Supplementary material for "Variance-Reduced and Projection-Free Stochastic Optimization"

A. Proof of Property (1)

Proof. We drop the subscript i for conciseness. Define $g(\boldsymbol{w})=f(\boldsymbol{w})-\nabla f(\boldsymbol{v})^{\top} \boldsymbol{w}$, which is clearly also convex and L-smooth on Ω. Since $\nabla g(\boldsymbol{v})=\mathbf{0}, \boldsymbol{v}$ is one of the minimizers of $g(\boldsymbol{w})$. Therefore we have

$$
\begin{aligned}
g(\boldsymbol{v})-g(\boldsymbol{w}) & \leq g\left(\boldsymbol{w}-\frac{1}{L} \nabla g(\boldsymbol{w})\right)-g(\boldsymbol{w}) \\
& \leq \nabla g(\boldsymbol{w})^{\top}\left(\boldsymbol{w}-\frac{1}{L} \nabla g(\boldsymbol{w})-\boldsymbol{w}\right)+\frac{L}{2}\left\|\boldsymbol{w}-\frac{1}{L} \nabla g(\boldsymbol{w})-\boldsymbol{w}\right\|^{2} \quad \quad \text { (by smoothness of } g \text {) } \\
& =-\frac{1}{2 L}\|\nabla g(\boldsymbol{w})\|^{2}=-\frac{1}{2 L}\|\nabla f(\boldsymbol{w})-\nabla f(\boldsymbol{v})\|^{2}
\end{aligned}
$$

Rearranging and plugging in the definition of g concludes the proof.

B. Analysis for SFW

The concrete update of SFW is

$$
\begin{aligned}
\boldsymbol{v}_{k} & =\underset{\boldsymbol{v} \in \Omega}{\operatorname{argmin}} \tilde{\nabla}_{k}^{\top} \boldsymbol{v} \\
\boldsymbol{w}_{k} & =\left(1-\gamma_{k}\right) \boldsymbol{w}_{k-1}+\gamma_{k} \boldsymbol{v}_{k}
\end{aligned}
$$

where $\tilde{\nabla}_{k}$ is the average of m_{k} iid samples of stochastic gradient $\nabla f_{i}\left(\boldsymbol{w}_{k-1}\right)$. The convergence rate of SFW is presented below.
Theorem 3. If each f_{i} is G-Lipschitz, then with $\gamma_{k}=\frac{2}{k+1}$ and $m_{k}=\left(\frac{G(k+1)}{L D}\right)^{2}$, SFW ensures for any k,

$$
\mathbb{E}\left[f\left(\boldsymbol{w}_{k}\right)-f\left(\boldsymbol{w}^{*}\right)\right] \leq \frac{4 L D^{2}}{k+2}
$$

