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A. Introduction
In this supplement, we first provide additional experimental results on the proposed estimator with MCP regularization,
followed by the details of technical proof for the main results, including proofs of theorems and auxiliary lemmas.

B. Additional Experimental Results
Regarding matrix completion and matrix sensing, we present additional experimental results of the proposed estimator
with MCP penalty. Due to the similar properties and parameter settings of these two nonconvex penalties, the MCP
penalty and SCAD penalty, the numerical behaviour of the proposed estimator with MCP penalty resembles the one with
SCAD penalty, as shown in Figure 2.
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Figure 2. Simulation Results for Matrix Completion and Matrix Sensing with MCP penalty. Accordingly, the size of matrix and the
rank are m × m. The results of matrix completion, with rank r = �log2 m�, in Figure 2(a)-2(c) with the rescaled sample size N =
n/(rm logm); while matrix sensing, for rank r = 10, is studied in Figure 2(d)-2(f) with rescaled sample size N = n/(rm).

In detail, Figure 2(a)- 2(c) are the results for matrix completion. With the same settings as experiments shown in Figure 1,
we have that the estimator with MCP penalty, a particular case of the proposed estimator with nonconvex penalty, behaviors
in accordance with our theoretical analysis and outperforms the estimator with nuclear norm. For the other example, i.e.,
matrix sensing, the results in Figure 2(d)- 2(f) manifest the superiority of the estimator with MCP penalty. Particularly, for
both examples, we have with with high probability, the rank of the underlying matrix is recovered with high probability.

C. Background
For matrix Θ∗ ∈ Rm1×m2 , which is exactly low-rank and has rank r, we have the singular value decomposition (SVD)
form of Θ∗ = U∗Γ∗V∗�, where U∗ ∈ Rm1×r, V∗ ∈ Rm2×r are matrices consist of left and right singular vectors, and
Γ∗ = diag(γ∗

1 , . . . , γ
∗
r ) ∈ Rr×r. Based on U∗,V∗, we define the following two subspaces of Rm1×m2 :

F(U∗,V∗) := {Δ|row(Δ) ⊆ V∗ and col(Δ) ⊆ U∗},
and

F⊥(U∗,V∗) := {Δ|row(Δ) ⊥ V∗ and col(Δ) ⊥ U∗},
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where Δ ∈ Rm1×m2 is an arbitrary matrix, and row(Δ) ⊆ Rm2 , col(Δ) ⊆ Rm1 are the row space and column space
of the matrix Δ. respectively. We will use the shorthand notation of F ,F⊥, when (U∗,V∗) are clear from the context.
Define ΠF ,ΠF⊥ as the projection operator onto the subspaces F and F⊥:

ΠF (A) = U∗U∗�AV∗V∗�, (C.1)

ΠF⊥(A) =
�
Im1

−U∗U∗��
A

�
Im2

−V∗V∗��
.

Thus, for all Δ ∈ Rm1×m2 , we have its orthogonal complement Δ�� with respect to the true low-rank matrix Θ∗ as
follows:

Δ�� =
�
Im1 −U∗U∗��

Δ
�
Im2 −V∗V∗��

,

Δ� =Δ−Δ��,
(C.2)

where Δ� is the component which has overlapped row and column space with Θ∗. (Negahban et al., 2012) gives detailed
discussion about the concept of decomposibility and a large class of decomposable norms, among which the decompos-
ability of the nuclear norm and Frobenius norm is relevant to our problem. For low-rank estimation, we have the equality
that �Θ∗ +Δ���∗ = �Θ∗�∗ + �Δ���∗ with Δ�� defined above.

D. Proof of the Main Results
D.1. Proof of Theorem 3.4

We first define �Ln,λ(·) as follows,

�Ln,λ(Θ) = Ln(Θ) +Qλ(Θ).

Based on the the restrict strongly convexity of Ln, and the curvature parameter of the non-convex penalty, if κ(X) > ζ−,
we have the restrict strongly convexity of �Ln,λ(·), as stated in the following lemma.

Lemma D.1. Under Assumption 3.1, if it is assumed that Θ1 −Θ2 ∈ C, we have

�Ln,λ(Θ2) ≥ �Ln,λ(Θ1) + �∇ �Ln,λ(Θ1),Θ2 −Θ1�+
κ(X)− ζ−

2
�Θ2 −Θ1�2F .

Proof. Proof is provided in Section F.1.

In the following, we prove that �Δ = �Θ−Θ∗ lies in the cone C, where

C =
�
Δ ∈ Rm1×m2

���ΠF⊥(Δ)�∗ ≤ 5�ΠF (Δ)�∗
�
.

Lemma D.2. Under Assumption 3.1, the condition κ(X) > ζ−, and the regularization parameter λ ≥ 2
��X∗(�)

��
2
/n, we

have
��ΠF ( �Θ−Θ∗)

��
∗ ≤ 5

��ΠF⊥( �Θ−Θ∗)
��
∗.

Proof. Proof is provided in Section F.2.

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. According to Lemma D.1, we have

�Ln,λ( �Θ) ≥ �Ln,λ(Θ
∗) + �∇ �Ln,λ(Θ

∗), �Θ−Θ∗�+ κ(X)− ζ−
2

� �Θ−Θ∗�2F , (D.1)

�Ln,λ(Θ
∗) ≥ �Ln,λ( �Θ) + �∇ �Ln,λ( �Θ),Θ∗ − �Θ�+ κ(X)− ζ−

2
�Θ∗ − �Θ�2F . (D.2)
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Meanwhile, since � · �∗ is convex, we have

λ� �Θ�∗ ≥ λ�Θ∗�∗ + λ� �Θ−Θ∗,W∗�, (D.3)

λ�Θ∗�∗ ≥ λ� �Θ�∗ + λ�Θ∗ − �Θ,W∗�, (D.4)

where W∗ ∈ �Θ∗�∗.

Adding (D.1) to (D.4), we have

0 ≥
�
∇ �Ln,λ(Θ

∗) + λW∗, �Θ−Θ∗�+
�
∇ �Ln,λ( �Θ) + λ�W,Θ∗ − �Θ

�
+ (κ(X)− ζ−)� �Θ−Θ∗�2F .

Since �Θ is the solution to the SDP (2.2), �Θ satisfies the optimality condition (variational inequality), for any Θ� ∈
Rm1×m2 , it holds that

max
Θ�

�
∇ �Ln,λ( �Θ) + λ�W, �Θ−Θ�� ≤ 0,

which implies
�
∇ �Ln,λ( �Θ) + λ�W,Θ∗ − �Θ

�
≥ 0.

Hence,

(κ(X)− ζ−)� �Θ−Θ∗�2F ≤
�
∇ �Ln,λ(Θ

∗) + λW∗,Θ∗ − �Θ
�

≤
�
ΠF⊥

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
+

�
ΠF

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
. (D.5)

Recall that γ∗ = γ(Θ∗) is the vector of (ordered) singular values of Θ∗. In the following, we decompose (D.5) into three
parts with regard to the magnitudes of the singular values of Θ∗.

