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Abstract
The Frank-Wolfe optimization algorithm has re-
cently regained popularity for machine learn-
ing applications due to its projection-free prop-
erty and its ability to handle structured con-
straints. However, in the stochastic learning set-
ting, it is still relatively understudied compared
to the gradient descent counterpart. In this work,
leveraging a recent variance reduction technique,
we propose two stochastic Frank-Wolfe variants
which substantially improve previous results in
terms of the number of stochastic gradient evalu-
ations needed to achieve 1 − ε accuracy. For ex-
ample, we improve from O( 1

ε ) to O(ln 1
ε ) if the

objective function is smooth and strongly con-
vex, and from O( 1

ε2 ) to O( 1
ε1.5 ) if the objective

function is smooth and Lipschitz. The theoretical
improvement is also observed in experiments on
real-world datasets for a multiclass classification
application.

1. Introduction
We consider the following optimization problem

min
w∈Ω

f(w) = min
w∈Ω

1

n

n∑
i=1

fi(w)

which is an extremely common objective in machine learn-
ing. We are interested in the case where 1) n, usually
corresponding to the number of training examples, is very
large and therefore stochastic optimization is much more
efficient; and 2) the domain Ω admits fast linear optimiza-
tion, while projecting onto it is much slower, necessitating
projection-free optimization algorithms. Examples of such
problem include multiclass classification, multitask learn-
ing, recommendation systems, matrix learning and many
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more (see for example (Hazan & Kale, 2012; Hazan et al.,
2012; Jaggi, 2013; Dudik et al., 2012; Zhang et al., 2012;
Harchaoui et al., 2015)).

The Frank-Wolfe algorithm (Frank & Wolfe, 1956) (also
known as conditional gradient) and it variants are natural
candidates for solving these problems, due to its projection-
free property and its ability to handle structured constraints.
However, despite gaining more popularity recently, its ap-
plicability and efficiency in the stochastic learning setting,
where computing stochastic gradients is much faster than
computing exact gradients, is still relatively understudied
compared to variants of projected gradient descent meth-
ods.

In this work, we thus try to answer the following question:
what running time can a projection-free algorithm achieve
in terms of the number of stochastic gradient evaluations
and the number of linear optimizations needed to achieve a
certain accuracy? Utilizing Nesterov’s acceleration tech-
nique (Nesterov, 1983) and the recent variance reduction
idea (Johnson & Zhang, 2013; Mahdavi et al., 2013), we
propose two new algorithms that are substantially faster
than previous work. Specifically, to achieve 1− ε accuracy,
while the number of linear optimization is the same as pre-
vious work, the improvement of the number of stochastic
gradient evaluations is summarized in Table 1:

previous work this work
Smooth O( 1

ε2 ) O( 1
ε1.5 )

Smooth and

Strongly Convex
O( 1

ε ) O(ln 1
ε )

Table 1: Comparisons of number of stochastic gradients

The extra overhead of our algorithms is computing at most
O(ln 1

ε ) exact gradients, which is computationally insignif-
icant compared to the other operations. A more detailed
comparisons to previous work is included in Table 2, which
will be further explained in Section 2.

While the idea of our algorithms is quite straightforward,
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we emphasize that our analysis is non-trivial, especially
for the second algorithm where the convergence of a se-
quence of auxiliary points in Nesterov’s algorithm needs to
be shown.

To support our theoretical results, we also conducted ex-
periments on three large real-word datasets for a multiclass
classification application. These experiments show signifi-
cant improvement over both previous projection-free algo-
rithms and algorithms such as projected stochastic gradient
descent and its variance-reduced version.

The rest of the paper is organized as follows: Section 2 se-
tups the problem more formally and discusses related work.
Our two new algorithms are presented and analyzed in Sec-
tion 3 and 4, followed by experiment details in Section 5.

2. Preliminary and Related Work
We assume each function fi is convex and L-smooth, that
is, for any w,v ∈ Ω,

∇fi(v)>(w − v) ≤ fi(w)− fi(v)

≤ ∇fi(v)>(w − v) +
L

2
‖w − v‖2 .

We will use two more important properties of smoothness.
The first one is

‖∇fi(w)−∇fi(v)‖2 ≤
2L(fi(w)− fi(v)−∇fi(v)>(w − v))

(1)

(proven in Appendix A for completeness), and the second
one is

fi(λw + (1− λ)v) ≥

λfi(w) + (1− λ)fi(v)− L

2
λ(1− λ) ‖w − v‖2

(2)

for any w,v ∈ Ω and λ ∈ [0, 1]. Notice that f =
1
n

∑n
i=1 fi is also L-smooth since smoothness is preserved

under convex combinations.

