
Continuous Deep Q-Learning with Model-based Acceleration: Appendix

Shixiang Gu1 2 3 SG717@CAM.AC.UK
Timothy Lillicrap4 COUNTZERO@GOOGLE.COM
Ilya Sutskever3 ILYASU@GOOGLE.COM
Sergey Levine3 SLEVINE@GOOGLE.COM
1University of Cambridge 2Max Planck Institute for Intelligent Systems 3Google Brain 4Google DeepMind

1. Appendix
1.1. iLQG

The iLQG algorithm optimizes trajectories by iteratively
constructing locally optimal linear feedback controllers un-
der a local linearization of the dynamics p(xt+1|xt,ut) =
N (fxtxt + futut,Ft) and a quadratic expansion of the
rewards r(xt,ut) (Tassa et al., 2012). Under linear dy-
namics and quadratic rewards, the action-value function
Q(xt,ut) and value function V (xt) are locally quadratic
and can be computed by dynamics programming.1

Qxu,xut = rxu,xut + f
T
xutVx,xt+1fxut

Qxut = rxut + f
T
xutVx,xt+1

Vx,xt = Qx,xt −QTu,xtQ−1u,utQu,xt

Vxt = Qxt −QTu,xtQ−1u,utQut

Qx,xT = Vx,xT = rx,xT

(1)

The time-varying linear feedback controller g(xt) = ût +
kt + Kt(xt − x̂t) maximizes the locally quadratic Q,
where kt = −Q−1u,utQut,Kt = −Q−1u,utQu,xt, and x̂t, ût
denote states and actions of the current trajectory around
which the partial derivatives are computed. Employing the
maximum entropy objective (Levine & Koltun, 2013), we
can also construct a linear-Gaussian controller, where c is
a scalar to adjust for arbitrary scaling of the reward magni-
tudes,

πiLQGt (ut|xt) = N (ût + kt +Kt(xt − x̂t),−cQ−1u,ut)

(2)

When the dynamics are not known, a particularly effective
way to use iLQG is to combine it with learned time-varying
linear models p̂(xt+1|xt,ut). In this variant of the algo-
rithm, trajectories are sampled from the controller in Equa-
tion (2) and used to fit time-varying linear dynamics with

1While standard iLQG notation denotes Q,V as discounted
sum of costs, we denote them as sum of rewards to make them
consistent with the rest of the paper

linear regression. These dynamics are then used with iLQG
to obtain a new controller, typically using a KL-divergence
constraint to enforce a trust region, so that the new con-
troller doesn’t deviate too much from the region in which
the samples were generated (Levine & Abbeel, 2014).

1.2. Locally-Invariant Exploration for Normalized
Advantage Functions

Exploration is an essential component of reinforcement
learning algorithms. The simplest and most common type
of exploration involves randomizing the actions accord-
ing to some distribution, either by taking random actions
with some probability (Mnih et al., 2015), or adding Gaus-
sian noise in continuous action spaces (Schulman et al.,
2015). However, choosing the magnitude of the random
exploration noise can be difficult, particularly in high-
dimensional domains where different action dimensions re-
quire very different exploration scales. Furthermore, inde-
pendent (spherical) Gaussian noise may be inappropriate
for tasks where the optimal behavior requires correlation
between action dimensions, as for example in the case of
the swimming snake described in our experiments, which
must coordinate the motion of different body joints to pro-
duce a synchronized undulating gait.

The NAF provides us with a simple and natural avenue
to obtain an adaptive exploration strategy, analogously to
Boltzmann exploration. The idea is to use the matrix in
the quadratic component of the advantage function as the
precision for a Gaussian action distribution. This naturally
causes the policy to become more deterministic along di-
rections where the advantage function varies steeply, and
more random along directions where it is flat. The corre-
sponding policy is given by

π(u|x) = expQ(x,u|θQ) /

∫
expQ(x,u|θQ) du

= N (µ(x|θµ), cP (x|θP)−1).
(3)

Previous work also noted that generating Gaussian explo-
ration noise independently for each time step was not well-

Continuous Deep Q-Learning with Model-based Acceleration: Appendix

Figure 1. NAF with exploration noise generated using the preci-
sion term (NAF-P) slightly outperforms the best DDPG result.
Precision term is not used until episode 200.

suited for many continuous control tasks, particularly simu-
lated robotic tasks where the actions correspond to torques
or velocities (Lillicrap et al., 2016). The intuition is that,
as the length of the time-step decreases, temporally inde-
pendent Gaussian exploration will cancel out between time
steps. Instead, prior work proposed to sample noise from
an Ornstein-Uhlenbech (OU) process to generate a tempo-
rally correlated noise sequence (Lillicrap et al., 2016). We
adopt the same approach in our work, but sample the in-
novations for the OU process from the Gaussian distribu-
tion in Equation 3. Lastly, we note that the overall scale
of P (x|θP) could vary significantly through the learning,
and depends on the magnitude of the cost, which introduces
an undesirable additional degree of freedom. We therefore
use a heuristic adaptive-scaling trick to stabilize the noise
magnitudes.

Using the learned precision as the noise covariance for ex-
ploration allowed for convergence to a better policy on the
“canada2d” task, which requires using an arm to strike a
puck toward a target, as shown in Figure 1, but did not make
a significant difference on the other domains.

1.3. Descriptions of Task Domains

Table 1 describes the task domains used in the experiments.

1.4. More Results on Normalized Advantage Functions

Figures 2a, 2b, and 2c provide additional results on the
comparison experiments between DDPG and NAF. As
shown in the main paper, NAF generally outperforms
DDPG. In certain tasks that require precision, such as peg
insertion, the difference is very noticeable. However, there
are also few cases where NAF underperforms DDPG. The
most consistent of such cases is cheetah. While both DDPG

and NAF enable cheetah to run decent distances, it is of-
ten observed that the cheetah movements learned in NAF
are little less natural than those from DDPG. We speculate
such behaviors come from the uni-modal behavior, and thus
exploring other parametric forms of NAF, such as multi-
modal variants, is a promising avenue for future work.

