Section 3

Lemma 1. Under approximation IAD,

E [Dwi,j,�Dwi0,j0,�0] =

X

t2T

X

t02T
E [aj,t+�aj0,t0+�0]E [Dsi,tDsi0,t0] (40)

E [Dwi,j,�Dbi0] =
X

t2T

X

t02T
E [aj,t+�]E [Dsi,tDsi0,t0] (41)

E [DbiDbi0] = |T |E [Dsi,tDsi0,t0] (42)

Proof. We prove the first equality; the rest are analogous.

E[Dwi,j,�Dwi0,j0,�0] = E
"
X

t2T
aj,t+�Dsi,t

!
X

t02T
aj0,t0+�0Dsi0,t0

!#
(43)

= E
"
X

t2T

X

t02T
aj,t+�Dsi,taj0,t0+�0Dsi0,t0

#
(44)

=

X

t2T

X

t02T
E [aj,t+�Dsi,taj0,t0+�0Dsi0,t0] (45)

=

X

t2T

X

t02T
E [aj,t+�aj0,t0+�0]E [Dsi,tDsi0,t0] (46)

Assumption IAD is used in the final line.

Theorem 1. Combining approximations IAD, SH, and SUD yields the following factorization:

E [Dwi,j,�Dwi0,j0,�0] = �(�, �0)⌦(j, j0, �0 � �)�(i, i0, 0),

E [Dwi,j,�Dbi0] = �(�)M(j)�(i, i0, 0)

E [DbiDbi0] = |T |�(i, i0, 0) (47)

where

�(�) , (T1 � |�1|) (T2 � |�2|)
�(�, �0) , (T1 �max(�1, �

0
1, 0) + min(�1, �

0
1, 0)) · (T2 �max(�2, �

0
2, 0) + min(�2, �

0
2, 0)) (48)

A Kronecker-factored approximate Fisher matrix for convolution layers

Proof.

E[Dwi,j,�Dwi0,j0,�0] =

X

t2T

X

t02T
E [aj,t+�aj0,t0+�0]E [Dsi,tDsi0,t0] (49)

=

X

t2T

X

t02T
⌦(j, j0, t0 + �0 � t� �)1 t+�2T

t0+�02T
�(i, i0, t0 � t) (50)

=

X

t2T
⌦(j, j0, �0 � �)1 t+�2T

t+�02T
�(i, i0, 0) (51)

= |{t 2 T : t+ � 2 T , t+ �0 2 T }| ⌦(j, j0, �0 � �)�(i, i0, 0) (52)
= �(�, �0)⌦(j, j0, �0 � �)�(i, i0, 0) (53)

Lines 49, 50, and 51 use Lemma 1 and assumptions SH, and SUD, respectively. In Line 50, the indicator function (denoted
1) arises because the activations are defined to be zero outside the set of spatial locations. The remaining formulas can be
derived analogously.

Theorem 2. Under assumption SH,

⌦` = E
⇥
JA`K>HJA`KH

⇤
(54)

�` =
1

|T |E
⇥
DS

>
` DS`

⇤
(55)

Proof. In this proof, all activations and pre-activations are taken to be in layer `. The expected entries are given by:

E
⇥
JA`K>HJA`KH

⇤
j|�|+�, j0|�|+�

= E
"
X

t2T
aj,t+�aj0,t+�0

#
(56)

=

X

t2T
E [aj,t+�aj0,t+�0] (57)

=

X

t2T
⌦(j, j0, �0 � �)1 t+�2T

t+�02T
(58)

= |{t 2 T : t+ � 2 T , t+ �0 2 T }| ⌦(j, j0, �0 � �) (59)
= �(�, �0)⌦(j, j0, �0 � �) (60)
= [⌦`]j|�|+�, j0|�|+�0 (61)

SH is used in Line 58. Similarly,

E
⇥
JA`K>HJA`KH

⇤
0, j|�|+�

= E
"
X

t2T
aj,t+�

#
(62)

= �(�)M(j) (63)
= [⌦`]0, j|�|+� (64)

