Towards Faster Rates and Oracle Property for Low-Rank Matrix Estimation

A. Introduction

In this supplement, we first provide additional experimental results on the proposed estimator with MCP regularization,
followed by the details of technical proof for the main results, including proofs of theorems and auxiliary lemmas.

B. Additional Experimental Results

Regarding matrix completion and matrix sensing, we present additional experimental results of the proposed estimator
with MCP penalty. Due to the similar properties and parameter settings of these two nonconvex penalties, the MCP

penalty and SCAD penalty, the numerical behaviour of the proposed estimator with MCP penalty resembles the one with
SCAD penalty, as shown in Figure 2.
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Figure 2. Simulation Results for Matrix Completion and Matrix Sensing with MCP penalty. Accordingly, the size of matrix and the
rank are m X m. The results of matrix completion, with rank » = Llog2 m |, in Figure 2(a)-2(c) with the rescaled sample size N =
n/(rmlogm); while matrix sensing, for rank » = 10, is studied in Figure 2(d)-2(f) with rescaled sample size N = n/(rm).

In detail, Figure 2(a)- 2(c) are the results for matrix completion. With the same settings as experiments shown in Figure 1,
we have that the estimator with MCP penalty, a particular case of the proposed estimator with nonconvex penalty, behaviors
in accordance with our theoretical analysis and outperforms the estimator with nuclear norm. For the other example, i.e.,
matrix sensing, the results in Figure 2(d)- 2(f) manifest the superiority of the estimator with MCP penalty. Particularly, for
both examples, we have with with high probability, the rank of the underlying matrix is recovered with high probability.

C. Background

For matrix ®* € R™1*™2_which is exactly low-rank and has rank r, we have the singular value decomposition (SVD)
form of ®* = U*T*V*T, where U* € R™1%" V* € R™2X" gre matrices consist of left and right singular vectors, and
I'* = diag(vy,...,7) € R"™*". Based on U*, V*, we define the following two subspaces of R *"2:

F(U*, V") := {Alrow(A) C V* and col(A) C U*},

and

FHU*, V*) := {Alrow(A) L V* and col(A) L U*},
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where A € R™*™2 is an arbitrary matrix, and row(A) C R™2, col(A) C R™ are the row space and column space
of the matrix A. respectively. We will use the shorthand notation of F, 7, when (U*, V*) are clear from the context.
Define ITz, I1~. as the projection operator onto the subspaces F and F=:

IMr(A)=UUTAV*V* T (C.1)
Oy (A) = (I, —UUT)A(L,, — V*V*T).

Thus, for all A € R™1*™2_ we have its orthogonal complement A’ with respect to the true low-rank matrix ©* as
follows:

A/I — Im _U*U*T A Im _V*V*T ,
AP ) €2

where A’ is the component which has overlapped row and column space with ®*. (Negahban et al., 2012) gives detailed
discussion about the concept of decomposibility and a large class of decomposable norms, among which the decompos-
ability of the nuclear norm and Frobenius norm is relevant to our problem. For low-rank estimation, we have the equality
that ||@* + A”||. = ||©*||. + ||A”||« with A" defined above.

D. Proof of the Main Results

D.1. Proof of Theorem 3.4
We first define Zn A(+) as follows,

LnA(©) =L, (©) + QA(O).

Based on the the restrict strongly convexity of £, and the curvature parameter of the non-convex penalty, if x(X) > (_,
we have the restrict strongly convexity of £,, »(-), as stated in the following lemma.

Lemma D.1. Under Assumption 3.1, if it is assumed that ®; — ®5 € C, we have

(%) — ¢

~ ~ ~ K
Lox(©2) > Ly (01) +(VL,A(01),0, —0O1) + 5 [©2 — ©1]F.

Proof. Proof is provided in Section F.1. O

In the following, we prove that A = © — ©* lies in the cone C , where
C={A e R™ ™[I (A)]l. < 5|TLF(A)].}.

Lemma D.2. Under Assumption 3.1, the condition (%) > (_, and the regularization parameter A > 2||X*(e) H2 /n, we
have

156 - &), < 5|11 (6 - ©)]..

*

Proof. Proof is provided in Section F.2. O
Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. According to Lemma D.1, we have

LyA(0) > L, A(©%) + (VL1 (07),0 - ©7) + Rm%

- ~ A ~ o~ ~ K(X) — (- ~
£o0(07) > £,1() + (VE,1(0).0" - 6) + "= jor o2 D2)

1© — e*|I3, (D.1)
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Meanwhile, since || - ||« is convex, we have
AI®] = MOl + A(© — 0, W), (D.3)
M ©7[. > Al + A(©" — 6, W), (D.4)

where W* € || ©*|..
Adding (D.1) to (D.4), we have

0> (VL,A(O%) + A\W*,© — ©%) 4 (VL,A(0) + \W, 0" — ©) + (k(X) — (_)||® — ©*||2.