(1) i ∈ Sc that (γ∗)i = 0;

(2) i ∈ S1 that (γ∗)i ≥ ν;

(3) i ∈ S2 that ν > (γ∗)i > 0.

Note that S1 ∪ S2 = S.

(1) For i ∈ Sc, it correspond to the projector ΠF⊥(·) since γ(ΠF⊥(Θ∗)
�
= (γ∗)Sc = 0.

Based on the regularity condition (iii) in Assumption 3.3 that q�λ(0) = 0, we have that ∇Qλ(Θ
∗) = U∗q�λ(Γ

∗)V∗� where
Γ∗ ∈ Rr×r is the diagonal matrix with diag(Γ∗) = γ∗, we have

ΠF⊥(∇Qλ(Θ
∗)) =

�
Im1

−U∗U∗��
U∗q�λ(Γ

∗)V∗��
Im2

−V∗V∗��

= (U∗ −U∗)q�λ(Γ
∗)

�
V∗� −V∗��

= 0.

Therefore,

ΠF⊥(∇Qλ(Θ
∗)) = 0.

Meanwhile, we have

��ΠF⊥
�
∇Ln(Θ

∗)
���

2
≤

��∇Ln(Θ
∗)

��
2
=

�X∗(�)�2
n

≤ λ.

For Z∗ = −λ−1ΠF⊥
�
∇Ln(Θ

∗)
�
, we have W∗ = U∗V∗� + Z∗ ∈ ∂�Θ∗�∗ because �Z∗�2 ≤ 1 and Z∗ ∈ F⊥, which

satisfies the condition of W∗ to be subgradient of �Θ∗�∗. With this particular choice of W∗, we have

ΠF⊥
�
∇Ln(Θ

∗) + λW∗� = ΠF⊥
�
∇Ln(Θ

∗)
�
+ λZ∗ = 0,
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which implies that
�
ΠF⊥

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
= �0,Θ∗ − �Θ� = 0. (D.6)

(2) Consider i ∈ S1 that (γ∗)i ≥ ν. Let |S1| = r1. Define a subspace of F associated with S1 as follows

FS1
(U∗,V∗) := {Δ ∈ Rm1×m2 |row(Δ) ⊂ V∗

S1
and col(Δ) ⊂ U∗

S1
},

where U∗
S1

and V∗
S1

is the matrix with the ith row of U∗ and V∗ where i ∈ S1.

Recall that Pλ(Θ
∗) = Qλ(Θ

∗) + λ�Θ∗�∗. We have

∇Pλ(Θ
∗) = ∇Qλ(Θ

∗) + λ(U∗V∗� + Z∗).

Projecting ∇Pλ(Θ
∗) into the subspace FS1 , we have

ΠFS1

�
∇Pλ(Θ

∗)
�
= ΠFS1

�
∇Qλ(Θ

∗) + λU∗V∗� + λZ∗�

= U∗
S1
q�λ(Γ

∗
S1
)(V∗

S1
)� + λU∗

S1
(V∗

S1
)�

= U∗
S1

�
q�λ(Γ

∗
S1
) + λIS1

�
(V∗

S1
)�,

where Γ∗
S1

∈ Rr1×r1 and
�
q�λ(Γ

∗
S1
) + λIS1

�
is a diagonal matrix that

�
q�λ(Γ

∗
S1
) + λIS1

�
ii

= 0 for i /∈ S1, and for all
i ∈ S1,

�
q�λ(Γ

∗
S1
) + λIS1

�
ii
= q�λ

�
(γ∗)i

�
+ λ = p�λ

�
(γ∗)i

�
= 0,

where the last equality is because pλ(·) satisfies the regularity condition (i) with (γ∗)i ≥ ν for i ∈ S1. Thus, we have
q�λ(DS1

) + λIS1
= 0, which indicates that ΠFS1

�
∇Pλ(Θ

∗)
�
= 0. Therefore, we have

�
ΠFS1

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
=

�
ΠFS1

�
∇Ln(Θ

∗) +∇Pλ(Θ
∗)

�
,Θ∗ − �Θ

�

=
�
ΠFS1

�
∇Ln(Θ

∗)
�
,ΠFS1

�
Θ∗ − �Θ

��

≤
��ΠFS1

�
∇Ln(Θ

∗)
���

2
·
��ΠFS1

�
Θ∗ − �Θ

���
∗,

where the last inequality is derived from the Hölder inequality. What remains is to bound
��ΠFS1

�
Θ∗ − �Θ

���
∗. By the

properties of projection on to the subspace FS1
, we have

��ΠFS1

�
Θ∗ − �Θ

���
∗ ≤ √

r1
��ΠFS1

�
Θ∗ − �Θ

���
F
≤ √

r1
��Θ∗ − �Θ

��
F
,

where the second inequality is due to the fact that rank
�
ΠFS1

�
Θ∗ − �Θ

��
≤ r1. Therefore, we have

�
ΠFS1

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
≤ √

r1
��ΠFS1

�
∇Ln(Θ

∗)
���

2
·
��Θ∗ − �Θ

��
F
. (D.7)

(3) Finally, consider i ∈ S2 that (γ∗)i ≤ ν. Let |S2| = r2. Define a subspace of F associated with S2 as follows

FS2(U
∗,V∗) :=

�
Δ ∈ Rm1×m2 |row(Δ) ⊂ V∗

S2
and col(Δ) ⊂ U∗

S2

�
,

where U∗
S2

and V∗
S2

is the matrix with the ith row of U∗ and V∗ where i ∈ S2. It is obvious that for all Δ ∈ Rm1×m2 ,
the following decomposition holds

ΠF (Δ) = ΠFS1
(Δ) +ΠFS2

(Δ).

In addition, since U∗, V∗ are unitary matrices, we have

FS1
⊂ F⊥

S2
, and FS2

⊂ F⊥
S1
,
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where F⊥
S1
,F⊥

S2
denote the complementary subspace of FS1

and FS2
, respectively. Similar to analysis in (2) on S1, we

have

ΠFS2

�
∇Qλ(Θ

∗)
�
= U∗

S2
q�λ(Γ

∗
S2
)(V∗

S2
)�,

where q�λ(Γ
∗
S2
) is a diagonal matrix that

�
q�λ(Γ

∗
S2
)
�
ii
= 0 for i /∈ S2, and for all i ∈ S2,

�
q�λ(Γ

∗
S2
)
�
ii
= q�λ

�
(γ∗)i

�
≤ λ,

since (γ∗)i ≤ ν and qλ(·) satisfies the regularity condition (iv). Therefore
��ΠFS2

�
∇Qλ(Θ

∗)
���

2
= max

i∈S2

�
q�λ(Γ

∗
S2
)
�
ii
≤ λ. (D.8)

Meanwhile, we have
��ΠFS2

(λW∗)
��
2
≤

��ΠF
�
λU∗V∗����

2
= λ, (D.9)

where the first inequality is due the fact that FS2
∈ F , and last equality comes from the fact that

��U∗V∗���
2
= 1.