⇥
JA`K>HJA`KH

⇤
0, 0

= |T | (65)

= [⌦`]0, 0 (66)

E
⇥
DS

>
` DS`

⇤
i,i0

= E
"
X

t2T
Dsi,tDsi0,t

#
(67)

= |T |�(i, i0, 0) (68)
= |T | [�`]i, i0 (69)

A Kronecker-factored approximate Fisher matrix for convolution layers

E.2. Proofs for Section 4

Preliminaries and notation. In discussing invariances, it will be convenient to add homogeneous coordinates to various
matrices:

[A`]H ,
�
1 A`

�
(70)

[S`]H ,
�
1 S`

�
(71)

[

¯

W`]H ,
✓
1

b` W`

◆
(72)

We also define the activation function � to ignore the homogeneous column, so that

[A`]H = �([S`]H) = �(JA`�1K[¯W`]H). (73)

Using the homogeneous coordinate notation, we can write the effect of the affine transformations on the pre-activations
and activations:

[S

†
`U` + 1c

>
`]H = [S

†
`]H [U`]H

[A`V` + 1d

>
`]H = [A`]H [V`]H , (74)

where

[U`]H ,
✓
1 c

>
`

U`

◆
(75)

[V`]H ,
✓
1 d

>
`

V`

◆
. (76)

The inverse transformations are represented as

[U`]
�1
H ,

✓
1 �c

>
` U

�1
`

U

�1
`

◆
(77)

[V`]
�1
H ,

✓
1 �d

>
` V

�1
`

V

�1
`

◆
. (78)

We can also determine the effect of the affine transformation on the expanded activations:

JA`V` + 1d

>
` KH = JA`KHJV`KH , (79)

where
JV`KH ,

✓
1 d

>
` ⌦ 1

>

V` ⌦ I

◆
, (80)

with inverse
JV`K�1

H =

✓
1 �d

>
` V

�1
` ⌦ 1

>

V

�1
` ⌦ I

◆
. (81)

Note that JV`KH is simply a suggestive notation, rather than an application of the expansion operator J·K.

Lemma 2. Let N , ✓, {�`}L`=0, and {�†
`}L`=0 be given as in Theorem 3. The network N † with activations functions {�†

`}L`=0
and parameters defined by

[

¯

W

†
`]H , [U`]

�>
H [

¯

W`]HJV`�1K�>
H , (82)

compute the same function as N .

Remark. The definition of �†
` (Eqn. 24) can be written in homogeneous coordinates as

[A

†
`]H = �†

`([S
†
`]H) = �`([S

†
`]H [U`]H)[V`]H . (83)

Eqn. 82 can be expressed equivalently without homogeneous coordinates as

¯

W

†
` , U

�>
`

�
¯

W` � c`e
>� JV`�1K�>

H , (84)

where e = (1 0 · · · 0)>.

A Kronecker-factored approximate Fisher matrix for convolution layers

Proof. We will show inductively the following relationship between the activations in each layer of the two networks:

[A

†
`]H = [A`]H [V`]H . (85)

(By our assumption that the top layer inputs are not transformed, i.e. [VL]H = I, this would imply that [A†
L]H = [AL]H ,

and hence that the networks compute the same function.) For the first layer, Eqn. 85 is true by definition. For the inductive
step, assume Eqn. 85 holds for layer `� 1. From Eqn 79, this is equivalent to

JA†
`�1KH = JA`�1KHJV`�1KH . (86)

We then derive the activations in the following layer:

[A

†
`]H = �†

`

⇣
[S

†
`]H

⌘
(87)

= �`

⇣
[S

†
`]H [U`]H

⌘
[V`]H (88)

= �`

⇣
JA†

`�1KH [

¯

W

†
`]

>
H [U`]H

⌘
[V`]H (89)

= �`

⇣
JA`�1KH JV`�1KH [

¯

W

†
`]

>
H [U`]H

⌘
[V`]H (90)

= �`

�
JA`�1KH JV`�1KH JV`�1K�1

H [

¯

W`]
>
H [U`]

�1
H [U`]H

�
[V`]H (91)

= �`

�
JA`�1KH [

¯

W`]
>
H

�
[V`]H (92)

= [A`]H [V`]H (93)

Lines 89 and 93 are from Eqn. 73. This proves the inductive hypothesis for layer `, so we have shown that both networks
compute the same function.