Since © is the solution to the SDP (2.2), © satisfies the optimality condition (variational inequality), for any ®' €
R™1Xm2 it holds that

max (VLo (8) + AW, 0 — ') <0
which implies
(VL,A(®) + AW, 0" — ) > 0.
Hence,
(K(X) = )€ = @[} < (VL,A(O7) + AW",© — ©)
< (Mp (VEuA(0°) + AW*),0" = ©) + (T(VL,1(07) + AW*), 0" ~ ©). (D.5)

Recall that v* = ~(©*) is the vector of (ordered) singular values of ®*. In the following, we decompose (D.5) into three
parts with regard to the magnitudes of the singular values of ®*.

0;

(1) i € S€that (v*);
(2) i € Sy that (v*); > v;

(3) i € Sy thatv > ("}’*)z > 0.

Note that S; U S, = S.
(1) For i € S¢, it correspond to the projector ILz. (+) since y(ITz. (©*)) = (v*)ge = 0.

Based on the regularity condition (iii) in Assumption 3.3 that ¢ (0) = 0, we have that VO, (©*) = U*¢} (T*)V*T where
I'* € R™" is the diagonal matrix with diag(I'*) = v*, we have

Iz (VOA(O) :( U U UG @)V (I, — VIV
= (U7 = U (@) (VT - v
=0.

Therefore,
I (VOXO®*) =0
Meanwhile, we have

12 (e)]l2

[TLrs (VL(@)) ], < [IVLa(O7)]], = =

<A

For Z* = —A"'IIz. (VL,(©%)), we have W* = U*V*T + Z* € 9||©*|. because || Z*||> < 1 and Z* € F*, which
satisfies the condition of W* to be subgradient of ||®*||... With this particular choice of W*, we have

Iy (VLA (©%) + AW?) = Iz (VL,(©%)) + AZ* =0,
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which implies that

(Mz. (VLA (©) +AW*), 0 — ) = (0,0 — ©) = 0. (D.6)

(2) Consider i € S; that (v*); > v. Let |S1| = r1. Define a subspace of F associated with Sy as follows
Fs, (U, V™) := {A € R™*™2|row(A) C Vg, and col(A) € Ug, },

where U% and V5, is the matrix with the i row of U* and V* where i € 5.

Recall that P (@*) = O, (0*) + A||©*||... We have

VPA(O®%) = VOA(®") + AN(U*V*T 4+ Z%).

Projecting VP, (©®*) into the subspace Fg,, we have

Oz, (VPA(©")) =Tx, (VOA(O) + ANU*V*T + \Z*)
= U5, d\(T5,)(Vs,) " + 205 (Vs,) '

where T'y € R™*" and (¢} (T'%,) + AlLs, ) is a diagonal matrix that (¢} (T'%,) + )\Isl)ii = 0 fori ¢ Sy, and for all
1€ Sl,

(q;(l“gl) + )‘Isl)n = q;(('y*)i) +A= pi\((’}’*)i) =0,

where the last equality is because p,(-) satisfies the regularity condition (i) with (v*); > v for ¢ € S;. Thus, we have
¢5\(Ds,) + Ms, = 0, which indicates that TLz, (VPA(©*)) = 0. Therefore, we have

(I, (VLA (©%) + AW?),0" — ) = (ILx,, (VL,(O") + VP, (©%)),0" — ©)
= <HJ:S1 (VC”(Q*))’HfS1 (9* - (:j)>

~

< [Tz, (VLA(©7)], - [T, (€7 - ©)

)

where the last inequality is derived from the Holder inequality. What remains is to bound ||TIr, (©* — o) |- By the
properties of projection on to the subspace Fg,, we have

M7, (@~ ©)], < vri|x, (€ - O)| . < vril|®" - 8],
where the second inequality is due to the fact that rank (ITx, (©* — (:))) < r;. Therefore, we have

Iz, (VL,A(©%) + XW*),0" — ©) < \/ri| Tz, (VL,(©))],- [0 - O], (D.7)

I

(3) Finally, consider i € Sy that (v*); < v. Let |Sa| = r2. Define a subspace of F associated with S5 as follows
Fs,(U*,V*) :={A € R™*™|row(A) C V5, and col(A) C Uy},

where UG, and Vi is the matrix with the i row of U* and V* where i € Ss. It is obvious that for all A € R™1 *m2,
the following decomposition holds

H]—'(A> = H]"sl (A) + H]"52 (A)
In addition, since U*, V* are unitary matrices, we have

1 1
]:5'1C]:S'27 and ]:SZC]:SI,
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where F §-1 ,F §-2 denote the complementary subspace of Fg, and Fg,, respectively. Similar to analysis in (2) on S7, we
have

Ir,, (VOA(©")) = Ug,aA(T5,)(VE,) |,

where ¢} (T'5,) is a diagonal matrix that (¢} (T'%,)).,
since (v*); < v and g, (+) satisfies the regularity condition (iv). Therefore

=0fori ¢ Sy, and foralli € Sa, (¢4(T'%,)),, = dA((v*)i) < A,

i1

Lz, (VOA©)) ], = max (aA(T'5,)),; < (D.8)
Meanwhile, we have
[TLrs, AW, < [[TLr(AU*VF T[], = A, (D.9)
where the first inequality is due the fact that Fg, € F, and last equality comes from the fact that [|[U*V*T||, = 1.
Therefore, we have
[TLre, AW, < . (D.10)