Therefore, we have
��ΠFS2

(λW∗)
��
2
≤ λ. (D.10)

In addition, we have the fact that
��ΠFS2

�
∇Ln(Θ

∗)
���

2
≤

��∇Ln(Θ
∗)

��
2
≤ λ., which indicates that

�
ΠFS2

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
=

�
ΠFS2

�
∇Ln(Θ

∗) +∇Qλ(Θ
∗) + λW∗�,Θ∗ − �Θ

�

=
�
ΠFS2

�
∇Ln(Θ

∗)
�
,Θ∗ − �Θ

�
+

�
ΠFS2

�
∇Qλ(Θ

∗)
�
,Θ∗ − �Θ

�
+

�
ΠFS2

�
λW∗�,Θ∗ − �Θ

�

≤
���ΠFS2

�
∇Ln(Θ

∗)
���

2
+

��ΠFS2

�
∇Qλ(Θ

∗)
���

2
+

��ΠFS2
(λW∗)

��
2

���ΠFS2
(Θ∗ − �Θ)

��
∗,

where the last inequality is due to Hölder’s inequality. Since we have obtained the bound for each term, as
in (D.8), (D.9), (D.10), we have

�
ΠFS2

�
∇ �Ln,λ(Θ

∗) + λW∗�,Θ∗ − �Θ
�
≤ 3λ�ΠFS2

(Θ∗ − �Θ)�∗
≤ 3λ

√
r2�Θ∗ − �Θ�F , (D.11)

where the last inequality utilizes the fact that rank(ΠFS2
(Θ∗ − �Θ)) ≤ r2.

Adding (D.6), (D.7), and (D.11), we have
�
κ(X)− ζ−

�
� �Θ−Θ∗�2F ≤

�
∇ �Ln,λ(Θ

∗) + λW∗,Θ∗ − �Θ
�

≤ √
r1

��ΠFS1

�
∇Ln(Θ

∗)
���

2
·
��Θ∗ − �Θ

��
F
+ 3λ

√
r2�Θ∗ − �Θ�F ,

which indicate that

� �Θ−Θ∗�F ≤
√
r1

κ(X)− ζ−

��ΠFS1

�
∇Ln(Θ

∗)
���

2
+

3λ
√
r2

κ(X)− ζ−
.

This completes the proof.

D.2. Proof of Theorem 3.5

Before presenting the proof of Theorem 3.5, we need the following lemma.

Lemma D.3 (Deterministic Bound). Suppose Θ∗ ∈ Rm1×m2 has rank r, X(·) satisfies RSC with respect to C. Then the
error bound between the oracle estimator �ΘO and true Θ∗ satisfies

� �ΘO −Θ∗�F ≤
2
√
r
��ΠF

�
∇Ln(Θ

∗)
���

2

κ(X)
, (D.12)

Proof. Proof is provided in Section F.3.
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Proof of Theorem 3.5. Suppose �W ∈ ∂� �Θ�∗, since �Θ is the solution to the SDP (2.2), the variational inequality yields

max
Θ�

� �Θ−Θ�,∇ �Ln,λ( �Θ) + λ�W
�
≤ 0. (D.13)

In the following, we will show that there exists some �WO ∈ ∂� �ΘO�∗ such that, for all Θ� ∈ Rm1×m2 ,

max
Θ�

� �ΘO −Θ�,∇ �Ln,λ( �ΘO) + λ�WO

�
≤ 0. (D.14)

Recall that �Ln,λ(Θ) = Ln(Θ) + Qλ(Θ). By projecting the components of the inner product of the LHS in (D.14) into
two complementary spaces F and F⊥, we have the following decomposition

� �ΘO −Θ�,∇ �Ln,λ( �ΘO) + λ�WO

�

=
�
ΠF ( �ΘO −Θ�),∇ �Ln,λ( �ΘO) + λ�WO

�
� �� �

I1

+
�
ΠF⊥( �ΘO −Θ�),∇ �Ln,λ( �ΘO) + λ�WO

�
� �� �

I2

. (D.15)

Analysis of Term I1. Let γ∗ = γ(Θ∗), �γO = γ( �ΘO) be the vector of (ordered) singular values of Θ∗ and �ΘO,
respectively. By the perturbation bounds for singular values, the Weyl’s inequality (Weyl, 1912), we have that

max
i

��(γ∗)i − (�γO)i
�� ≤

��Θ∗ − �ΘO

��
2
≤

��Θ∗ − �ΘO

��
F
.

Since Lemma D.3 provides the Frobenius norm on the estimation error Θ∗ − �ΘO, we obtain that

max
i

��(γ∗)i − (�γO)i
�� ≤ 2

√
r

nκ(X)
�X∗(�)�2.

If it is assumed that S = supp(σ∗), we have |S| = r. The triangle inequality yields that

min
i∈S

��(�γO)i
�� = min

i∈S

��(�γO)i − (γ∗)i + (γ∗)i
�� ≥ −max

i∈S

��(�γO − γ∗)i
��+min

i∈S

��(γ∗)i
��

≥ − 2
√
r

nκ(X)
�X∗(�)�2 + ν +

2
√
r

nκ(X)
�X∗(�)�2

= ν,

where the inequality on the second line is derived based on the condition that mini∈S

��(γ∗)i
�� ≥ ν +

2n−1
√
r�X∗(�)�∗/κ(X). Based on the definition of oracle estimator (3.2), �ΘO ∈ F , which implies rank( �ΘO) = r.

Therefore, we have

(�γO)1 ≥ (�γO)2 ≥ . . . ≥ (�γO)r ≥ ν > 0 = (�γO)r+1 = (�γO)m = 0. (D.16)

By the definition of Oracle estimator, we have �ΘO = U∗�ΓOV
∗�, where �ΓO is the diagonal matrix with diag(�ΓO) = �γO.

Since Pλ(Θ) = Qλ(Θ) + λ�Θ�∗, we have

ΠF
�
∇Pλ( �ΘO)

�
= ΠF

�
∇Qλ( �ΘO) + λ∂� �ΘO�∗

�

= ΠF
�
U∗q�λ(�ΓO)V

∗� + λU∗V∗� + λ�ZO

�

= U∗
�
q�λ

�
(�ΓO)S

�
+ λIr

�
V∗�,

(D.17)

where �ZO ∈ F⊥, ��ZO�2 ≤ 1, and (�ΓO)S ∈ Rr×r is a diagonal matrix with diag
�
(�ΓO)S

�
= (�γO)S . The first equality

in (D.17) is based on the definition of ∇Qλ(·) and ∂� · �∗, while the second is to simply project each component into
the subspace F . Since pλ(t) = qλ(t) + λ|t|, we have p�λ(t) = q�λ(t) + λt for all t > 0. Consider the diagonal matrix
q�λ

