
Robust Random Cut Forest Based Anomaly Detection On Streams

A. Theorem 1: Low Stretch Spanning Trees
Observe that in the construction of RRCF (S) where the
sum of the lengths of the sides of B(S) is denoted by P (S),
the probability that we separated two points x(1),x(2) by
the first cut is proportional to the L1 distance measure:
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Lemma 7 Given a tree T in RRCF (S) suppose we mea-
sure the distance between two points as follows: we find
the first level where the points are separated and let the
set be S. We assign the distance P (S), i.e., the sum
of the edge lengths of the minimum bounding box B(S).
Then the expected length of pair of points x(1),x(2) is
L1(x(1),x(2)) times the expected number of steps to sep-
arate x(1),x(2). Observe that we never assign a distance
less than L1(x(1),x(2)).

Proof: Follows from the fact that the distance assigned at
a level corresponding to S′ is P (S′) and the probability
of that distance assignment is L1(x(1),x(2))/P (S′). The
expected distance therefore is L1(x(1),x(2)) times the ex-
pected number of steps that separate the two points! �

Remark: Note that the expected number of steps can be
bounded by O(d logP (S)/L1) since P (S) decreases by
a (1 − 1

2d ) factor in expectation. Other bounds can also
be used – for example logarithm of the ratio of the total
volume to the volume of the smallest box that contains
x(1),x(2) since in each step we divide the volume by 1

2
in expectation.

B. Omitted Proofs
B.1. Proof of Lemma 1

We restate the lemma.

Lemma 8 The expected displacement caused by a point x
is the expected number of points in the sibling node of the
leaf node containing x, when the partitioning is done ac-
cording to the algorithm in Definition 1.

Proof: In the absence of x, (in Figure 2b) the representa-
tion would be q0, . . . , qr, 0, . . ., in other words we would

need 1 fewer bit to represent the point p. Therefore:

f(y, Z, T )−f(y, Z−{x}, T ) =
{

1 y ∈ sibling c of x
0 otherwise

The lemma follows. �

B.2. Proof of Lemma 2

We restate the lemma.

Lemma 9 CODISP(x, Z, |S|) can be estimated efficiently.

Proof: Observe that following the logic of Lemma 1, the
difference

f(y, S, T )− f(y, S − C, T )

is nonzero for y ∈ Z − C if and only iff we delete all the
elements in a sibling subtree containing y. For example in
Figure 2a, if |b| is large, then the collusive displacement
will be large only if we delete all the nodes in c along with
x. Moreover to achieve any nonzero displacement we have
to simultaneously delete all copies of x; and the result will
scale down based on the number of duplicates. Observe
that a consequence, given a T , we can compute

max
x∈C⊆S

1

|C|
∑

y∈S−C

(
f(y, S, T )− f(y, S − C, T )

)

optimally by considering only the subtrees in the leaf to
root path defined by x. �

B.3. Proof of Lemma 3

We restate the lemma.

Lemma 10 Given point p and set of points S with an axis
parallel minimal bounding box B(S) such that p �∈ B:

(i) For any dimension i, the probability of choosing an
axis parallel cut in a dimension i that splits S using
the weighted isolation forest algorithm is exactly the
same as the conditional probability of choosing an
axis parallel cut that splits S ∪ {p} in dimension i,
conditioned on not isolating p from all points of S.

(ii) Given a random tree of RRCF (S ∪ {p}), condi-
tioned on the fact the first cut isolates p from all points
of S, the remainder of the tree is a random tree in
RRCF (S).

Proof: Consider the first part. Let the length of the min-
imum bounding box of S in dimension i be �i. Let the
length of the minimum bounding box of S ∪{p} in dimen-
sion i be �′i. Thus the probability (density) of choosing a
cut C in dimension i that splits S is

1
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where the first term is the probability density conditioned
on the dimension and the second term is the probability of
choosing dimension i. The probability density of achieving
the same cut in constructing a weighted isolation forest of
S ∪ {p} conditioned on not isolating p and S is

1
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The last part follows from the observation that the proba-
bility of not isolating p and S is

∑
i �i/

∑
i �
′
i. This proves

part (i). Note that part (ii) follows from construction. �

B.4. Proof of Lemma 4

We restate the lemma.

Lemma 11 If T were drawn from the distribution
RRCF (S) then Algorithm 1 produces a tree T ′ which
is drawn at random from the probability distribution
RRCF (S − {p}).