In addition, we have the fact that | Iz, (VL. (©%))]|, < ||[VLn(©%)]|, < A., which indicates that

(TLr,, (VLA (©7) + AW*), 0% — @) = (ITx, (VLA (O%) + VOA(O%) + A\W*),0" — ©)
= (7, (VL.(©%)),0" - ©) + (Ilx, (VO\(©%)),0" — ) + (Ilx, (\W*),0* - ©)
< [, (VL0 (@) [, + [M1m, (VOA©) [, + [TLr, GW),] [T, (07— ©)]

*?

where the last inequality is due to Holder’s inequality. Since we have obtained the bound for each term, as
in (D.8), (D.9), (D.10), we have

(I, (VLo A (©%) + AW), 0" — ©) < 3\|IL£, (©° — O)].
< 3\/72)|© - ||, (D.11)

where the last inequality utilizes the fact that rank(ILz, (©* — @)) < ro.
Adding (D.6), (D.7), and (D.11), we have
((X) = (L) |© — ©*||% < (VL,A(®7) + \W*, 0" — ©)
< Vri|[Tzs, (VL.(©7) ], - €7 = 8] 5 + 3Av72[| €7 — B,

which indicate that

601y = s, (T,

This completes the proof. O

D.2. Proof of Theorem 3.5

Before presenting the proof of Theorem 3.5, we need the following lemma.

Lemma D.3 (Deterministic Bound). Suppose ©®* € R™1%™2 has rank r, X(-) satisfies RSC with respect to C. Then the
error bound between the oracle estimator ® and true O* satisfies

2|1z (VL))

C e
180 —©"|r < wes 7

(D.12)

Proof. Proof is provided in Section F.3. O
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Proof of Theorem 3.5. Suppose W € 8||@H .. since O is the solution to the SDP (2.2), the variational inequality yields

max (0 —©',VL,\(0) +AW) <0. (D.13)

In the following, we will show that there exists some Wo € 8||@o ||« such that, for all @ € R™2*™m2,

ngx/x@)o — @', VL, A(00) + AW() < 0. (D.14)

Recall that ljn A(®) = L£,(0) + 9,(O). By projecting the components of the inner product of the LHS in (D.14) into
two complementary spaces F and F, we have the following decomposition

<@O -0/, VEn,)\(éo) + /\\/7\\70>

= (TT5(©p — ©'), VL, A(00) + \W() + (T171 (O — ©'), VL, A(00) + A\Wo) . (D.15)

Iy I

Analysis of Term I;. Let v* = v(0©*), 4o = 'y((:)o) be the vector of (ordered) singular values of ®* and Oo,
respectively. By the perturbation bounds for singular values, the Weyl’s inequality (Weyl, 1912), we have that

max|(v"); = (o)i| < [©" = Ool|, <[|©" ~ B0 .

Since Lemma D.3 provides the Frobenius norm on the estimation error ®* — ®, we obtain that

27
nk(X)

max |(v")i — o)i| < (X7 (€)]l2-

If it is assumed that S = supp(o*), we have |S| = r. The triangle inequality yields that
in l(SAY. ] = min [(S4). — (~*). | > S AF). ; ®
min |(Jo):| = min [(§o)i = (v")s + (v)i| = —max|(Fo —+")i| +min | (v7)i]
21 21
nk(X) nk(X)

> - X7 ()2 +v + 127 (e)ll2

:V7

where the inequality on the second line is derived based on the condition that min;cg |(~y*)z| > v+

201 /7| X*(€)||. /k(X). Based on the definition of oracle estimator (3.2), ©®¢ € F, which implies rank(©p) = r.
Therefore, we have

Fo)1 = Ho)2>...2 FHo)r >v>0=HFo)r+1 = Yo)m = 0. (D.16)

By the definition of Oracle estimator, we have @O = U*f‘OV*T, where fo is the diagonal matrix with diag(f‘o) =~o0.
Since Py (@) = 9,(O) + A||®||., we have

T+ (VPA(00)) = I£(VQ:(O0) + AJ||O0]|.)
=TI (U*g)(To)V*T + AU*V*T 4 A\Zo) (D.17)
=U* (qi\((f‘o)s) + )\IT>V*T,

where Zo € F*, |Zoll» < 1, and (To)s € R™" is a diagonal matrix with diag((To)s) = (J0)s. The first equality
in (D.17) is based on the definition of VQ,(-) and 9| - ||, while the second is to simply project each component into
the subspace F. Since py(t) = ¢a(t) + Alt|, we have p)\ (t) = ¢} (¢) + At for all ¢ > 0. Consider the diagonal matrix
5 ((f‘o)s) + AL, we have the i" (i € S) element on the diagonal that

(A ((Fo)s) +AL,) =4 (Fo)s) + A = pA((Fo)y)-

(23
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Since p (-) satisfies the regularity condition (i), that p} (t) = 0 for all ¢ > v, we have p, ((70);) = 0fori € S, in light of
the fact that (0 ); > v > 0. Therefore, the diagonal matrix ¢} ( (To)s ) + AL. = 0, substituting which into (D.17) yields

#(VPA(©0)) = 0. (D.18)

Since @O is a minimizer of (3.2) over F, we have the following optimality condition that for all @’ € R™1 %2,

max (M£(©p — ©),VL,(O0)) <0. (D.19)

Substitute (D.18) and (D.19) into item I;, we have for all \/7\\70 S 8||C:)o Il
rrgx <H]:(éo — 9/), VZn,)\((:'jo) + )\Wo>
= max (TIx(©p — ©'), VL,(O0)) + max (Ix(Op — ), 1= (VP:(©0))) (D.20)
<0.