�
(�ΓO)S

�
+ λIr, we have the ith (i ∈ S) element on the diagonal that

�
q�λ

�
(�ΓO)S

�
+ λIr

�
ii
= q�λ

�
(�γO)i

�
+ λ = p�λ

�
(�γO)i

�
.
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Since pλ(·) satisfies the regularity condition (ii), that p�λ(t) = 0 for all t ≥ ν, we have p�λ
�
(�γO)i

�
= 0 for i ∈ S, in light of

the fact that (�γO)i ≥ ν > 0. Therefore, the diagonal matrix q�λ
�
(�ΓO)S

�
+ λIr = 0, substituting which into (D.17) yields

ΠF
�
∇Pλ( �ΘO)

�
= 0. (D.18)

Since �ΘO is a minimizer of (3.2) over F , we have the following optimality condition that for all Θ� ∈ Rm1×m2 ,

max
Θ�

�
ΠF ( �ΘO −Θ�),∇Ln( �ΘO)

�
≤ 0. (D.19)

Substitute (D.18) and (D.19) into item I1, we have for all �WO ∈ ∂� �ΘO�∗,

max
Θ�

�
ΠF ( �ΘO −Θ�),∇ �Ln,λ( �ΘO) + λ�WO

�

= max
Θ�

�
ΠF ( �ΘO −Θ�),∇Ln( �ΘO)

�
+max

Θ�

�
ΠF ( �ΘO −Θ�),ΠF

�
∇Pλ( �ΘO)

��

≤ 0.

(D.20)

Analysis of Term I2. By definition of ∇Qλ(Θ), and the condition that q�λ(·) satisfies the regularity condition (iii) in
Assumption 3.3, we have the SVD of ∇Qλ(ΘO) as ∇Qλ( �ΘO) = U∗q�λ(�ΓO)V

∗�, where �ΓO ∈ Rr×r is a diagonal
matrix. Projecting ∇Qλ( �ΘO) into F⊥ yields that

ΠF⊥
�
∇Qλ( �ΘO)

�
=

�
Im1 −U∗U∗��

U∗q�λ
�
(�ΓO)

�
V∗��

Im1 −V∗V∗��

=
�
U∗ −U∗�q�λ

�
(�ΓO)Sc

��
V∗� −V∗��

= 0.

Thus,

ΠF⊥
�
∇Qλ( �ΘO)

�
= 0. (D.21)

Therefore,

I2 =
�
ΠF⊥(−Θ�),ΠF⊥

�
∇Ln( �ΘO) + λ�WO

��
.

Moreover, the triangle inequality yields

�∇Ln( �ΘO)�2 ≤ �∇Ln(Θ
∗)�2 + �∇Ln(Θ

∗)−∇Ln( �ΘO)�2
≤ �∇Ln(Θ

∗)�2 + �∇Ln(Θ
∗)−∇Ln( �ΘO)�F

≤ �∇Ln(Θ
∗)�2 + ρ(X)�Θ∗ − �ΘO�F , (D.22)

where the second inequality comes from the fact that �∇Ln(Θ
∗) − ∇Ln( �ΘO)�2 ≤ �∇Ln(Θ

∗) − ∇Ln( �ΘO)�F , while
the last inequality is obtained by the restricted strong smoothness (Assumption 3.2), which is equivalent to

�∇Ln(Θ)−∇Ln(Θ+ �ΔO)�F ≤ ρ(X)� �ΔO�F ,

over the restricted set C; since ΠF⊥( �ΔO) = 0, it is evident that �ΔO ∈ C.

Substitute (D.12) of Lemma D.3 into (D.22), we have
���ΠF⊥

�
∇Ln( �ΘO)

����
2
≤

��∇Ln( �ΘO)
��
2
≤

��∇Ln(Θ
∗)

��
2
+

2
√
rρ(X)

nκ(X)

��X∗(�)
��
2
≤ λ,

where the last inequality follows from the choice of λ.

By setting �ZO = −λ−1ΠF⊥
�
∇Ln( �ΘO)

�
, such that �WO = U∗V∗� + �ZO ∈ ∂� �ΘO�∗ since �ZO satisfies the condition

�ZO ∈ F⊥, ��ZO�2 ≤ 1, we have

ΠF⊥
�
∇Ln( �ΘO) + λ�WO

�
= 0,
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which implies that

I2 =
�
ΠF⊥(−Θ�),0

�
= 0. (D.23)

Substitute (D.20) and (D.23) into (D.15), we obtain (D.14) that

max
Θ�

� �ΘO −Θ�,∇ �Ln,λ( �ΘO) + λ�WO

�
≤ 0.

Now we are going to prove that �ΘO = Θ∗.

Applying Lemma D.1, we have

�Ln,λ( �Θ) ≥ �Ln,λ( �ΘO) +
�
∇ �Ln,λ( �ΘO), �Θ− �ΘO

�
+

κ(X)− ζ−
2

� �ΘO − �Θ�2F , (D.24)

�Ln,λ( �ΘO) ≥ �Ln,λ( �Θ) +
�
∇ �Ln,λ( �Θ), �ΘO − �Θ

�
+

κ(X)− ζ−
2

� �ΘO − �Θ�2F . (D.25)

On the other hand, because of the convexity of nuclear norm � · �∗, we obtain

λ� �Θ�∗ ≥ λ� �ΘO�∗ + λ� �Θ− �ΘO, �WO�, (D.26)

λ� �ΘO�∗ ≥ λ� �Θ�∗ + λ� �ΘO − �Θ, �W�. (D.27)

Add (D.24) to (D.27), we obtain

0 ≥
�
∇ �Ln,λ( �Θ) + λ�W, �ΘO − �Θ

�
� �� �

I3

+
�
∇ �Ln,λ( �ΘO) + λ�WO, �Θ− �ΘO

�
� �� �

I4

+
�
κ(X)− ζ−

�
� �ΘO − �Θ�2F . (D.28)

Analysis of Term I3. By (D.13), we have
�
∇ �Ln,λ( �Θ) + λ�W, �Θ− �ΘO

�
≤ max

Θ�

�
∇ �Ln,λ( �Θ) + λ�W, �Θ−Θ�� ≤ 0. (D.29)

Therefore I3 ≥ 0.

Analysis of Term I4. By (D.14), we have
�
∇ �Ln,λ( �ΘO) + λ�WO, �ΘO − �Θ

�
≤ max

Θ�

�
∇ �Ln,λ( �ΘO) + λ�WO, �ΘO −Θ�� ≤ 0. (D.30)

Therefore I4 ≥ 0. Substituting (D.29) and (D.30) into (D.28) yields that
�
κ(X)− ζ−

�
� �ΘO − �Θ�2F ≤ 0,

which holds if and only if

�ΘO = �Θ, (D.31)

because κ(X) > ζ−.

By Lemma D.3, we obtain the error bound

� �Θ−Θ∗�F = � �ΘO −Θ∗�F ≤
2
√
r
��ΠF

�
∇Ln(Θ

∗)
���

2

κ(X)
,

which completes the proof.