For some cases, we also assume each fi is G-Lipschitz:
‖∇fi(w)‖ ≤ G for any w ∈ Ω, and f (although not nec-
essarily each fi) is α-strongly convex, that is,

f(w)− f(v) ≤ ∇f(w)>(w − v)− α

2
‖w − v‖2

for any w,v ∈ Ω. As usual, µ = L
α is called the condition

number of f .

We assume the domain Ω ∈ Rd is a compact convex set
with diameter D. We are interested in the case where lin-
ear optimization on Ω, formally argminv∈Ωw

>v for any
w ∈ Rd, is much faster than projection onto Ω, formally
argminv∈Ω ‖w − v‖

2. Examples of such domains include
the set of all bounded trace norm matrices, the convex hull
of all rotation matrices, flow polytope and many more (see
for instance (Hazan & Kale, 2012)).

2.1. Example Application: Multiclass Classification

Consider a multiclass classification problem where a set
of training examples (ei, yi)i=1,...,n is given beforehand.
Here ei ∈ Rm is a feature vector and yi ∈ {1, . . . , h}
is the label. Our goal is to find an accurate linear predic-
tor, a matrix w = [w>1 ; . . . ,w>h ] ∈ Rh×m that predicts
argmax`w

>
` e for any example e. Note that here the di-

mensionality d is hm.

Previous work (Dudik et al., 2012; Zhang et al., 2012)
found that finding w by minimizing a regularized multi-
variate logistic loss gives a very accurate predictor in gen-
eral. Specifically, the objective can be written in our nota-
tion with

fi(w) = log

(
1 +

∑
` 6=yi

exp(w>` ei −w>yiei)
)

and Ω = {w ∈ Rh×m : ‖w‖∗ ≤ τ} where ‖·‖∗
denotes the matrix trace norm. In this case, projecting
onto Ω is equivalent to performing an SVD, which takes
O(hmmin{h,m}) time, while linear optimization on Ω
amounts to finding the top singular vector, which can be
done in time linear to the number of non-zeros in the corre-
sponding h by m matrix, and is thus much faster. One can
also verify that each fi is smooth. The number of examples
n can be prohibitively large for non-stochastic methods (for
instance, tens of millions for the ImageNet dataset (Deng
et al., 2009)), which makes stochastic optimization neces-
sary.

2.2. Detailed Efficiency Comparisons

We call ∇fi(w) a stochastic gradient for f at some w,
where i is picked from {1, . . . , n} uniformly at random.
Note that a stochastic gradient ∇fi(w) is an unbiased es-
timator of the exact gradient ∇f(w). The efficiency of a
projection-free algorithm is measured by how many num-
bers of exact gradient evaluations, stochastic gradient eval-
uations and linear optimizations respectively are needed to
achieve 1−ε accuracy, that is, to output a pointw ∈ Ω such
that E[f(w)− f(w∗)] ≤ ε wherew∗ ∈ argminw∈Ω f(w)
is any optimum.

In Table 2, we summarize the efficiency (and extra assump-
tions needed beside convexity and smoothness1) of existing
algorithms in the literature as well as the two new algo-
rithms we propose. Below we briefly explain these results
from top to bottom.

1In general, condition “G-Lipschitz” in Table 2 means each
fi is G-Lipschitz, except for our STORC algorithm which only
requires f being G-Lipschitz.
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Algorithm Extra Conditions #Exact Gradients #Stochastic Gradients #Linear Optimizations
Frank-Wolfe O(LD

2

ε ) 0 O(LD
2

ε )

(Garber & Hazan, 2013)
α-strongly convex

Ω is polytope
O(dµρ ln LD2

ε ) 0 O(dµρ ln LD2

ε )

SFW G-Lipschitz 0 O(G
2LD4

ε3 ) O(LD
2

ε )

Online-FW
(Hazan & Kale, 2012)

G-Lipschitz 0 O(d
2(LD2+GD)4

ε4 ) O(d(LD2+GD)2

ε2 )

G-Lipschitz

(L =∞ allowed)
0 O(G

4D4

ε4 ) O(G
4D4

ε4 )

SCGS
(Lan & Zhou, 2014)

G-Lipschitz 0 O(G
2D2

ε2 ) O(LD
2

ε )

G-Lipschitz

α-strongly convex
0 O(G

2

αε ) O(LD
2

ε )

SVRF (this work) O(ln LD2

ε ) O(L
2D4

ε2 ) O(LD
2

ε )

STORC (this work)
G-Lipschitz O(ln LD2

ε ) O(
√
LD2G
ε1.5 ) O(LD

2

ε )

∇f(w∗) = 0 O(ln LD2

ε ) O(LD
2

ε ) O(LD
2

ε )

α-strongly convex O(ln LD2

ε ) O(µ2 ln LD2

ε ) O(LD
2

ε )

Table 2: Comparisons of different Frank-Wolfe variants (see Section 2.2 for further explanations).