Proof. Similar to the proof of Lemma 2, we first proceed as follows,

$$
\begin{aligned}
f\left(\boldsymbol{w}_{k}\right) & \leq f\left(\boldsymbol{w}_{k-1}\right)+\nabla f\left(\boldsymbol{w}_{k-1}\right)^{\top}\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{k-1}\right)+\frac{L}{2}\left\|\boldsymbol{w}_{k}-\boldsymbol{w}_{k-1}\right\|^{2} \\
& =f\left(\boldsymbol{w}_{k-1}\right)+\gamma_{k} \nabla f\left(\boldsymbol{w}_{k-1}\right)^{\top}\left(\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right)+\frac{L \gamma_{k}^{2}}{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{x}_{k-1}\right\|^{2} \quad\left(\boldsymbol{w}_{k}-\boldsymbol{w}_{k-1}=\gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right)\right) \\
& \leq f\left(\boldsymbol{w}_{k-1}\right)+\gamma_{k} \tilde{\nabla}_{k}^{\top}\left(\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right)+\gamma_{k}\left(\nabla f\left(\boldsymbol{w}_{k-1}\right)-\tilde{\nabla}_{k}\right)^{\top}\left(\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right)+\frac{L D^{2} \gamma_{k}^{2}}{2} \quad\left(\left\|\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right\| \leq D\right) \\
& \leq f\left(\boldsymbol{w}_{k-1}\right)+\gamma_{k} \tilde{\nabla}_{k}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{w}_{k-1}\right)+\gamma_{k}\left(\nabla f\left(\boldsymbol{w}_{k-1}\right)-\tilde{\nabla}_{k}\right)^{\top}\left(\boldsymbol{v}_{k}-\boldsymbol{w}_{k-1}\right)+\frac{L D^{2} \gamma_{k}^{2}}{2} \quad\left(\text { by optimality of } \boldsymbol{v}_{k}\right) \\
& =f\left(\boldsymbol{w}_{k-1}\right)+\gamma_{k} \nabla f\left(\boldsymbol{w}_{k-1}\right)^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{w}_{k-1}\right)+\gamma_{k}\left(\nabla f\left(\boldsymbol{w}_{k-1}\right)-\tilde{\nabla}_{k}\right)^{\top}\left(\boldsymbol{v}_{k}-\boldsymbol{w}^{*}\right)+\frac{L D^{2} \gamma_{k}^{2}}{2} \\
& \leq f\left(\boldsymbol{w}_{k-1}\right)+\gamma_{k}\left(f\left(\boldsymbol{w}^{*}\right)-f\left(\boldsymbol{w}_{k-1}\right)\right)+\gamma_{k} D\left\|\tilde{\nabla}_{k}-\nabla f\left(\boldsymbol{w}_{k-1}\right)\right\|+\frac{L D^{2} \gamma_{k}^{2}}{2}
\end{aligned}
$$

where the last step is by convexity and Cauchy-Schwarz inequality. Since f_{i} is G-Lipschitz, with Jensen's inequality, we further have $\mathbb{E}\left[\left\|\tilde{\nabla}_{k}-\nabla f\left(\boldsymbol{w}_{k-1}\right)\right\|\right] \leq \sqrt{\mathbb{E}\left[\left\|\tilde{\nabla}_{k}-\nabla f\left(\boldsymbol{w}_{k-1}\right)\right\|^{2}\right]} \leq \frac{G}{\sqrt{m_{k}}}$, which is at most $\frac{L D \gamma_{k}}{2}$ with the choice of γ_{k} and m_{k}. So we arrive at $\mathbb{E}\left[f\left(\boldsymbol{w}_{k}\right)-f\left(\boldsymbol{w}^{*}\right)\right] \leq\left(1-\gamma_{k}\right) \mathbb{E}\left[f\left(\boldsymbol{w}_{k-1}\right)-f\left(\boldsymbol{w}^{*}\right)\right]+L D^{2} \gamma_{k}^{2}$. It remains to use a simple induction to conclude the proof.

Now it is clear that to achieve $1-\epsilon$ accuracy, SFW needs $\mathcal{O}\left(\frac{L D^{2}}{\epsilon}\right)$ iterations, and in total $\mathcal{O}\left(\frac{G^{2}}{L^{2} D^{2}}\left(\frac{L D^{2}}{\epsilon}\right)^{3}\right)=\mathcal{O}\left(\frac{G^{2} L D^{4}}{\epsilon^{3}}\right)$ stochastic gradients.

C. Proof of Lemma 3

Proof. Let $\boldsymbol{\delta}_{s}=\tilde{\nabla}_{s}-\nabla f\left(\boldsymbol{z}_{s}\right)$. For any $s \leq k$, we proceed as follows:

$$
\begin{aligned}
& f\left(\boldsymbol{y}_{s}\right) \leq f\left(\boldsymbol{z}_{s}\right)+\nabla f\left(\boldsymbol{z}_{s}\right)^{\top}\left(\boldsymbol{y}_{s}-\boldsymbol{z}_{s}\right)+\frac{L}{2}\left\|\boldsymbol{y}_{s}-\boldsymbol{z}_{s}\right\|^{2} \\
&=\left(1-\gamma_{s}\right)\left(f\left(\boldsymbol{z}_{s}\right)+\nabla f\left(\boldsymbol{z}_{s}\right)^{\top}\left(\boldsymbol{y}_{s-1}-\boldsymbol{z}_{s}\right)\right)+\gamma_{s}\left(f\left(\boldsymbol{z}_{s}\right)+\nabla f\left(\boldsymbol{z}_{s}\right)^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{z}_{s}\right)\right)+\gamma_{s} \nabla f\left(\boldsymbol{z}_{s}\right)^{\top}\left(\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right) \\
&+\frac{L \gamma_{s}^{2}}{2}\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2} \\
&\left.\left(1-\gamma_{s}\right) f\left(\boldsymbol{y}_{s-1}\right)+\gamma_{s} f\left(\boldsymbol{w}^{*}\right)+\gamma_{s} \nabla f\left(\boldsymbol{z}_{s}\right)^{\top}\left(\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right)+\frac{L \gamma_{s}^{2}}{2}\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2} \quad \text { (by definition of } \boldsymbol{y}_{s} \text { and } \boldsymbol{z}_{s}\right) \\
&=\left(1-\gamma_{s}\right) f\left(\boldsymbol{y}_{s-1}\right)+\gamma_{s} f\left(\boldsymbol{w}^{*}\right)+\gamma_{s} \tilde{\nabla}_{s}^{\top}\left(\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right)+\frac{L \gamma_{s}^{2}}{2}\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2}+\gamma_{s} \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{x}_{s}\right) \\
& \leq\left(1-\gamma_{s}\right) f\left(\boldsymbol{y}_{s-1}\right)+\gamma_{s} f\left(\boldsymbol{w}^{*}\right)+\gamma_{s} \eta_{t, s}-\gamma_{s} \beta_{s}\left(\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right)^{\top}\left(\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right)+\frac{L \gamma_{s}^{2}}{2}\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2}+\gamma_{s} \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{x}_{s}\right) \\
& \text { (by convexity) } \\
&=\left(1-\gamma_{s}\right) f\left(\boldsymbol{y}_{s-1}\right)+\gamma_{s} f\left(\boldsymbol{w}^{*}\right)+\gamma_{s} \eta_{t, s}+\frac{\beta_{s} \gamma_{s}}{2}\left(\left\|\boldsymbol{x}_{s-1}-\boldsymbol{w}^{*}\right\|^{2}-\left\|\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right\|^{2}\right)+\quad \text { (4)) } \\
& \frac{\gamma_{s}}{2}\left(\left(L \gamma_{s}-\beta_{s}\right)\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2}+2 \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{x}_{s-1}-\boldsymbol{x}_{s}\right)+2 \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{x}_{s-1}\right)\right) \\
& \leq\left(1-\gamma_{s}\right) f\left(\boldsymbol{y}_{s-1}\right)+\gamma_{s} f\left(\boldsymbol{w}^{*}\right)+\gamma_{s} \eta_{t, s}+\frac{\beta_{s} \gamma_{s}}{2}\left(\left\|\boldsymbol{x}_{s-1}-\boldsymbol{w}^{*}\right\|^{2}-\left\|\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right\|^{2}\right)+\frac{\gamma_{s}}{2}\left(\frac{\left\|\boldsymbol{\delta}_{s}\right\|^{2}}{\beta_{s}-L \gamma_{s}}+2 \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{x}_{s-1}\right)\right),
\end{aligned}
$$

where the last inequality is by the fact $\beta_{s} \geq L \gamma_{s}$ and thus

$$
\left(L \gamma_{s}-\beta_{s}\right)\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}\right\|^{2}+2 \boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{x}_{s-1}-\boldsymbol{x}_{s}\right)=\frac{\left\|\boldsymbol{\delta}_{s}\right\|^{2}}{\beta_{s}-L \gamma_{s}}-\left(\beta_{s}-L \gamma_{s}\right)\left\|\boldsymbol{x}_{s}-\boldsymbol{x}_{s-1}-\frac{\boldsymbol{\delta}_{s}}{\beta_{s}-L \gamma_{s}}\right\|^{2} \leq \frac{\left\|\boldsymbol{\delta}_{s}\right\|^{2}}{\beta_{s}-L \gamma_{s}}
$$