E. Proof of the Results for Specific Examples
In this section, we provide the detailed proofs for corollaries of specific examples presented in Section 3.2. We will first

establish the RSC condition for both examples, followed by proofs of the corollaries and more results on oracle property
respecting two specific examples of matrix completion.

Particularly, the proofs include the following components: (i) establish the RSC condition, obtaining κ(X) by which
Assumption 3.1 holds with high probability; (ii) estimate �∇Ln(Θ

∗)�2 for the choice of the regularity parameter λ; (iii)
establish the RSS condition, obtaining ρ(X) by which Assumption 3.2 holds with high probability.
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E.1. Matrix Completion

As shown in (Candès & Recht, 2012) with various examples, it is insufficient to recover the low-rank matrix, since it is
infeasible to recover overly “spiky” matrices which have very few large entries. Some existing work (Candès & Recht,
2012) imposes stringent matrix incoherence conditions to preclude such matrices; these assumptions are relaxed in more
recent work (Negahban & Wainwright, 2012; Gunasekar et al., 2014) by restricting the spikiness ratio, which is defined as
follows:

αsp(Θ) =

√
m1m2�Θ�∞

�Θ�F
.

Assumption E.1. These exists a known α∗, such that

�Θ∗�∞ =
αsp(Θ

∗)�Θ∗�F√
m1m2

≤ α∗.

For the example of matrix completion, we have the following matrix concentration inequality, which follows from Proof
of Corollary 1 in (Negahban & Wainwright, 2012).
Proposition E.2. Let Xi uniformly distributed on X , and {ξk}nk=1 be a finite sequence of independent Gaussian variables
with variance σ2. There exist constants C1, C2 that with probability at least 1− C2/M , we have

��� 1
n

n�

i=1

ξiXi

���
2
≤ C1σ

�
M logM

m1m2n
.

Furthermore, the following Lemma plays a key rule in obtaining faster rate for estimator with nonconvex penalties. Partic-
ularly, the following Lemma will provide an upper bound on

��ΠF
�
∇Ln(Θ

∗)
���

2
.

Lemma E.3. If ξi is Gaussian noise with variance σ2. S is a r-dimensional subspace. It holds with probability at least
1− C2/M ,

���ΠS
� 1

n

n�

i=1

ξiXi

����
2
≤ C1σ

�
r logM

m1m2n
,

where C1, C2 are universal constants.

Proof. Proof is provided in Section F.4.

In addition, we have the following Lemma (Theorem 1 in (Negahban & Wainwright, 2012)), which plays central role in
establishing the RSC condition.
Lemma E.4. There are universal constants, k1, k2, C1, . . . , C5, such that as long as n > C2M logM , if the following
condition is satisfied that

√
m1m2

�Δ�∞
�Δ�F

�Δ�∗
�Δ�F

≤
√
rn

k1r1
√
logM + k2

√
r2M logM

, (E.1)

we have
���
��Xn(Δ)

��
2√

n
− �Δ�F√

m1m2

��� ≤ 7

8

�Δ�F√
m1m2

�
1 +

C1αsp(Δ)√
n

�
, (E.2)

with probability greater than 1− C3 exp(−C4M logM).

Proof of Corollary 3.6. With regard to the example of matrix completion, we consider a partially observed setting, i.e.,
only the entries over the subset X . A uniform sampling model is assumed that

∀(i, j) ∈ X , i ∼ uniform([m1]), j ∼ uniform([m2]).

Recall that �Δ = �Θ−Θ∗. In this proof, we consider two cases, depending on if the condition in (E.1) holds or not.
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1. The condition in (E.1) does not hold.

2. The condition in (E.1) does hold.

CASE 1. If the condition in (E.1) is violated, it implies that

� �Δ�2F ≤ √
m1m2� �Δ�∞ · � �Δ�∗

k1r1
√
logM + k2

√
r2M logM√

rn

≤ √
m1m2(2α

∗)
�
� �Δ��∗ + � �Δ���∗

�k1r1
√
logM + k2

√
r2M logM√

rn

≤ 12α∗√rm1m2� �Δ��F
k1r1

√
logM + k2

√
r2M logM√

rn
,

where �Δ� = ΠF ( �Δ) and �Δ�� = ΠF⊥( �Δ), the second inequality follows from � �Δ�∞ ≤ � �Θ�∞+�Θ∗�∞ ≤ 2α∗, and the
decomposibility of nuclear norm that � �Δ�∗ = � �Δ��∗ + � �Δ���∗; while the third inequality is based on the cone condition
� �Δ��∗ ≤ 5� �Δ���∗ and � �Δ��∗ ≤ √

r� �Δ��F .
Moreover, since � �Δ��F ≤ � �Δ�F , we obtain that

1√
m1m2

� �Δ�F ≤ 12α∗
�
k1r1

�
logM

n
+ k1

�
r2M logM

n

�
. (E.3)

CASE 2. The condition in (E.1) is satisfied.

As implied by (E.2), we have
��Xn(Δ)

��
2√

n
≥ 1

8

�Δ�F√
m1m2

�
1− C �

1αsp(Δ)√
n

�
,

If C �
1αsp( �Δ)/

√
n > 1/2, we have

� �Δ�F ≤ 2C2
√
m1m2

� �Δ�∞√
n

≤ 4C2α
∗
�

m1m2

n
. (E.4)

If C �
1αsp( �Δ)/

√
n ≤ 1/2, we have

��Xn( �Δ)
��2

2

n
≥ C2

6

m1m2
� �Δ�2F . (E.5)

In order to establish the RSC condition, we need to show that (E.5) is equivalent to Assumption 3.1.

Ln(Θ
∗ + �Δ)− Ln(Θ

∗)−
�
∇Ln(Θ

∗), �Δ
�

=
1

2n

n�

i=1

�
�Θ∗ + �Δ,Xi� − yi

�2
+

1

2n

n�

i=1

�
�Θ∗,Xi� − yi

�2 − 1

n

n�

i=1

�
�Θ∗,Xi� − yi

�
�Xi, �Δ�

=

��Xn( �Δ)
��2

2

n
.

Thus, we have that (E.5) establishes the RSC condition, and κ(X) = C2
6/(m1m2).

After establishing the RSC condition, what remains is to upper bound n−1
��X∗(�)

��
2

and n−1
��ΠFS1

�
X∗(�)

���
2
. By Propo-

sition E.2, we have that with high probability,

1

n

��X∗(�)
��
2
≤ C6σ

�
M logM

m1m2n
; (E.6)
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By Lemma E.3, we have that with high probability,

1

n

��ΠFS1

�
X∗(�)

���
2
≤ C7σ

�
r1 logM

m1m2n
. (E.7)

Substituting (E.6) and (E.7) into Theorem 3.4, we have that there exist positive constants C �
1, C

�
2 such that

1√
m1m2

� �Θ−Θ∗�F ≤ C �
1σr1

�
logM

n
+ C �

2σ

�
r2M logM

n
. (E.8)

Putting pieces (E.3), (E.4), and (E.8) together, we have

1√
m1m2

� �Θ−Θ∗�F ≤ max{α∗,σ}
�
C3r1

�
logM

n
+ C4

�
r2M logM

n

�
,

which completes the proof.