The standard Frank-Wolfe algorithm:

vk = argmin
v∈Ω

∇f(wk−1)>v

wk = (1− γk)wk−1 + γkvk

(3)

for some appropriate chosen γk requires O( 1
ε ) iteration

without additional conditions (Frank & Wolfe, 1956; Jaggi,
2013). In a recent paper, Garber & Hazan (2013) give
a variant that requires O(dµρ ln 1

ε ) iterations when f is
strongly convex and smooth, and Ω is a polytope2. Al-
though the dependence on ε is much better, the geometric
constant ρ depends on the polyhedral set and can be very
large. Moreover, each iteration of the algorithm requires
further computation besides the linear optimization step.

The most obvious way to obtain a stochastic Frank-Wolfe
variant is to replace ∇f(wk−1) by some ∇fi(wk−1), or
more generally the average of some number of iid samples
of∇fi(wk−1) (mini-batch approach). We call this method
SFW and include its analysis in Appendix B since we do
not find it explicitly analyzed before. SFW needs O( 1

ε3 )
stochastic gradients and O( 1

ε ) linear optimization steps to
reach an ε-approximate optimum.

The work by Hazan & Kale (2012) focuses on a online
learning setting. One can extract two results from this work
for the setting studied here.3 In any case, the result is worse

2See also recent follow up work (Lacoste-Julien & Jaggi,
2015).

3The first result comes from the setting where the online loss
functions are stochastic, and the second one comes from a com-
pletely online setting with the standard online-to-batch conver-
sion.

than SFW for both the number of stochastic gradients and
the number of linear optimizations.

Stochastic Condition Gradient Sliding (SCGS), recently
proposed by (Lan & Zhou, 2014), uses Nesterov’s accel-
eration technique to speed up Frank-Wolfe. Without strong
convexity, SCGS needs O( 1

ε2 ) stochastic gradients, im-
proving SFW. With strong convexity, this number can even
be improved to O( 1

ε ). In both cases, the number of linear
optimization steps is O( 1

ε ).

The key idea of our algorithms is to combine the variance
reduction technique proposed in (Johnson & Zhang, 2013;
Mahdavi et al., 2013) with some of the above-mentioned
algorithms. For example, our algorithm SVRF combines
this technique with SFW, also improving the number of
stochastic gradients from O( 1

ε3 ) to O( 1
ε2 ), but without

any extra conditions (such as Lipschitzness required for
SCGS). More importantly, despite having seemingly same
convergence rate, SVRF substantially outperforms SCGS
empirically (see Section 5).

On the other hand, our second algorithm STORC combines
variance reduction with SCGS, providing even further im-
provements. Specifically, the number of stochastic gradi-
ents is improved to: O( 1

ε1.5 ) when f is Lipschitz; O( 1
ε )

when∇f(w∗) = 0; and finallyO(ln 1
ε ) when f is strongly

convex. Note that the condition ∇f(w∗) = 0 essentially
means that w∗ is in the interior of Ω, but it is still an inter-
esting case when the optimum is not unique and doing un-
constraint optimization would not necessary return a point
in Ω.
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Both of our algorithms require O( 1
ε ) linear optimization

steps as previous work, and overall require computing
O(ln LD2

ε ) exact gradients. However, we emphasize that
this extra overhead is much more affordable compared to
non-stochastic Frank-Wolfe (that is, computing exact gra-
dients every iteration) since it does not have any polyno-
mial dependence on parameters such as d, L or µ.

2.3. Variance-Reduced Stochastic Gradients

Originally proposed in (Johnson & Zhang, 2013) and inde-
pendently in (Mahdavi et al., 2013), the idea of variance-
reduced stochastic gradients is proven to be highly useful
and has been extended to various different algorithms (such
as (Frostig et al., 2015; Moritz et al., 2016)).

A variance-reduced stochastic gradient at some point w ∈
Ω with some snapshot w0 ∈ Ω is defined as

∇̃f(w;w0) = ∇fi(w)− (∇fi(w0)−∇f(w0)),

where i is again picked from {1, . . . , n} uniformly at ran-
dom. The snapshot w0 is usually a decision point from
some previous iteration of the algorithm and its exact gra-
dient∇f(w0) has been pre-computed before, so that com-
puting ∇̃f(w;w0) only requires two standard stochastic
gradient evaluations: ∇fi(w) and∇fi(w0).

A variance-reduced stochastic gradient is clearly also unbi-
ased, that is, E[∇̃f(w;w0)] = ∇f(w). More importantly,
the term ∇fi(w0) − ∇f(w0) serves as a correction term
to reduce the variance of the stochastic gradient. Formally,
one can prove the following

Lemma 1. For any w,w0 ∈ Ω, we have

E[‖∇̃f(w;w0)−∇f(w)‖2]

≤ 6L(2E[f(w)− f(w∗)] + E[f(w0)− f(w∗)]).