Analysis of Term 5. By definition of VQ,(®), and the condition that ¢} (-) satisfies the regularity condition (iii) in
Assumption 3.3, we have the SVD of VO, (Op) as VO, (0p) = U*¢\(To)V*T, where T'p € R™™" is a diagonal
matrix. Projecting VQ,(®) into F yields that

Mz (VOA(O0)) = (L, — UU* UG ((T0)) VT (L, — VV*T)
= (U U*)qA((Fo) SINAE A
=0.
Thus,
. (VO\(©0)) = 0. (D21)
Therefore,

I = (z1 (—©'), T (VL,(B0) + AWo)).

Moreover, the triangle inequality yields

IVLA(©0)2 < [IVLA(O%)||2 + [|VLn(©%) = VL, (©0)]2

~

<N VLL(O%)||2 + VL, (OF) = VL, (B0)|lr
<|IVLL(O%) ]2 + p(X)]|©* — O0]|F, (D.22)

where the second inequality comes from the fact that |V £, (©%) — VL, (00)|2 < VLA (O%) — VL, (O0)| . while

the last inequality is obtained by the restricted strong smoothness (Assumption 3.2), which is equivalent to

IVLA(©) = VL,(© + Ao)||F < p(X)| Ao F,

over the restricted set C; since 1 1 (30) = 0, it is evident that Bo eC.
Substitute (D.12) of Lemma D.3 into (D.22), we have

| 2\/77p(X)
27 k(X))

(e

|1r (V£0(80)) |, < [[V£.(®0)|, < VL (©) Iy = A

where the last inequality follows from the choice of \.

By setting Zo = N § O (Vﬁn(@o)), such that \/7\\70 = UV +Zo € 3||@o||* since Zo satisfies the condition
Zo € FL, ||Zo|2 < 1, we have

Iy (VL (©0) + AWp) =
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which implies that
I, = (IIz.(—©'),0) = 0.
Substitute (D.20) and (D.23) into (D.15), we obtain (D.14) that
max (60 — ©',VL,,(O0) + A\Wo) <0.

Now we are going to prove that (:)O = O

Applying Lemma D.1, we have

P I )¢~ N
£00(8) 2 £,,(00) + (VE,1(80). 6 — 60) + X =18, - 82,

L L I N ) (. ~ N
£0n(80) > £,7(8) + (V£,1(8).80 — 0) + T 1o, _ 3.

On the other hand, because of the convexity of nuclear norm || - ||, we obtain

A|®]l« = A|©o]ls + MO — B0, Wo),
A|©oll« = MO, + A(©0 — ©, W).
Add (D.24) to (D.27), we obtain

0> (VL,A(©) + AW, 00 — ©) + (VL, 1(00) + \W0,0 — B0) +(k(X) — (_)[|®0 — B||2.

13 14

Analysis of Term /5. By (D.13), we have
(VLiA(©) + AW, © — o) < max (VL,1(©) + \W, 6 — ') <0.
Therefore I3 > 0.
Analysis of Term [,. By (D.14), we have
(VLA(©0) +AWo0,00 — ©) < max (VL (©0) +A\Wo,00 ~ ©) < 0.
Therefore I, > 0. Substituting (D.29) and (D.30) into (D.28) yields that
(K(%) —¢-) €0 ~ O} <0,
which holds if and only if
O = 06,
because (%) > (_.

By Lemma D.3, we obtain the error bound

2V7|[Tr (VL (07)) |,
k(%) ’

18 - ©*|r = 80 - ©°||r <

which completes the proof.

E. Proof of the Results for Specific Examples

(D.23)

(D.24)

(D.25)

(D.26)
(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

In this section, we provide the detailed proofs for corollaries of specific examples presented in Section 3.2. We will first
establish the RSC condition for both examples, followed by proofs of the corollaries and more results on oracle property

respecting two specific examples of matrix completion.

Particularly, the proofs include the following components: (i) establish the RSC condition, obtaining x(X) by which
Assumption 3.1 holds with high probability; (ii) estimate |V.L,,(©*)||2 for the choice of the regularity parameter X; (iii)

establish the RSS condition, obtaining p(¥) by which Assumption 3.2 holds with high probability.
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E.1. Matrix Completion

As shown in (Candeés & Recht, 2012) with various examples, it is insufficient to recover the low-rank matrix, since it is
infeasible to recover overly “spiky” matrices which have very few large entries. Some existing work (Candeés & Recht,
2012) imposes stringent matrix incoherence conditions to preclude such matrices; these assumptions are relaxed in more
recent work (Negahban & Wainwright, 2012; Gunasekar et al., 2014) by restricting the spikiness ratio, which is defined as
follows:

vV O
0p(©) = YOl
ol

Assumption E.1. These exists a known «*, such that
asp(©7) 0" F
A/ Mi1mso

For the example of matrix completion, we have the following matrix concentration inequality, which follows from Proof
of Corollary 1 in (Negahban & Wainwright, 2012).