1.5. More Results on Evaluating Best-Case
Model-Based Improvement with True Models

Domains - 0.5 ImR ImR,0.5 ImR,1
Reacher -0.488 -0.449 -0.448 -0.426 -0.548
episodes 740 670 450 430 90

Canada2d -6.23 -6.23 -5.89 -5.88 -12.0
episodes 1970 1580 570 140 210
Cheetah 7.00 7.10 7.36 7.29 6.43
episodes 580 1080 590 740 390

Table 2. Best-case model-based acceleration with true dynamics
models. Best test rewards of NAF policies (first row), and the
episodes it required to reach 5% of the best value (second row).
“0.5” and “1” correspond to the fraction of MPC episodes. “ImR”
means using imagination rollout with rollout length l = 10 for
reacher, canada2d, and l = 5 for cheetah.

In the main paper, iLQG with true dynamics is used to gen-
erate guided exploration trajectories. While iLQG works
for simple manipulation tasks with small number of initial
states, it does not work well for random target reacher or
complex locomotion tasks such as cheetah. We therefore
run iLQG in model-predictive control (MPC) mode for the
experiments reported in Figures 3c, 3b, and 3a, and Table 2.
It is important to note that for those experiments, the hyper-
parameters were fixed (batch normalization is on, learning
rate is 10−3, and exploration size is 0.3), and thus the re-
sults differ slightly from the experiments in the previous
section.

In cheetah and other complex locomotion tasks, MPC pol-
icy is usually sub-optimal, and thus poor performance of
mixing MPC experience in Figure 3b is expected. On the
other hand, MPC policy works reasonably in hard manipu-
lation tasks such as canada2d, and there is significant gain
from mixing MPC experience as Figure 3c shows. How-
ever, the most consistent gain comes from using imag-
ination rollouts. In particular, Figure 3c shows that in
canada2d, MPC experiences gives very good trajectories,
i.e. those that hit balls in roughly the right directions,
and doing rollouts can generate more of this useful experi-
ence, enabling canada2d to learn very quickly. While with
true dynamics having the imagination experience directly
means more experience and such result may be trivial, it
is important to see the benefits of rollouts which only ex-
plore up to l = 10 steps away from the real trajectories.
This means the dynamics model only needs to be accurate
around the data trajectories and this significantly lessens
the requirement on fitted models.

Continuous Deep Q-Learning with Model-based Acceleration: Appendix

Domain Description Domain Description

Cartpole

The classic cart-pole swing-up task. Agent
must balance a pole attached to a cart by
applying forces to the cart alone. The pole
starts each episode hanging upside-down.

Reacher
Agent is required to move a 3-DOF arm from
random starting locations to random target
positions.

Peg
Agent is required to insert the tip of a 3-DOF
arm from locally-perturbed starting locations
to a fixed hole.

Gripper
Agent must use an arm with gripper appendage
to grasp an object and manuver the object to a
fixed target.

GripperM
Agent must use an arm with gripper attached to
a moveable platform to grasp an object and
move it to a fixed target.

Canada2d

Agent is required to use an arm with
hockey-stick like appendage to hit a ball
initialzed to a random start location to a
random target location.

Cheetah
Agent should move forward as quickly as
possible with a cheetah- like body that is
constrained to the plane.

Swimmer6
Agent should swim in snake-like manner
toward the fixed target using six joints, starting
from random poses.

Ant
The four-legged ant should move toward the
fixed target from a fixed starting position and
posture.

Walker2d

Agent should move forward as quickly as
possible with a bipedal walker constrained to
the plane without falling down or pitching the
torso too far forward or backward.

Table 1. List of domains. All the domains except ant are 2D.

(a) NAF significantly outperforms
DDPG on moving gripper.

(b) NAF converges faster than
DDPG on swimmer6.

(c) DDPG converges faster than
NAF on cheetah.

Figure 2. NAF vs DDPG on three domains.

(a) NAF on multi-target reacher. In-
significant gain from mixing MPC
experience. Significant gain from
imagination rollouts.

(b) NAF on cheetah. Great speeds
up with imagination rollouts, no
gain from mixing MPC experi-
ences.

(c) NAF on canada2d. Very signif-
icant speed-ups from mixing MPC
experiences, both with or without
the rollouts.

Figure 3. NAF on multi-target reacher, cheetah, and canada2d, with model-based acceleration using true dynamics: “ImR” denotes using
the imagination rollout, l = 10 steps. “MPC-x” indicates mixing x fraction of MPC episodes.

Continuous Deep Q-Learning with Model-based Acceleration: Appendix

References
Levine, Sergey and Abbeel, Pieter. Learning neural net-

work policies with guided policy search under unknown
dynamics. In Advances in Neural Information Process-
ing Systems (NIPS), pp. 1071–1079, 2014.

Levine, Sergey and Koltun, Vladlen. Guided policy
search. In International Conference on Machine Learn-
ing (ICML), pp. 1–9, 2013.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep rein-
forcement learning. International Conference on Learn-
ing Representations (ICLR), 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael I., and Moritz, Philipp. Trust region policy
optimization. In International Conference on Machine
Learning (ICML), pp. 1889–1897, 2015.

Tassa, Yuval, Erez, Tom, and Todorov, Emanuel. Synthe-
sis and stabilization of complex behaviors through online
trajectory optimization. In International Conference on
Intelligent Robots and Systems (IROS), pp. 4906–4913.
IEEE, 2012.