Corollary E.5. Under the conditions of Theorem 3.5, suppose Xi uniformly distributed on X . These exists positive
constants C1, . . . , C4, for any t > 0, if κ(X) = C1/(m1m2) > ζ− and γ∗ satisfies

min
i∈S

��(γ∗)i
�� ≥ ν + C2σ

√
rm1m2

�
M logM

n
,

where S = supp(σ∗), for estimator in (2.2) with regularization parameter

λ ≥ C3(1 +
√
r)σ

�
M logM

nm1m2
,

we have that with high probability, �Θ = �ΘO, which yields that rank( �Θ) = rank( �ΘO) = rank(Θ∗) = r. In addition, we
have

1√
m1m2

� �Θ−Θ∗�F ≤ C4rσ

�
logM

n
. (E.9)

Proof of Corollary E.5. As shown in the proof of Corollary 3.6, we have κ(X) = C1/(m1m2), together with (E.6)
and (E.7), in order to prove Corollary E.5, according to Theorem 3.5, what remains is to obtain ρ(X) in Assumption 3.2. It
can be shown that Assumption 3.2 is equivalent as

ρ(X)

2
� �Δ�2F ≥ 1

n
�X( �Δ)�22.

We consider the following cases depending on if (E.1) holds or not.

CASE 1. If the condition in (E.1) is violated,

1

n
�X( �Δ)�2F ≤ � �Δ�2∞ ≤ � �Δ�2F ,

which implies that ρ(X) = 1.

CASE 2. The condition in (E.1) is satisfied. As implied by Lemma E.4, when n ≥ C2
5α

∗ ≥ C2
5αsp( �Δ), we have that with

high probability, the following holds:

C6

m1m2
� �Δ�2F ≥ 1

n
�X( �Δ)�22.

Thus, ρ(X) = C6/(m1m2), which completes the proof.
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E.2. Matrix Sensing With Dependent Sampling

In this subsection, we provide the proof for the results on matrix sensing. In particular, we will first establish the RSC
condition for the application of matrix sensing, followed by the proof on faster convergence rate and more results on the
oracle property.

In order to establish the RSC condition, we need the following lemma (Proposition 1 in (Negahban & Wainwright, 2011)).

Lemma E.6. Consider the sampling operator of Σ-ensemble, it holds with probability at least 1− 2 exp(−n/32) that

�X(Δ)�2√
n

≥ 1

4

��√Σvec(Δ)
��
2
− 12π(Σ)

��m1

n
+

�
m2

n

�
�Δ�∗.

In addition, we need the upper bound of n−1
��X∗(�)

��
2
, as stated in the following Proposition (Lemma 6, (Negahban &

Wainwright, 2011)).

Proposition E.7. With high probability, there are universal constants C1, C2 and C3 such that

P
���X∗(�)

��
2

n
≥ C1σπ(Σ)

��
m1

n
+

�
m2

n

��
≤ C2 exp

�
− C3(m1 +m2)

�
,

where π(Σ)2 = sup�u�2=1,�v�2=1 Var(u
�Xv).

Proof of Corollary 3.8. To begin with, we need to establish the RSC condition as in Assumption 3.1. According to
Lemma E.6, we have that

��X( �Δ)�2√
n

≥
�
λmin(Σ)

4
� �Δ�F − 12π(Σ)

��m1

n
+

�
m2

n

�
� �Δ�∗.

By the decomposibility of nuclear norm, we have that

� �Δ�∗ = � �Δ��∗ + � �Δ���∗ ≤ 6� �Δ��∗ = 6
√
r� �Δ��F ≤ 6

√
r� �Δ�F , (E.10)

where �Δ� = ΠF ( �Δ) and �Δ�� = ΠF⊥( �Δ).
By substituting (E.10) into Proposition E.6, we have that

��X( �Δ)�2√
n

≥
�
λmin(Σ)

4
� �Δ�F − 72

√
rπ(Σ)

��m1

n
+

�
m2

n

�
� �Δ�F

=
��λmin(Σ)

4
− 72

√
rπ(Σ)

��m1

n
+

�
m2

n

��
� �Δ�F .

Thus, for n > C1rπ
2(Σ)m1m2/λmin(Σ) where C1 is sufficiently large such that

72
√
rπ(Σ)

��m1

n
+

�
m2

n

�
≤ λmin(Σ)

8
,

we have
��X( �Δ)�2√

n
≥

�
λmin(Σ)

8
� �Δ�F ,

which implies that
��X( �Δ)�22

n
≥ λmin(Σ)

64
� �Δ�2F .

Therefore, κ(X) = λmin(Σ)/32 such that the following holds,
��X( �Δ)�22

n
≥ κ(X)

2
� �Δ�2F ,
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which establishes the RSC condition for matrix sensing.

On the other hand, we have
��ΠFS1

�
∇Ln(Θ

∗)
���

2
=

��U∗
S1
U∗�

S1
∇Ln(Θ

∗)V∗
S1
V∗�

S1

��
2
=

��U∗�
S1

∇Ln(Θ
∗)V∗

S1

��
2
,

where the second inequality follows from the property of left and right singular vectors U∗
S1
,V∗

S1
.

It is worth noting that U∗�
S1

∇Ln(Θ
∗)V∗

S1
∈ Rr1×r1 . By Proposition E.7, we have that

��U∗�∇Ln(Θ
∗)V∗��

2
≤ 2C0σπ(Σ)

�
M

n
,

��U∗�
S1

∇Ln(Θ
∗)V∗

S1

��
2
≤ 2C0σπ(Σ)

�
r1
n
,

(E.11)

which hold with probability at lease 1− C1 exp(−C2r1).

The upper bound is obtained directed from Theorem 3.4 and (E.11). Thus, we complete the proof.

Corollary E.8. Under the condition of Theorem 3.5, for some universal constants C1, . . . , C6 if κ(X) = C1λmin(Σ) > ζ−
and γ∗ satisfies

min
i∈S

��(γ∗)i
�� ≥ ν + C2σπ(Σ)

√
r(
√
m1 +

√
m2)√

nλmin(Σ)
,

where S = supp(γ∗), for estimator in (2.2) with regularization parameter

λ ≥ C3

�
1 +

√
rλmax(Σ)

λmin(Σ)

�
σπ(Σ)

��
m1

n
+

�
m2

n

�
,

we have that �Θ = �ΘO, which yields that rank( �Θ) = rank( �ΘO) = rank(Θ∗) = r, with probability at least
1− C4 exp(−C5(m1 +m2)

�
. In addition, we have

� �Θ−Θ∗�F ≤ C6rπ(Σ)√
nλmin(Σ)

. (E.12)

Proof of Corollary E.8. The proof follows from the proof of Corollary 3.8 and Theorem 3.5. As shown in the proof of
Corollary 3.8, we have κ(X) = C1λmin(Σ), together with (E.11), in order to prove Corollary E.8, according to Theo-
rem 3.5, what remains is to obtain ρ(X) in Assumption 3.2, respecting the example of matrix sensing.