Proposition E.2. Let X; uniformly distributed on X, and {&;}7_, be a finite sequence of independent Gaussian variables
with variance 2. There exist constants C, Cy that with probability at least 1 — Cy /M, we have

1 < M log M
Hf Y oeX|| <oy R
ni= 2 mimen

Furthermore, the following Lemma plays a key rule in obtaining faster rate for estimator with nonconvex penalties. Partic-
ularly, the following Lemma will provide an upper bound on ||H F (Vﬁn (O* )) H 9"

107 loc = <a'.

Lemma E.3. If ¢ is Gaussian noise with variance 02. S is a r-dimensional subspace. It holds with probability at least

1—-Cy/M,
1 & log M
HHS(* Zfixz) ‘ < Croy| 28
n P 2 mimeon
where C4, Cy are universal constants.
Proof. Proof is provided in Section F.4. O

In addition, we have the following Lemma (Theorem 1 in (Negahban & Wainwright, 2012)), which plays central role in
establishing the RSC condition.

Lemma E.4. There are universal constants, ki, k2, C1, ..., Cs, such that as long as n > CoM log M, if the following
condition is satisfied that

Al AL NG
mim < , (E.1)
Vs lAlF |Allr ~ kirivlog M + kov/ro M log M
we have
N A, 1Al < TIAlr [y, Crog(a)) 2
Vvn Vmimsg 8 /mima Vn

with probability greater than 1 — C5 exp(—CyM log M).

Proof of Corollary 3.6. With regard to the example of matrix completion, we consider a partially observed setting, i.e.,
only the entries over the subset X'. A uniform sampling model is assumed that

V(i,7) € X,i ~ uniform([m4]), j ~ uniform([ms]).

Recall that A = © — ®*. In this proof, we consider two cases, depending on if the condition in (E.1) holds or not.
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1. The condition in (E.1) does not hold.

2. The condition in (E.1) does hold.

CASE 1. If the condition in (E.1) is violated, it implies that

~ N ~ kirivlog M + kyy/ro M log M
1AE < vimme|| Al - Al
NEZD
~ -~ kir1v/log M + kor/To M log M
< 2 * A/ . A// N
< mama (207 (A" + [ A"]].) N
~ k log M + k Mlog M
< 120° Y | A|1r 1m1v/1og +TZ\/T2 og 7
where A’ = II7(A) and A" = H]:L(B) the second inequality follows from [Aloe < 1©]l0 + |©*]|0 < 2a*, and the
decomp031b111ty of nuclear norm that ||AH* = ||A’||x + ||A”||+; while the third inequality is based on the cone condition

1A' < 5] A" and [ A||, < /7| A[| .
Moreover, since ||A’||p < ||A||r, we obtain that

1 log M Mlog M
——||A||r < 12a* (klm/ e 4 km/w). (E.3)
/1M1 Mmeo n n

CASE 2. The condition in (E.1) is satisfied.
As implied by (E.2), we have

BT

IIAIIF [ Cia\;%(A)}

)l 1

Vn 8 /m

If C{QSP(A)/\/E > 1/2, we have

1Al < 20 i 1Al e <acpary ™0 (E4)

If C{asp(ﬁ)/\/ﬁ < 1/2, we have

NN
12 (A, . C3
>

n  mime

N (E.5)

In order to establish the RSC condition, we need to show that (E.5) is equivalent to Assumption 3.1.

L,(©" + A) — L,(0) — (VL,(©%),A)

n

- iz (O +A,X;) —y) + %Z ((®x

i=1 i=1

-2 ((0,X0) —yi) (Xi, A)

:\H
o
I
_

N ERI
n
Thus, we have that (E.5) establishes the RSC condition, and x(X) = CZ2/(mims).
After establishing the RSC condition, what remains is to upper bound n ! HX* H andn~! HH Fs, (}C* ) ||2 By Propo-
sition E.2, we have that with high probability,

Mlog M

L g
EH% (€)H2 < Ceo myiman

(E.6)
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By Lemma E.3, we have that with high probability,

1 N [r1log M

Substituting (E.6) and (E.7) into Theorem 3.4, we have that there exist positive constants C, C% such that

1 ~ log M M log M
L 18- e < Clomy B | oy, [T I0E M (ES$)
/M1 me n n

Putting pieces (E.3), (E.4), and (E.S8) together, we have

1 ~ log M M log M
——_||® - ©*|r < max{a*, o} |Cyriy/ 2 +c4,/’"2°g],
A/ 1Mo n n
which completes the proof. O

Corollary E.5. Under the conditions of Theorem 3.5, suppose X; uniformly distributed on X. These exists positive
constants C1, . .., Cy, forany t > 0, if K(X) = C1/(m1m2) > (_ and v* satisfies