Proof: Given T was drawn from RRCF (S) consider the
random forest algorithm that would have produced this
tree. Consider also the random forest algorithm as it pro-
duces T ′. We will stochastically couple the decisions of the
split operation – mirror the same split in T ′ as in T (Lind-
vall, 1992). Even though the splits across the two trees are
correlated, if we consider only T or T ′, it would appear
that the respective tree was produced with the right distri-
bution. Of course the mirroring will not always be obvious,
but we address that below. Initially we have a set S′ = S.
Consider the cases (a)–(b) below:

(a) Suppose that we choose the dimension i in splitting T
and the point p does not lie on the bounding box of S′
in dimension i. In this case the presence or absence of
the point p does not affect the distribution of cuts are
the same irrespective of the point set S′ or S′ − {p}.
The construction of T ′ therefore can choose the same
dimension i and the same cut as in T , and that could
correspond to be a valid step with the correct probabil-
ity. Note that after the cut, p can belong to only one
side ,say S′′. We will set S′ = S′′ and recurse. Note
that we can use the same subtree (as in T ) for the sub-
set S′ − S′′ since there were no change to the point

set. The construction of T ′ can completely mirror T
for these subsets, and the construction will preserve the
correct probabilities.

(b) Otherwise, we choose dimension i in splitting T and
point p lies on the bounding box of S′ in dimension i.
We now have two cases.

(i) Point p is separated from rest of S′. In this case
T produces a sibling tree T (u) starting at node u
which is the sibling node of node v containing the
isolated point p. But then in T ′ we do not have p,
and T (u) is a random tree from RRCF (S′−{p})
and the construction is correct using part (ii) of
Lemma 3.

(ii) Point p is not separated from S′. By Lemma 3,
conditioned on the fact that p is not separated
from S′ we are choosing a random cut which sep-
arates S′−{p} along a chosen dimension i. This
is therefore an appropriate choice for T ′ using
part (i) of Lemma 3 and we choose the same cut
in T ′. Again we have two subsets, and in T , p be-
longs to only one side. We recurse on that side –
for the other side the construction of T, T ′ can be
identical since they have the same set of points.

The above cases are mutually exclusive and exhaustive.
This proves the Lemma. �

B.5. Proof of Lemma 6

We restate the lemma.

Lemma 12 If T were drawn from the distribution
RRCF (S) then Algorithm 1 produces a tree T ′ which
is drawn at random from the probability distribution
RRCF (S ∪ {p}).

Proof: We proceed in a manner similar to the proof of
Lemma 4 — however instead of using tree T to define the
splits for T ′, we will first make a decision about T ′ and
then mirror T . Suppose that we have currently the set of
nodes S′. Note that the case of S′ = ∅ is trivial. There-
fore assume S′ �= ∅ and we are given a tree T (S′) from
RRCF (S′).

(a) If we decide to separate p and S′ then Step 6 in Al-
gorithm 2 generates such a cut. Now after the cut,
we observe that T (S′) is already a random tree in
RRCF (S′) and we can simply use T (S′) to define T ′.

(b) If we decide to not separate p and S′ then using part
(i) of Lemma 3, we can choose any cut that splits the
bounding box B(S′). Note that the first cut in T (S′) is
exactly such a cut chosen with the correct distribution.
Therefore we can use the same cut in T ′ in this case.
Note that we now have two sides and p only affects one
side – we can use the same subtree as in T (S′) for the
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side that does not contain p. We the side S′′ that con-
tains p. Note that we recursively maintain the property
that we have a random tree T (S′′) from RRCF (S′′).

The above steps are mutually exclusive and exhaustive.
This proves the Lemma. �

C. Depth and Co-Displacement
As remarked in Section 4.1 the introduction, it is unclear
why the (shallowness of) depth in a random cut forest is
the best possible predictor of anomalies. We show an-
other example to illustrate that the depth provides us a very
noisy signal. Consider the data in Figure 6 which shows an
empty donut – the exterior has 2500 points (generated from
a Gaussian with mean as the origin and standard deviation√
2 and we remove all points within distance 3 from ori-

gin till we get 2500 points). The interior circle has 2500
points from a Gaussian around the origin with standard de-
viation

√
0.2 and we remove all points which are at a dis-

tance larger than 1. We then add the single outlier point
(1.5, 0).
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Figure 6. Another simple example dataset

Figure 7 shows the two other points which have larger
CODISP() than the (1.5, 0) point. The legend shows the
amount of the collusive displacement.
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Figure 7. CODISP() above the point (1.5, 0)

Figure 8 shows the 87 points (in a particular run) with ex-
pected depth below that of (1.5, 0) when we constructed
the trees with the recursive bias. The points are distributed
as we would expect in the periphery – any distribution there
will be points which are far from the central point, but they
are not necessarily outliers.
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Figure 8. g() above the point (1.5, 0)

The notion of “surprise” which is captured by (large)
CODISP() is not the same as the (shallow) expected depth.
In fact the sum of these two quantities (almost, given the
difference between DISP() and CODISP() – but the Gaus-
sian generation ensures no duplicates) correspond to the
total increase in model complexity as discussed in Defi-
nition 2. Depth alone does not appear to be a sufficient
statistic. Of course this leaves open the possibility of a non-
parametric model-based definition that incorporate both the
expected depth and the collusive displacement. If we were
to assign costs to the bits representations then a case can be
argued for CODISP()/g(), however pinning that quantity to
a more fundamental notion likely requires substantial work
which is left for the future.