According to Assumption 3.2, we have that ρ(X) = λmax(Hn), where Hn is the Hessian matrix of Ln(·). Based on the
definition of Ln(·), we have

Hn = n−1
n�

i=1

vec(Xi)vec(Xi)
�.

Thus E[Hn] = Σ. By concentration, we have that when n is sufficiently large, with high probability, λmax(Hn) ≤
2λmax(Σ), which is equivalent to ρ(X) ≤ 2λmax(Σ), holding with high probability, where n is sufficiently large. This
completes the proof.

F. Proof of Auxiliary Lemmas
F.1. Proof of Lemma D.1

Proof. By the restricted strong convexity assumption (Assumption 3.1), we have

Ln(Θ2) ≥ Ln(Θ1) + �∇Ln(Θ1),Θ2 −Θ1�+
κ(X)

2
�Θ2 −Θ1�2F . (F.1)

In the following, we will show the strong smoothness of Qλ(·), based on the regularity condition (ii), which imposes
constraint on the level of nonconvexity of qλ(·). Assume γ1 = γ(Θ1),γ2 = γ(Θ2) are the vectors of singular values
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of Θ1,Θ2, respectively, and the singular values in γ1,γ2 are nonincreasing. For Θ1, Θ2, we have the following singular
value decompositions:

Θ1 = U1Γ1V
�
1 ,

Θ2 = U2Γ2V
�
2 ,

where Γ1,Γ2 ∈ Rm×m are diagonal matrix with Γ1 = diag(γ1),Γ2 = diag(γ2). For each pair of singular values of
Θ1,Θ2:

�
(γ1)i, (γ2)i

�
where i = 1, 2, . . . ,m, we have

−ζ−
�
(γ1)i − (γ2)i

�2 ≤
�
q�λ

�
(γ1)i

�
− q�λ

�
(γ2)i

���
(γ1)i − (γ2)i

�
,

which is equivalent to
��

− q�λ(Γ1)
�
−

�
− q�λ(Γ2)

�
,Γ1 − Γ2

�
≤ ζ−�Γ1 − Γ2�2F ,

which yields
��

−∇Qλ(Θ1)
�
−

�
−∇Qλ(Θ2)

�
,Θ1 −Θ2

�
≤ ζ−�Θ1 −Θ2�2F . (F.2)

Since (F.2) is the definition of strongly smoothness of −Q(·), it can be show to be equivalent to the following inequality
that

Qλ(Θ2) ≥ Qλ(Θ1) + �∇Q(Θ1),Θ2 −Θ1)−
ζ−
2
�Θ2 −Θ1�2F . (F.3)

Adding up (F.1) and (F.3), we complete the proof.

F.2. Proof of Lemma D.2

Proof. By Lemma D.1, we have that

�Ln,λ( �Θ) + λ� �Θ�∗ − �Ln,λ(Θ
∗)− λ�Θ∗�∗ ≥ �∇ �Ln,λ(Θ

∗), �Θ−Θ∗�+ λ� �Θ�∗ − λ�Θ∗�∗. (F.4)

For the first term on the RHS in (F.4), we have the following lower bound

�∇ �Ln,λ(Θ
∗), �Θ−Θ∗� =

�
∇ �Ln,λ(Θ

∗),ΠF ( �Θ−Θ∗)
�
+

�
∇ �Ln,λ(Θ

∗),ΠF⊥( �Θ−Θ∗)
�

≥ −
��ΠF

�
∇ �Ln,λ(Θ

∗)
���

2� �� �
I1

��ΠF ( �Θ−Θ∗)
��
∗

−
��ΠF⊥

�
∇ �Ln,λ(Θ

∗)
���

2� �� �
I2

��ΠF⊥( �Θ−Θ∗)
��
∗, (F.5)

where the last inequality follows from Hölder’s inequality.

Analysis of term I1. It can be shown that ∇Ln(Θ
∗) = −X∗(�)/n. Based on the condition that λ > 2n−1�X∗(�)�2, we

have that

�∇Ln(Θ
∗)�2 ≤ λ/2. (F.6)

Moreover, by condition (iv) in Assumption 3.3 and (F.6), we obtain that
��ΠF

�
∇ �Ln,λ(Θ

∗)
���

2
=

��ΠF
�
∇Ln(Θ

∗) +Qλ(Θ
∗)

���
2
≤ 3λ/2.

Analysis of term I2. Since ΠF⊥(Θ∗) = 0, we have that
��ΠF⊥

�
∇ �Ln,λ(Θ

∗)
���

2
=

��ΠF⊥
�
∇Ln(Θ

∗)
���

2
≤ λ/2. (F.7)

Putting pieces (F.6) and (F.7) into (F.5), we obtain

�∇ �Ln,λ(Θ
∗), �Θ−Θ∗� ≥ −3λ/2

��ΠF ( �Θ−Θ∗)
��
∗ − λ/2

��ΠF⊥( �Θ−Θ∗)
��
∗. (F.8)
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Meanwhile, we have the lower bound on λ� �Θ�∗ − λ�Θ�∗ that

λ� �Θ�∗ − λ�Θ�∗ = λ
��ΠF ( �Θ)

��
∗ + λ

��ΠF⊥( �Θ)
��
∗ − λ�Θ�∗

≥ −λ
��ΠF ( �Θ−Θ∗)

��
∗ + λ

��ΠF⊥( �Θ−Θ∗)
��
∗ (F.9)

Adding (F.8) and (F.9) yields that

�∇ �Ln,λ(Θ
∗), �Θ−Θ∗�+ λ� �Θ�∗ − λ�Θ�∗ = −5λ/2

��ΠF ( �Θ−Θ∗)
��
∗ + λ/2

��ΠF⊥( �Θ−Θ∗)
��
∗. (F.10)

Due to the fact that �Θ is the global minimizer of (2.2), provided the condition that κ(X) > ζ−, we have

�Ln,λ( �Θ) + λ� �Θ�∗ − �Ln,λ(Θ)− λ�Θ∗�∗ ≤ 0. (F.11)

Substituting (F.10) and (F.11) into (F.4), since λ > 0, we have that
��ΠF⊥( �Θ−Θ∗)

��
∗ ≤ 5

��ΠF ( �Θ−Θ∗)
��
∗,

which completes the proof.