Mlog M
min |('y*)l| > v+ Cyov/rmima i,

i€S n

where S = supp(o™*), for estimator in (2.2) with regularization parameter

M log M
A>C3(1+ ﬁ)a\/oig,
nmimeso

we have that with high probability, ® = ©, which yields that rank(®) = rank(©¢) = rank(®*) = r. In addition, we

have
1 ~ log M
—||®@-0O*|r < C . E.9
\/W” Ir < Caroy - (E.9)

Proof of Corollary E.5. As shown in the proof of Corollary 3.6, we have x(X) = C7/(mimas), together with (E.6)
and (E.7), in order to prove Corollary E.5, according to Theorem 3.5, what remains is to obtain p(X) in Assumption 3.2. It
can be shown that Assumption 3.2 is equivalent as

p(X) R LR
M0 1A1 > Lixa)s

We consider the following cases depending on if (E.1) holds or not.

CASE 1. If the condition in (E.1) is violated,
1 ~ —~ —~
EIIX(A)H% <Al < [lA[F,

which implies that p(X) = 1.

CASE 2. The condition in (E.1) is satisfied. As implied by Lemma E.4, when n > C52a* > Cgasp(A), we have that with
high probability, the following holds:

Cs

AlZ >
m1m2H 7 >

12(A)5.

S

Thus, p(X) = Cg/(m1mz2), which completes the proof. O
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E.2. Matrix Sensing With Dependent Sampling

In this subsection, we provide the proof for the results on matrix sensing. In particular, we will first establish the RSC
condition for the application of matrix sensing, followed by the proof on faster convergence rate and more results on the
oracle property.

In order to establish the RSC condition, we need the following lemma (Proposition 1 in (Negahban & Wainwright, 2011)).
Lemma E.6. Consider the sampling operator of 3-ensemble, it holds with probability at least 1 — 2 exp(—n/32) that

”36(\2”2 > iH\/EVeC(A)HQ - 12w(2)(\/f+ \/?) IN®

In addition, we need the upper bound of n~!{|X*(e)
Wainwright, 2011)).

Proposition E.7. With high probability, there are universal constants C, C and C's such that

P HX*(R‘E)HQ > Claﬂ(E)(\/T'i‘ \/?ﬂ < Cyexp (— C3(my +my)),

where 7(X)? = SUP | u||p=1,[v]2=1 Var(u' Xv).

5» as stated in the following Proposition (Lemma 6, (Negahban &

Proof of Corollary 3.8. To begin with, we need to establish the RSC condition as in Assumption 3.1. According to
Lemma E.6, we have that

A, A A, o) (/2 12 1A

By the decomposibility of nuclear norm, we have that

AL = A ][ + [|A”]|. < 6]|A"[|. = 6\F||A"]|r < 6V Al p, (E.10)

where A’ = TI7(A) and A” = I1-. (A).
By substituting (E.10) into Proposition E.6, we have that

|% ﬁ)”2 > @HA”F - 72ﬁw(2)<ﬁ+ \/?)EIIF
= [P s sy (4 7)1

Thus, for n > Cyrm?(X)mima/Amin(X) where C1 is sufficiently large such that

72\/77 / ml / m2 mln

we have
f = S Fy
which implies that
2(A)B . Auin(®)
[XCANE 5 duin) 72
n 64
Therefore, k(%) = Amin (2)/32 such that the following holds,
XA)E k), <
|2 N

n - 2
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which establishes the RSC condition for matrix sensing.
On the other hand, we have
Lz, (V£a(07))

= || U5, UL VL.(0")VE Vi ||, = || UE VL.(0%)VE ||,

I I

where the second inequality follows from the property of left and right singular vectors U , Vg, .

It is worth noting that U% VL, (©*) V%, € R™*". By Proposition E.7, we have that

M
|U*TVL,(©")V|, < 2Coom(8)/ —,
n (E.11)
U VL.(©)VE ||, < 2Coom(2)y/ 2,
n
which hold with probability at lease 1 — C; exp(—Cary).
The upper bound is obtained directed from Theorem 3.4 and (E.11). Thus, we complete the proof. O

Corollary E.8. Under the condition of Theorem 3.5, for some universal constants C1, . . . , Cg if k(X)) = C1 Amin () > (-
and ~* satisfies

VI + /73)
\/ﬁAmin(E) ’

where S = supp(~*), for estimator in (2.2) with regularization parameter

N> Cy(1+ \Qm( (\/”Tl ﬁ)

we have that ® = O, which yields that rank(@) = rank(@o) = rank(®*) = r, with probability at least
1 — Cyexp(—C5(my +my)). In addition, we have

I}él§1| ¥)i| = v+ Coon (%)

~ . Cern(X)
- < S

Proof of Corollary E.8. The proof follows from the proof of Corollary 3.8 and Theorem 3.5. As shown in the proof of
Corollary 3.8, we have xk(X) = C1Anin(X), together with (E.11), in order to prove Corollary E.8, according to Theo-
rem 3.5, what remains is to obtain p(X) in Assumption 3.2, respecting the example of matrix sensing.