Lemma 3. Suppose the parameters are transformed according to Lemma 2, and the parameters are updated according to

[

¯

W

†
`]

(k+1) [

¯

W

†
`]

(k) � ↵P†
`(r ¯

W

†
`
h)R†

`, (94)

for matrices P` and R`. This is equivalent to applying the following update to the original network:

[

¯

W`]
(k+1) [

¯

W`]
(k+1) � ↵P`(r ¯

W`
h)R`, (95)

with

P` = U

>
` P

†
`U` (96)

R` = JV`�1KHR

†
`JV`�1K>H . (97)

Proof. This is a special case of Lemma 5 from Martens & Grosse (2015).

Theorem 3. Let N be a network with parameter vector ✓ and activation functions {�`}L`=0. Given activation functions
{�†

`}L`=0 defined as in Eqn. 24, there exists a parameter vector ✓† such that a network N † with parameters ✓† and activation
functions {�†

`}L`=0 computes the same function as N . The KFC updates on N and N † are equivalent, in that the resulting
networks compute the same function.

Proof. Lemma 2 gives the desired ✓†. We now prove equivalence of the KFC updates. The Kronecker factors for N † are

A Kronecker-factored approximate Fisher matrix for convolution layers

given by:

⌦

†
` = E

h
JA†

`K
>
HJA†

`KH
i

(98)

= E
⇥
JV`K>HJA`K>HJA`KHJV`KH

⇤
(99)

= JV`K>HE
⇥
JA`K>HJA`KH

⇤
JV`KH (100)

= JV`K>H⌦`JV`KH (101)

�

†
` =

1

|T |E
h
(DS

†
`)

>DS

†
`

i
(102)

=

1

|T |E
h
U`(DS

†
`)

>DS

†
`U

>
`

i
(103)

=

1

|T |U`E
h
(DS

†
`)

>DS

†
`

i
U

>
` (104)

= U`�`U
>
` (105)

The approximate natural gradient update, ignoring momentum, clipping, and damping, is given by ✓(k+1) ✓(k) �
↵ˆ

F

�1r✓h. For each layer of N †,

[

¯

W

†
`]

(k+1) [

¯

W

†
`]

(k) � ↵(�†
`)

�1
(r

¯

W

†
`
h)(⌦†

`�1)
�1 (106)

We apply Lemma 3 with P

†
` = (�

†
`)

�1 and R

†
` = (⌦

†
`�1)

�1. This gives us

P` = U

>
` (�

†
`)

�1
U` (107)

= �

�1
` (108)

R` = JV`�1KH(⌦

†
`�1)

�1JV`�1K>H (109)

= ⌦

�1
`�1, (110)

with the corresponding update
[

¯

W`]
(k+1) [

¯

W`]
(k) � ↵��1

` (r
¯

W`
h)⌦�1

`�1. (111)

But this is the same as the KFC update for the original network. Therefore, the two updates are equivalent, in that the
resulting networks compute the same function.

Theorem 4. Combining approximations IAD, SH, SUA, and WD results in the following approximation to the entries of
the Fisher matrix:

E [Dwi,j,�Dwi0,j0,�0] = �(�, �0) ˜⌦(j, j0, �0 � �)1i=i0 (112)
E [Dwi,j,�Dbi0] = �(�)M(j)1i=i0 (113)

E [DbiDbi0] = |T |1i=i0 (114)

where 1 is the indicator function and ˜

⌦(j, j0, �) = ⌃(j, j0)1�=0 +M(j)M(j0) is the uncentered autocovariance function.
(� is defined in Theorem 1.) If the � and |T | terms are dropped, the resulting approximate natural gradient descent update
rule is equivalent to idealized PRONG, up to rescaling.