In words, the variance of the variance-reduced stochas-
tic gradient is bounded by how close the current point
and the snapshot are to the optimum. The original work
proves a bound on E[‖∇̃f(w;w0)‖2] under the assump-
tion ∇f(w∗) = 0, which we do not require here. How-
ever, the main idea of the proof is similar and we defer it to
Section 6.

3. Stochastic Variance-Reduced Frank-Wolfe
With the previous discussion, our first algorithm is pretty
straightforward: compared to the standard Frank-Wolfe,
we simply replace the exact gradient with the average of
a mini-batch of variance-reduced stochastic gradients, and
take snapshots every once in a while. We call this algorithm
Stochastic Variance-Reduced Frank-Wolfe (SVRF), whose
pseudocode is presented in Alg 1. The convergence rate of
this algorithm is shown in the following theorem.

Algorithm 1 Stochastic Variance-Reduced Frank-Wolfe
(SVRF)

1: Input: Objective function f = 1
n

∑n
i=1 fi.

2: Input: Parameters γk, mk and Nk.
3: Initialize: w0 = minw∈Ω∇f(x)>w for some arbi-

trary x ∈ Ω.
4: for t = 1, 2, . . . , T do
5: Take snapshot: x0 = wt−1 and compute∇f(x0).
6: for k = 1 to Nt do
7: Compute ∇̃k, the average of mk iid samples of

∇̃f(xk−1,x0).
8: Compute vk = minv∈Ω ∇̃>k v.
9: Compute xk = (1− γk)xk−1 + γkvk.

10: end for
11: Set wt = xNt

.
12: end for

Theorem 1. With the following parameters,

γk =
2

k + 1
, mk = 96(k + 1), Nt = 2t+3 − 2,

Algorithm 1 ensures E[f(wt)− f(w∗)] ≤ LD2

2t+1 for any t.

Before proving this theorem, we first show a direct impli-
cation of this convergence result.

Corollary 1. To achieve 1 − ε accuracy, Algorithm 1 re-
quires O(ln LD2

ε ) exact gradient evaluations, O(L
2D4

ε2 )

stochastic gradient evaluations and O(LD
2

ε ) linear opti-
mizations.

Proof. According to the algorithm and the choice of pa-
rameters, it is clear that these three numbers are T + 1,∑T
t=1

∑Nt

k=1mk = O(4T ) and
∑T
t=1Nt = O(2T ) re-

spectively. Theorem 1 implies that T should be of order
Θ(log2

LD2

ε ). Plugging in all parameters concludes the
proof.

To prove Theorem 1, we first consider a fixed iteration t
and prove the following lemma:

Lemma 2. For any k, we have

E[f(xk)− f(w∗)] ≤ 4LD2

k + 2

if E[‖∇̃s −∇f(xs−1)‖2] ≤ L2D2

(s+1)2 for all s ≤ k.

We defer the proof of this lemma to Section 6 for coher-
ence. With the help of Lemma 2, we are now ready to
prove the main convergence result.
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Proof of Theorem 1. We prove by induction. For t = 0, by
smoothness, the optimality of w0 and convexity, we have

f(w0) ≤ f(x) +∇f(x)>(w0 − x) +
L

2
‖w0 − x‖2

≤ f(x) +∇f(x)>(w∗ − x) +
LD2

2

≤ f(w∗) +
LD2

2
.

Now assuming E[f(wt−1)− f(w∗)] ≤ LD2

2t , we consider
iteration t of the algorithm and use another induction to
show E[f(xk)−f(w∗)] ≤ 4LD2

k+2 for any k ≤ Nt. The base
case is trivial since x0 = wt−1. Suppose E[f(xs−1) −
f(w∗)] ≤ 4LD2

s+1 for any s ≤ k. Now because ∇̃s is the
average of ms iid samples of ∇̃f(xs−1;x0), its variance is
reduced by a factor of ms. That is, with Lemma 1 we have

E[‖∇̃s −∇f(xs−1)‖2]

≤ 6L

ms
(2E[f(xs−1)− f(w∗)] + E[f(x0)− f(w∗)])

≤ 6L

ms

(
8LD2

s+ 1
+
LD2

2t

)
≤ 6L

ms

(
8LD2

s+ 1
+

8LD2

s+ 1

)
=

L2D2

(s+ 1)2
,

where the last inequality is by the fact s ≤ Nt = 2t+3 −
2 and the last equality is by plugging the choice of ms.
Therefore the condition of Lemma 2 is satisfied and the
induction is completed. Finally with the choice of Nt we
thus prove E[f(wt) − f(w∗)] = E[f(xNt

) − f(w∗)] ≤
4LD2

Nt+2 = LD2

2t+1 .