(E.12)

According to Assumption 3.2, we have that p(X) = Apax(H,,), where H,, is the Hessian matrix of £,,(-). Based on the
definition of £, (+), we have
-t Z vec(X;)vee(X;) .

Thus E[H,,] = X. By concentration, we have that when n is sufficiently large, with high probability, Apax(H,) <
2Amax (X), which is equivalent to p(X) < 2A\nax(3X), holding with high probability, where n is sufficiently large. This
completes the proof. O

F. Proof of Auxiliary Lemmas

F.1. Proof of Lemma D.1

Proof. By the restricted strong convexity assumption (Assumption 3.1), we have

L,(©2) > L,(01) +(VLL(O1), 05 — O1) + @H@Q - 0%, (F.1)

In the following, we will show the strong smoothness of Q,(+), based on the regularity condition (ii), which imposes
constraint on the level of nonconvexity of ¢x(-). Assume v; = ¥(©1),v2 = v(©3) are the vectors of singular values
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of ®1, ©®,, respectively, and the singular values in 7y, 72 are nonincreasing. For @1, @5, we have the following singular
value decompositions:

@, =UI'V{,
0, = UyI'LV,

where T';, T’y € R™*™ are diagonal matrix with T'y = diag(vy;),'s = diag(«z2). For each pair of singular values of
©1,0:: ((71)i, (v2)i) where i = 1,2,...,m, we have

—C—((n)s — (’72)1')2 < [QIA((’Yl)l) - q&(('yz)l)] ()i — (v2)i),
which is equivalent to
((=d\(T1)) = (= ¢5(T2)),T1 = T2) < ¢ [Ty — Tof7,
which yields
((=VQx(©1)) = (—VAi(©2)),01 — ©3) < (_[©1 — O 7. (F2)

Since (F.2) is the definition of strongly smoothness of —Q(+), it can be show to be equivalent to the following inequality
that

Qx(©2) = Qx(01) +(VQ(©1),0; — O1) — %ng - ©4|%. (F3)
Adding up (F.1) and (F.3), we complete the proof. O

F.2. Proof of Lemma D.2
Proof. By Lemma D.1, we have that
Lar(©) + \[B]l. = £,1(07) = N[O, = (VL,\(©7),8 — @) + O] — A|©7..  (F4)
For the first term on the RHS in (F.4), we have the following lower bound
(VLA (0%),0 — ©) = (VL, A\(0),T15(0 — ©%)) + (VL,A(0), 115, (O — ©%))
> = [HF(VLAO) |, [T7(®& - 67,
I
= |Tre (VLo A(O) ], |17 (6 - ©7)]]

I

(ES5)

)

where the last inequality follows from Holder’s inequality.

Analysis of term ;. It can be shown that VL,,(©*) = —X*(€)/n. Based on the condition that A > 2n~1(|X*(€)||2, we
have that

VL, (©7)][2 < A/2. (E6)
Moreover, by condition (iv) in Assumption 3.3 and (F.6), we obtain that
ITr(VLu A (@) ]|, = [Hr (VL (©7) + Qr(©7))]|, < 3A/2.
Analysis of term I5. Since Il z. (©*) = 0, we have that

[Trs (VLuA(©9) ||, = [[Tre (VLL(©9)) ]|, < A/2. (E7)

Putting pieces (F.6) and (F.7) into (F.5), we obtain

(VL,A(©%),0 — ©%) > —3)/2||T1x(© — ©%)|| — /2|15 (6 — ©%)].. (E.8)

*
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Meanwhile, we have the lower bound on A||©||, — A||©]|.. that

M@l = AI®]. = A[TL=(O)]|, + || (©)

.~ Aol

> \||[IL7(© — ©")||, + AL (© — ©")]|, (F.9)
Adding (F.8) and (F.9) yields that
(VL,A(©),0 — ©) + A|O]. — N[Ol = —5)/2|[IL(© — ©)||, + A/2|[llr. (© — 0. (F.10)
Due to the fact that © is the global minimizer of (2.2), provided the condition that x(X) > (_, we have
Lon(©) + MO — L, 1(©) — A|©*]. < 0. (E11)
Substituting (F.10) and (F.11) into (F.4), since A\ > 0, we have that
[ (© — @), <5|1r(© -0,
which completes the proof. O

F.3. Proof of Lemma D.3

Proof. 30 = @o — ©*. According to observation model (2.1) and definition of X(-), we have

ay * 1 . * A 1 . *
‘CH(QO)_En(g ):%Z(yz_xz(@ +AO)>2_%Z(%—:{¢(® ))2
i=1 i=1
_1 - _r A 1 - 2
= on 2 (Ez xZ(Ao)) m - €

— 1 N 2 1 * N
=5 [1X(Ao)ll2 = —(X*(€), Ao),

where X*(€) = Y"1 | ;X; is the adjoint of the operator X. Because the oracle estimator ©0 minimizes L, (-) over the
subspace F, while ®* € F, we have £,,(®¢) — L,(©*) < 0, which yields