Note that $\mathbb{E}\left[\boldsymbol{\delta}_{s}^{\top}\left(\boldsymbol{w}^{*}-\boldsymbol{x}_{s-1}\right)\right]=\mathbf{0}$. So with the condition $\mathbb{E}\left[\left\|\boldsymbol{\delta}_{s}\right\|^{2}\right] \leq \frac{L^{2} D_{t}^{2}}{N_{t}(s+1)^{2}} \stackrel{\text { def }}{=} \sigma_{s}^{2}$ we arrive at

$$
\mathbb{E}\left[f\left(\boldsymbol{y}_{s}\right)-f\left(\boldsymbol{w}^{*}\right)\right] \leq\left(1-\gamma_{s}\right) \mathbb{E}\left[f\left(\boldsymbol{y}_{s-1}\right)-f\left(\boldsymbol{w}^{*}\right)\right]+\gamma_{s}\left(\eta_{t, s}+\frac{\beta_{s}}{2}\left(\mathbb{E}\left[\left\|\boldsymbol{x}_{s-1}-\boldsymbol{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right\|^{2}\right]\right)+\frac{\sigma_{s}^{2}}{2\left(\beta_{s}-L \gamma_{s}\right)}\right) .
$$

Now define $\Gamma_{s}=\Gamma_{s-1}\left(1-\gamma_{s}\right)$ when $s>1$ and $\Gamma_{1}=1$. By induction, one can verify $\Gamma_{s}=\frac{2}{s(s+1)}$ and the following:

$$
\mathbb{E}\left[f\left(\boldsymbol{y}_{k}\right)-f\left(\boldsymbol{w}^{*}\right)\right] \leq \Gamma_{k} \sum_{s=1}^{k} \frac{\gamma_{s}}{\Gamma_{s}}\left(\eta_{t, s}+\frac{\beta_{s}}{2}\left(\mathbb{E}\left[\left\|\boldsymbol{x}_{s-1}-\boldsymbol{w}^{*}\right\|^{2}\right]-\mathbb{E}\left[\left\|\boldsymbol{x}_{s}-\boldsymbol{w}^{*}\right\|^{2}\right]\right)+\frac{\sigma_{s}^{2}}{2\left(\beta_{s}-L \gamma_{s}\right)}\right)
$$

which is at most

$$
\Gamma_{k} \sum_{s=1}^{k} \frac{\gamma_{s}}{\Gamma_{s}}\left(\eta_{s}+\frac{\sigma_{s}^{2}}{2\left(\beta_{s}-L \gamma_{s}\right)}\right)+\frac{\Gamma_{k}}{2}\left(\frac{\gamma_{1} \beta_{1}}{\Gamma_{1}} \mathbb{E}\left[\left\|\boldsymbol{x}_{0}-\boldsymbol{w}^{*}\right\|^{2}\right]+\sum_{s=2}^{k}\left(\frac{\gamma_{s} \beta_{s}}{\Gamma_{s}}-\frac{\gamma_{s-1} \beta_{s-1}}{\Gamma_{s-1}}\right) \mathbb{E}\left[\left\|\boldsymbol{x}_{s-1}-\boldsymbol{w}^{*}\right\|^{2}\right]\right) .
$$

Finally plugging in the parameters $\gamma_{s}, \beta_{s}, \eta_{t, s}, \Gamma_{s}$ and the bound $\mathbb{E}\left[\left\|\boldsymbol{x}_{0}-\boldsymbol{w}^{*}\right\|^{2}\right] \leq D_{t}^{2}$ concludes the proof:

$$
\mathbb{E}\left[f\left(\boldsymbol{y}_{k}\right)-f\left(\boldsymbol{w}^{*}\right)\right] \leq \frac{2}{k(k+1)} \sum_{s=1}^{k} k\left(\frac{2 L D_{t}^{2}}{N_{t} k}+\frac{L D_{t}^{2}}{2 N_{t}(k+1)}\right)+\frac{3 L D_{t}^{2}}{k(k+1)} \leq \frac{8 L D_{t}^{2}}{k(k+1)}
$$