We remark that in Alg 1, we essentially restart the algo-
rithm (that is, reseting k to 1) after taking a new snapshot.
However, another option is to continue increasing k and
never reset it. Although one can show that this only leads to
constant speed up for the convergence, it provides more sta-
ble update and is thus what we implement in experiments.

4. Stochastic Variance-Reduced Conditional
Gradient Sliding

Our second algorithm applies variance reduction to the
SCGS algorithm (Lan & Zhou, 2014). Again, the key dif-
ference is that we replace the stochastic gradients with the
average of a mini-batch of variance-reduced stochastic gra-
dients, and take snapshots every once in a while. See pseu-
docode in Alg 2 for details.

The algorithm makes use of two auxiliary sequences xk
and zk (Line 8 and 12), which is standard for Nesterov’s al-
gorithm. xk is obtained by approximately solving a square
norm regularized linear optimization so that it is close to

Algorithm 2 STOchastic variance-Reduced Conditional
gradient sliding (STORC)

1: Input: Objective function f = 1
n

∑n
i=1 fi.

2: Input: Parameters γk, βk, ηt,k, mt,k and Nt.
3: Initialize: w0 = minw∈Ω∇f(x)>w for some arbi-

trary x ∈ Ω.
4: for t = 1, 2, . . . do
5: Take snapshot: y0 = wt−1 and compute∇f(y0).
6: Initialize x0 = y0.
7: for k = 1 to Nt do
8: Compute zk = (1− γk)yk−1 + γkxk−1.
9: Compute ∇̃k, the average of mt,k iid samples of

∇̃f(zk;y0).
10: Let g(x) = βk

2 ‖x− xk−1‖2 + ∇̃>k x.
11: Compute xk, the output of using standard Frank-

Wolfe to solve minx∈Ω g(x) until the duality gap
is at most ηt,k, that is,

max
x∈Ω
∇g(xk)>(xk − x) ≤ ηt,k . (4)

12: Compute yk = (1− γk)yk−1 + γkxk.
13: end for
14: Set wt = yNt

.
15: end for

xk−1 (Line 11). Note that this step does not require com-
puting any extra gradients of f or fi, and is done by per-
forming the standard Frank-Wolfe algorithm (Eq. (3)) until
the duality gap is at most a certain value ηt,k. The duality
gap is a certificate of approximate optimality (see (Jaggi,
2013)), and is a side product of the linear optimization per-
formed at each step, requiring no extra cost.

Also note that the stochastic gradients are computed at the
sequence zk instead of yk, which is also standard in Nes-
terov’s algorithm. However, according to Lemma 1, we
thus need to show the convergence rate of the auxiliary se-
quence zk, which appears to be rarely studied previously
to the best our knowledge. This is one of the key steps in
our analysis.

The main convergence result of STORC is the following:

Theorem 2. With the following parameters (where Dt is
defined later below):

γk =
2

k + 1
, βk =

3L

k
, ηt,k =

2LD2
t

Ntk
,

Algorithm 2 ensures E[f(wt)− f(w∗)] ≤ LD2

2t+1 for any t if
any of the following three cases holds:

(a) ∇f(w∗) = 0 and Dt = D,Nt = d2 t
2 +2e,mt,k =

900Nt.

(b) f is G-Lipschitz and Dt = D,Nt = d2 t
2 +2e,mt,k =
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700Nt + 24NtG(k+1)
LD .

(c) f is α-strongly convex and D2
t = µD2

2t−1 , Nt =

d
√

32µe,mt,k = 5600Ntµ where µ = L
α .

Again we first give a direct implication of the above result:

Corollary 2. To achieve 1 − ε accuracy, Algorithm 2 re-
quires O(ln LD2

ε ) exact gradient evaluations and O(LD
2

ε )
linear optimizations. The numbers of stochastic gradi-
ent evaluations for Case (a), (b) and (c) are respectively
O(LD

2

ε ), O(LD
2

ε +
√
LD2G
ε1.5 ) and O(µ2 ln LD2

ε ).

Proof. Line 11 requiresO(βkD
2

ηt,k
) iterations of the standard

Frank-Wolfe algorithm since g(x) is βk-smooth (see e.g.
(Jaggi, 2013, Theorem 2)). So the numbers of exact gradi-
ent evaluations, stochastic gradient evaluations and linear
optimizations are respectively T+1,

∑T
t=1

∑Nt

k=1mt,k and
O(
∑T
t=1

∑Nt

k=1
βkD

2

ηt,k
). Theorem 2 implies that T should

be of order Θ(log2
LD2

ε ). Plugging in all parameters proves
the corollary.

To prove Theorem 2, we again first consider a fixed iter-
ation t and use the following lemma, which is essentially
proven in (Lan & Zhou, 2014). We include a distilled proof
in Appendix C for completeness.