1 —~ 1 ~
—1X(AL)|?2 < =(X*(€), Ap). F.12
S Ix(R0)|3 < —(x*(e), Ao) (E12)
On the other hand, recall that by the RSC condition (Assumption 3.1), we have
L(©+A) > L,(0) +(VL,(O), A) + k(X)/2|A| F,

which implies that

1~ 1o~ ) 1,0~ I
X (B3~ +((€), Ao) — (VLL(07), &) = o 1(Bo) 3 > "X Aoz ®13)
Substituting (F.13) into (F.12), we have
K(X), ~ 1 ~ 1., —~
W Bolr < - 12(Bo) < L@ (0). Ao, an

Therefore,

211 (2(6). Bo) _ 2l () JAoll
nk(X) - nk(X) ’

Aol <

where the last inequality is due to Holder inequality. Moreover, since the rank A is r, we have the fact that ||30 Il <
\/7||Ao| F, which indicates that

2/ (2 (6)) ,  |Bollr

Aol <
|| OHF —= nli(x)
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Therefore, we have the following deterministic error bound

A 2| Ir(X*(e) [, 2v7[[TF (VLA(©%)) ],
|aollr < (%) = (%) )

where the last equality results from the fact that VL, (©*) = —X*(e)/n.

Thus, we complete the proof. O

F.4. Proof of Lemma E.3

In order to prove Lemma E.3, we need the Ahlswede-Winter Matrix Bound. To begin with, we introduce the definition of
I - |l and || - ||, , followed by some established results on || - ||,5, and || - ||,

The sub-Gaussian norm of X, denoted by || X ||, , is defined as follows

1X |y, = supp™ /2 (B|X|?)M/P.
p>1

It is known that if E[X] = 0, then E[exp(tX)] < exp(Ct?*|| X||7,) forall t € R.
The sub-Exponential norm of X, denoted by || X ||, , is defined as follows

1X ||y, = supp™ (E|X|P)!/7.
p=>1
By (Vershynin, 2010), we have the following Lemma.
Lemma F.1. For Z; and Z, being two sub-Gaussian random variables, Z; Zs is a sub-exponential random variable with
12125y, < Cmax{[|Z1]3,. 12213, }

where C' > 0 is an absolute constant.

Theorem F.2 (Ahlswede-Winter Matrix Bound). (Negahban & Wainwright, 2012) Let Z1, . .., Z, be random matrices
of size my x ma. Let ||Z;illy, < K for all i such that ||Z;||y, is upper bounded by K. Furthermore, we have §7 =
max { ||E[Z; Zi]|,, ||E[Z;Z]]||,}. and 6% = Y7, 67. Then we have

=1 """
]P’< i Z;
=1

Now we are ready to prove Lemma E.3.

12 t
, Zt) §mlmgmax{exp(f@),exp(fﬁ)}.

Proof of Lemma E.3. Since U* and V* are singular vectors, for S = F(U*, V*), we have

s ($ex)

oo (Sex)vv,

o (Sex)v

Recall that X; = ej(i)eg(i). LetY,; = ¢X,; = eiej(i)ekT(i). We have || Y]y, < Co?. LetZ; = U*TY,V* € R"™". We
have

.

2.

1Zi]ly, = [|U*TY, V"

P1”
Based on the definition of Y, we have that ||Z;||,,, < C'o. By applying Theorem F.1, we have

1Z:i|ly, < C'o
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Thus, K = C'02.

Furthermore, we have

E[Z;Z]] =E[U*TY,V*V*TY U = ]E[er*Tej(i)eg(i)V*V*Tek(i)e}(i)U*]

- UzE[U*Tej(i)eZ(i)V*V*Tek(i)ejT(i)U*]

Based on the definition of spectral norm, we have

[U*Tejes VIV Terpej U, = max a’UTejief;) V'V T erge);) Uta

llallz=1
T

T *N7* 1 T
= max b ej(i)ek(i)V VvV ek(i)ej(i)h

Ibll2=1

where the second equality follows by setting b = U*a € R™!. In addition, we have

be;ieln ViV Terine b = b vivi big = b, [Ivil3,

where v;, is the k-th row of V*. Thus

my1 M2

* T T v T *
|E[U*"e;el VIV T erie); U

2

mim 2
o2 5 =2
mi1 m2
= max a' U*Tee] V*V*Tere! U*a
1%k J
mims |lall2=1 — —
Jj=1k=2

H ! Z Z U*Teje;—V*V*Teke;U*

mi1 ma

Since 3 7", b7 = Land Y2}, [[v]|3 = |[V*||3 = . we obtain that

|E[U*Te;merm VV* Terine, U, =

Therefore, we have

0'2’1”

EZ.Z]]|, =

b
mimso

and the same result also applies to ||E[Z; Z;] H2
By applying Theorem F.2, we obtain that

“

Thus, with probability at least 1 — CoM !, we have

Z §iZ;
i—1

where M = max(m1,ms). It immediately implies that

1 n
-~ ;&Zi

n

Zfizvz

i=1

> t> < mlQOaX{eXp ( —
2

< Cyoy [T log M
9 mimsa

rlog M

S 010'
9 mimeon

which completes the proof.

1
max 3°SS Vil
mima |blla=1 ==

m1m2t2
4no?r

)

),exp(f;?)}.

(F.15)