Proof. We first compute the second moments of the activations and derivatives, under assumptions SH, SUA, and WD:

E [aj,taj0,t0] = Cov(aj,t, aj0,t0) + E[aj,t]E[aj0,t0] (115)
= ⌃(j, j0)1�=0 +M(j)M(j0) (116)

, ˜

⌦(j, j0, �) (117)
E [Dsi,tDsi0,t0] = 1i=i01�=�0 . (118)

A Kronecker-factored approximate Fisher matrix for convolution layers

for any t, t0 2 T . We now compute

E [Dwi,j,�Dwi,j,�] =

X

t2T

X

t02T
E [aj,t+�aj0,t0+�0]E [Dsi,tDsi0,t0] (119)

=

X

t2T

X

t02T

˜

⌦(j, j0, t0 + �0 � t� �)1 t+�2T
t0+�02T

1i=i01t=t0 (120)

=

X

t2T

˜

⌦(j, j0, �0 � �)1 t+�2T
t+�02T

1i=i0 (121)

= |{t 2 T : t+ � 2 T , t+ �0 2 T }| ˜⌦(j, j0, �0 � �)1i=i0 (122)

= �(�, �0) ˜⌦(j, j0, �0 � �)1i=i0 (123)

Line 119 is from Lemma 1. The other formulas are derived analogously.

This can be written in matrix form as
ˆ

F =

˜

⌦⌦ I (124)

˜

⌦ ,
✓

1 µ> ⌦ 1

>

µ⌦ 1 ⌃⌦ I+ µµ> ⌦ 11

>

◆
(125)

It is convenient to compute block Cholesky decompositions:

˜

⌦ =

✓
1

µ⌦ 1 B⌦ I

◆✓
1 µ> ⌦ 1

>

B

> ⌦ I

◆
(126)

, LL

> (127)

˜

⌦

�1
= L

�>
L

�1 (128)

=

✓
1 �µ>

B

�> ⌦ 1

>

B

�> ⌦ I

◆✓
1

�B�1µ⌦ 1 B

�1 ⌦ I

◆
, (129)

where B is some square root matrix, i.e. BB

>
= ⌃ (not necessarily lower triangular).

Now consider PRONG. In the original algorithm, the network is periodically reparameterized such that the activations are
white. In our idealized version of the algorithm, we assume this is done after every update. For convenience, we assume that
the network is converted to the white parameterizaton immediately before computing the SGD update, and then converted
back to its original parameterization immediately afterward. In other words, we apply an affine transformation (Eqn. 24)
which whitens the activations:

A

†
` = �†

`(S
†
`) =

⇣
�`(S

†
`)� 1µ>

⌘
B

�1 (130)

= �`(S
†
`)B

�1 � 1µ>
B

�1, (131)

where B is a square root matrix of ⌃, as defined above. This is an instance of Eqn. 24 with U` = I, c` = 0, V` = B

�1,
and d` = �B�1µ. The transformed weights which compute the same function as the original network according to
Lemma 2 are ¯

W

†
` =

¯

W` JB�1K�>
H , where

JB�1KH ,
✓
1 �µ>

B

�> ⌦ 1

>

B

�1 ⌦ I

◆
, (132)

is defined according to Eqn. 80. But observe that JB�1KH = L

�>, where L is the Cholesky factor of ˜

⌦ (Eqn. 129).
Therefore, we have

¯

W

†
` =

¯

W` L. (133)

We apply Lemma 3 with P

†
` = I and R

†
` = I. This gives us the update in the original coordinate system:

¯

W

(k+1)
` ¯

W

(k)
` � ↵(r

¯

W`
h)L�>

L

�1 (134)

=

¯

W

(k)
` � ↵(r

¯

W`
h) ˜⌦

�1
. (135)

This is equivalent to the approximate natural gradient update where the Fisher block is approximated as ˜

⌦⌦ I. This is the
same approximate Fisher block we derived given the assumptions of the theorem (Eqn. 124).