Lemma 3. Suppose E[‖y0 −w∗‖2] ≤ D2
t holds for some

positive constant Dt ≤ D. Then for any k, we have

E[f(yk)− f(w∗)] ≤ 8LD2
t

k(k + 1)

if E[‖∇̃s −∇f(zs)‖2] ≤ L2D2
t

Nt(s+1)2 for all s ≤ k.

Proof of Theorem 2. We prove by induction. The base case
t = 0 holds by the exact same argument as in the proof of
Theorem 1. Suppose E[f(wt−1) − f(w∗)] ≤ LD2

2t and
consider iteration t. Below we use another induction to
prove E[f(yk) − f(w∗)] ≤ 8LD2

t

k(k+1) for any 1 ≤ k ≤ Nt,
which will concludes the proof since for any of the three
cases, we have E[f(wt)− f(w∗)] = E[f(yNt

)− f(w∗)]

which is at most 8LD2
t

N2
t
≤ LD2

2t+1 .

We first show that the condition E[‖y0 − w∗‖2] ≤ D2
t

holds. This is trivial for Cases (a) and (b) when Dt = D.
For Case (c), by strong convexity and the inductive assump-
tion, we have E[‖y0 − w∗‖2] ≤ 2

αE[f(y0) − f(w∗)] ≤
LD2

α2t−1 = D2
t .

Next note that Lemma 1 implies that E[‖∇̃s −∇f(zs)‖2]
is at most 6L

mt,s
(2E[f(zs)− f(w∗)] +E[f(y0)− f(w∗)]).

So the key is to bound E[f(zs) − f(w∗)]. With z1 =
y0 one can verify that E[‖∇̃1 − ∇f(z1)‖2] is at most

18L
mt,1

E[f(y0) − f(w∗)] ≤ 18L2D2

mt,12t ≤ L2D2
t

4Nt
for all three

cases, and thus E[f(ys)−f(w∗)] ≤ 8LD2
t

s(s+1) holds for s = 1

by Lemma 3. Now suppose it holds for any s < k, below
we discuss the three cases separately to show that it also
holds for s = k.

Case (a). By smoothness, the condition ∇f(w∗) = 0,
the construction of zs, and Cauchy-Schwarz inequality, we
have for any 1 < s ≤ k,

f(zs) ≤ f(ys−1) + (∇f(ys−1)−∇f(w∗))>(zs − ys−1)

+
L

2
‖zs − ys−1‖2

= f(ys−1) + γs(∇f(ys−1)−∇f(w∗))>(xs−1 − ys−1)

+
Lγ2

s

2
‖xs−1 − ys−1‖2

≤ f(ys−1) + γsD‖∇f(ys−1)−∇f(w∗)‖+
LD2γ2

s

2
.

Property (1) and the optimality of w∗ implies:

‖∇f(ys−1)−∇f(w∗)‖2

≤ 2L(f(ys−1)− f(w∗)−∇f(w∗)>(ys−1 −w∗))
≤ 2L(f(ys−1)− f(w∗)).

So subtracting f(w∗) and taking expectation on both sides,
and applying Jensen’s inequality and the inductive assump-
tion, we have

E[f(zs)− f(w∗)]

≤ E[f(ys−1)− f(w∗)] + γsD
√

2LE[f(ys−1)− f(w∗)]

+
2LD2

(s+ 1)2

≤ 8LD2

(s− 1)s
+

8LD2

(s+ 1)
√

(s− 1)s
+

2LD2

(s+ 1)2
<

55LD2

(s+ 1)2
.

On the other hand, we have E[f(y0) − f(w∗)] ≤ LD2

2t ≤
16LD2

(Nt−1)2 < 40LD2

(Nt+1)2 ≤
40LD2

(s+1)2 . So E[‖∇̃s − ∇f(zs)‖2

is at most 900L2D2

mt,s(s+1)2 , and the choice of mt,s ensures that

this bound is at most L2D2

Nt(s+1)2 , satisfying the condition of
Lemma 3 and thus completing the induction.

Case (b). With the G-Lipschitz condition we proceed
similarly and bound f(zs) by

f(ys−1) +∇f(ys−1)>(zs − ys−1) +
L

2
‖zs − ys−1‖2

= f(ys−1) + γs∇f(ys−1)>(xs−1 − ys−1) +
LD2γ2

s

2

≤ f(ys−1) + γsGD +
LD2γ2

s

2
.
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So using bounds derived previously and the choice ofmt,s,
we bound E[‖∇̃s −∇f(zs)‖2 as follows:

6L

mt,s

(
16LD2

(s− 1)s
+

4GD

s+ 1
+

4LD2

(s+ 1)2
+

40LD2

(s+ 1)2

)
<

6L

mt,s

(
4GD

s+ 1
+

116LD2

(s+ 1)2

)
<

L2D2

Nt(s+ 1)2
,

again completing the induction.