F.3. Proof of Lemma D.3

Proof. �ΔO = �ΘO −Θ∗. According to observation model (2.1) and definition of X(·), we have

Ln( �ΘO)− Ln(Θ
∗) =

1

2n

n�

i=1

�
yi − Xi(Θ

∗ + �ΔO)
�2 − 1

2n

n�

i=1

�
yi − Xi(Θ

∗)
�2

=
1

2n

n�

i=1

�
�i − Xi( �ΔO)

�2 − 1

2n

n�

i=1

�2i

=
1

2n
�X( �ΔO)�22 −

1

n
�X∗(�), �ΔO�,

where X∗(�) =
�n

i=1 �iXi is the adjoint of the operator X. Because the oracle estimator �ΘO minimizes Ln(·) over the
subspace F , while Θ∗ ∈ F , we have Ln( �ΘO)− Ln(Θ

∗) ≤ 0, which yields

1

2n
�X( �ΔO)�22 ≤ 1

n
�X∗(�), �ΔO�. (F.12)

On the other hand, recall that by the RSC condition (Assumption 3.1), we have

Ln(Θ+Δ) ≥ Ln(Θ) + �∇Ln(Θ),Δ�+ κ(X)/2�Δ�2F ,

which implies that

1

2n
�X( �ΔO)�22 −

1

n
�X∗(�), �ΔO� − �∇Ln(Θ

∗),Δ� = 1

2n
�X( �ΔO)�22 ≥ κ(X)

2
� �ΔO�2F . (F.13)

Substituting (F.13) into (F.12), we have

κ(X)

2
� �ΔO�2F ≤ 1

2n
�X( �ΔO)�22 ≤ 1

n
�X∗(�), �ΔO�. (F.14)

Therefore,

� �ΔO�2F ≤ 2
�
ΠF

�
X∗(�)

�
, �ΔO

�

nκ(X)
≤

2
��ΠF

�
X∗(�)

���
2
� �ΔO�∗

nκ(X)
,

where the last inequality is due to Hölder inequality. Moreover, since the rank ΔO is r, we have the fact that � �ΔO�∗ ≤√
r� �ΔO�F , which indicates that

� �ΔO�2F ≤
2
√
r
��ΠF

�
X∗(�)

���
2
· � �ΔO�F

nκ(X)
.
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Therefore, we have the following deterministic error bound

� �ΔO�F ≤
2
√
r
��ΠF

�
X∗(�)

���
2

nκ(X)
=

2
√
r
��ΠF

�
∇Ln(Θ

∗)
���

2

κ(X)
,

where the last equality results from the fact that ∇Ln(Θ
∗) = −X∗(�)/n.

Thus, we complete the proof.

F.4. Proof of Lemma E.3

In order to prove Lemma E.3, we need the Ahlswede-Winter Matrix Bound. To begin with, we introduce the definition of
� · �ψ1 and � · �ψ2 , followed by some established results on � · �ψ1 and � · �ψ2 .

The sub-Gaussian norm of X , denoted by �X�ψ2
, is defined as follows

�X�ψ2 = sup
p≥1

p−1/2(E|X|p)1/p.

It is known that if E[X] = 0, then E[exp(tX)] ≤ exp(Ct2�X�2ψ2
) for all t ∈ R.

The sub-Exponential norm of X , denoted by �X�ψ1
, is defined as follows

�X�ψ1
= sup

p≥1
p−1(E|X|p)1/p.

By (Vershynin, 2010), we have the following Lemma.

Lemma F.1. For Z1 and Z2 being two sub-Gaussian random variables, Z1Z2 is a sub-exponential random variable with

�Z1Z2�ψ1
≤ Cmax

�
�Z1�2ψ2

, �Z2�2ψ2

�
,

where C > 0 is an absolute constant.

Theorem F.2 (Ahlswede-Winter Matrix Bound). (Negahban & Wainwright, 2012) Let Z1, . . . ,Zn be random matrices
of size m1 × m2. Let �Zi�ψ1 ≤ K for all i such that �Zi�ψ1 is upper bounded by K. Furthermore, we have δ2i =
max

���E[Z�
i Zi]

��
2
,
��E[ZiZ

�
i ]

��
2

�
, and δ2 =

�n
i=1 δ

2
i . Then we have

P
�����

n�

i=1

Zi

����
2

≥ t

�
≤ m1m2 max

�
exp

�
− t2

4δ2

�
, exp

�
− t

2K

��
.

Now we are ready to prove Lemma E.3.

Proof of Lemma E.3. Since U∗ and V∗ are singular vectors, for S = F(U∗,V∗), we have

1

n

���ΠS
� n�

i=1

ξiXi

����
2
=

1

n

���U∗U∗�
� n�

i=1

ξiXi

�
V∗V∗�

���
2

=
1

n

���U∗�
� n�

i=1

ξiXi

�
V∗

���
2
.

Recall that Xi = ej(i)e
�
k(i). Let Yi = �iXi = �iej(i)e

�
k(i). We have �Yi�ψ1

≤ Cσ2. Let Zi = U∗�YiV
∗ ∈ Rr×r. We

have

�Zi�ψ1
=

��U∗�YiV
∗��

ψ1
.

Based on the definition of Yi, we have that �Zi�ψ1
< Cσ. By applying Theorem F.1, we have

�Zi�ψ1
≤ C �σ2.
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Thus, K = C �σ2.

Furthermore, we have

E[ZiZ
�
i ] = E[U∗�YiV

∗V∗�Y�
i U

∗] = E[�2iU∗�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗]

= σ2E[U∗�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗]

Based on the definition of spectral norm, we have
��U∗�ej(i)e

�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗��
2
= max

�a�2=1
a�U∗�ej(i)e

�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗a

= max
�b�2=1

b�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)b,

where the second equality follows by setting b = U∗a ∈ Rm1 . In addition, we have

b�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)b = bj(i)v

∗
kv

∗�
k bj(i) = b2

j(i)�v∗
k�22,

where v∗
k is the k-th row of V∗. Thus

��E[U∗�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗]
��
2
=

��� 1

m1m2

m1�

j=1

m2�

k=2

U∗�eje
�
k V

∗V∗�eke
�
j U

∗
���
2

=
1

m1m2
max

�a�2=1
a�

m1�

j=1

m2�

k=2

U∗�eje
�
k V

∗V∗�eke
�
j U

∗a

=
1

m1m2
max

�b�2=1

m1�

j=1

m2�

k=2

b2j�v∗
k�22.

Since
�m1

j=1 b
2
j = 1 and

�m2

k=1 �v∗
k�22 = �V∗�2F = r, we obtain that

��E[U∗�ej(i)e
�
k(i)V

∗V∗�ek(i)e
�
j(i)U

∗]
��
2
=

r

m1m2
.

Therefore, we have

��E[ZiZ
�
i ]

��
2
=

σ2r

m1m2
,

and the same result also applies to
��E[Z�

i Zi]
��
2
.

By applying Theorem F.2, we obtain that

P
�����

n�

i=1

ξiZi

����
2

≥ t

�
≤ m1m2 max

�
exp

�
− m1m2t

2

4nσ2r

�
, exp(− t

2σ2
)
�
.

Thus, with probability at least 1− C2M
−1, we have

����
n�

i=1

ξiZi

����
2

≤ C1σ

�
nr logM

m1m2

where M = max(m1,m2). It immediately implies that

����
1

n

n�

i=1

ξiZi

����
2

≤ C1σ

�
r logM

m1m2n
, (F.15)

which completes the proof.