Case (c). Using the definition of zs and ys and direct cal-
calution, one can remove the dependence of xs and verify

ys−1 =
s+ 1

2s− 1
zs +

s− 2

2s− 1
ys−2

for any s ≥ 2. Now we apply Property (2) with λ = s+1
2s−1 :

f(ys−1) ≥ s+ 1

2s− 1
f(zs) +

s− 2

2s− 1
f(ys−2)

− L

2

(s+ 1)(s− 2)

(2s− 1)2
‖zs − ys−2‖2

= f(w∗) +
s+ 1

2s− 1
(f(zs)− f(w∗))+

s− 2

2s− 1
(f(ys−2)− f(w∗))− L(s− 2)

2(s+ 1)
‖ys−1 − ys−2‖2

≥ f(w∗) +
1

2
(f(zs)− f(w∗))− L

2
‖ys−1 − ys−2‖2,

where the equality is by adding and subtracting f(w∗) and
the fact ys−1 − ys−2 = s+1

2s−1 (zs − ys−2), and the last
inequality is by f(ys−2) ≥ f(w∗) and trivial relaxations.

Rearranging gives f(zs)−f(w∗) ≤ 2(f(ys−1−f(w∗))+
L‖ys−1 − ys−2‖2. Applying Cauchy-Schwarz inequality,
strong convexity and the fact µ ≥ 1, we continue with

f(zs)− f(w∗)

≤ 2(f(ys−1 − f(w∗))

+ 2L(‖ys−1 −w∗‖2 + ‖ys−2 −w∗‖2)

≤ 2(f(ys−1 − f(w∗))

+ 4µ(f(ys−1)− f(w∗) + f(ys−2)− f(w∗))

≤ 6µ(f(ys−1 − f(w∗)) + 4µ(f(ys−2)− f(w∗)),

For s ≥ 3, we use the inductive assumption to show
E[f(zs) − f(w∗)] ≤ 48µLD2

t

(s−1)s +
32µLD2

t

(s−2)(s−1) ≤
448µLD2

t

(s+1)2 .
The case for s = 2 can be verified similarly using the bound
on E[f(y0) − f(w∗)] and E[f(y1) − f(w∗)] (base case).
Finally we bound the term E[f(y0) − f(w∗)] ≤ LD2

2t =
LD2

t

2µ ≤
32LD2

t

(Nt+1)2 ≤
32LD2

t

(s+1)2 , and conclude that the variance

E[‖∇̃s −∇f(zs)‖2 is at most 6L
mt,s

(
896µLD2

t

(s+1)2 +
32LD2

t

(s+1)2 ) ≤
L2D2

t

Nt(s+1)2 , completing the induction by Lemma 3.

dataset #features #categories #examples
news20 62,061 20 15,935

rcv1 47,236 53 15,564
aloi 128 1,000 108,000

Table 3: Summary of datasets

5. Experiments
To support our theory, we conduct experiments in the mul-
ticlass classification problem mentioned in Sec 2.1. Three
datasets are selected from the LIBSVM repository4 with
relatively large number of features, categories and exam-
ples, summarized in the Table 3.

Recall that the loss function is multivariate logistic loss and
Ω is the set of matrices with bounded trace norm τ . We
focus on how fast the loss decreases instead of the final test
error rate so that the tuning of τ is less important, and is
fixed to 50 throughout.

We compare six algorithms. Four of them (SFW, SCGS,
SVRF, STORC) are projection-free as discussed, and the
other two are standard projected stochastic gradient descent
(SGD) and its variance-reduced version (SVRG (Johnson
& Zhang, 2013)), both of which require expensive projec-
tion.

For most of the parameters in these algorithms, we roughly
follow what the theory suggests. For example, the size of
mini-batch of stochastic gradients at round k is set to k2, k3

and k respectively for SFW, SCGS and SVRF, and is fixed
to 100 for the other three. The number of iterations be-
tween taking two snapshots for variance-reduced methods
(SVRG, SVRF and STORC) are fixed to 50. The learning
rate is set to the typical decaying sequence c/

√
k for SGD

and a constant c′ for SVRG as the original work suggests
for some best tuned c and c′.

Since the complexity of computing gradients, performing
linear optimization and projecting are very different, we
measure the actual running time of the algorithms and see
how fast the loss decreases. Results can be found in Fig-
ure 1, where one can clearly observe that for all datasets,
SGD and SVRG are significantly slower compared to the
others, due to the expensive projection step, highlighting
the usefulness of projection-free algorithms. Moreover, we
also observe large improvement gained from the variance
reduction technique, especially when comparing SCGS and
STORC, as well as SVF and SVRF on the aloi dataset. In-
terestingly, even though the STORC algorithm gives the
best theoretical results, empirically the simpler algorithms

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Comparison of six algorithms on three multiclass datasets (best viewed in color)

SFW and SVRF tend to have consistent better performance.

6. Omitted Proofs
Proof of Lemma 1. Let Ei denotes the conditional expec-
tation given all the past except the realization of i. We have

Ei[‖∇̃f(w;w0)−∇f(w)‖2]

= Ei[‖∇fi(w)−∇fi(w0) +∇f(w0)−∇f(w)‖2]

= Ei[‖(∇fi(w)−∇fi(w∗))− (∇fi(w0)−∇fi(w∗))
+ (∇f(w0)−∇f(w∗))− (∇f(w)−∇f(w∗))‖2]

≤ 3Ei[‖∇fi(w)−∇fi(w∗)‖2 + ‖(∇fi(w0)−∇fi(w∗))
− (∇f(w0)−∇f(w∗))‖2 + ‖∇f(w)−∇f(w∗)‖2]

≤ 3Ei[‖∇fi(w)−∇fi(w∗)‖2 + ‖∇fi(w0)−∇fi(w∗)‖2

+ ‖∇f(w)−∇f(w∗)‖2]

where the first inequality is Cauchy-Schwarz inequal-
ity, and the second one is by the fact Ei[∇fi(w0) −
∇fi(w∗)] = ∇f(w0) − ∇f(w∗) and that the variance
of a random variable is bounded by its second moment.

We now apply Property (1) to bound each of the three
terms above. For example, Ei‖∇fi(w) − ∇fi(w∗)‖2 ≤
2LEi[fi(w) − fi(w

∗) − ∇fi(w∗)>(w − w∗)] =
2L(f(w)−f(w∗)−∇f(w∗)>(w−w∗)), which is at most
2L(f(w) − f(w∗)) by the optimality of w∗. Proceeding
similarly for the other two terms concludes the proof.

Proof of Lemma 2. For any s ≤ k, by smoothness we
have f(xs) ≤ f(xs−1) + ∇f(xs−1)>(xs − xs−1) +
L
2 ‖xs − xs−1‖2. Plugging in xs = (1 − γs)xs−1 + γsvs
gives f(xs) ≤ f(xs−1) + γs∇f(xs−1)>(vs − xs−1) +
Lγ2

s

2 ‖vs − xs−1‖2. Rewriting and using the fact that
‖vs − xs−1‖ ≤ D leads to

f(xs) ≤ f(xs−1) + γs∇̃>s (vs − xs−1)

+ γs(∇f(xs−1)− ∇̃s)>(vs − xs−1) +
LD2γ2

s

2
.

The optimality of vs implies ∇̃>s vs ≤ ∇̃>s w∗. So with

further rewriting we arrive at

f(xs) ≤ f(xs−1) + γs∇f(xs−1)>(w∗ − xs−1)

+ γs(∇f(xs−1)− ∇̃s)>(vs −w∗) +
LD2γ2

s

2
.

By convexity, term ∇f(xs−1)>(w∗ − xs−1) is bounded
by f(w∗) − f(xs−1), and by Cauchy-Schwarz inequal-
ity, term (∇f(xs−1) − ∇̃s)>(vs − w∗) is bounded by
D‖∇̃s−∇f(xs−1)‖, which in expectation is at most LD

2

s+1

by the condition on E[‖∇̃s − ∇f(xs−1)‖2] and Jensen’s
inequality. Therefore we can bound E[f(xs)− f(w∗)] by

(1− γs)E[f(xs−1)− f(w∗)] +
LD2γs
s+ 1

+
LD2γ2

s

2

= (1− γs)E[f(xs−1)− f(w∗)] + LD2γ2
s .

Finally we prove E[f(xk)−f(w∗)] ≤ 4LD2

k+2 by induction.
The base case is trival: E[f(x1) − f(w∗)] is bounded by
(1−γ1)E[f(x0)−f(w∗)]+LD2γ2

1 = LD2 since γ1 = 1.
Suppose E[f(xs−1)−f(w∗)] ≤ 4LD2

s+1 then with γs = 2
s+1

we bound E[f(xs)− f(w∗)] by

4LD2

s+ 1

(
1− 2

s+ 1
+

1

s+ 1

)
≤ 4LD2

s+ 2
,

completing the induction.

7. Conclusion and Open Problems
We conclude that the variance reduction technique, previ-
ously shown to be highly useful for gradient descent vari-
ants, can also be very helpful in speeding up projection-free
algorithms. The main open question is, in the strongly con-
vex case, whether the number of stochastic gradients for
STORC can be improved from O(µ2 ln 1

ε ) to O(µ ln 1
ε ),

which is typical for gradient descent methods, and whether
the number of linear optimizations can be improved from
O( 1

ε ) to O(ln 1
ε ).
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