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Appendices
A. Derivation of the CTC-EM Equations

In the maximization step, the objective is to obtain the derivative of Qτ (w|x, z,w(n)) with respect to the input of the
softmax layer, atk, at time t. We first differentiate Qτ with respect to ytk at w = w(n):
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With Bayes’ rule, we obtain
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and with simple calculus,
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Then, (1) becomes
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If we define the loss function to be minimized as

Lτ (x, z) = − ln p(Z|x1:τ ), (6)

then its derivative equals to (5) with the opposite sign:
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From now on, we drop w(n) without loss of generality. Let

βτ,m(τ, u) =

{
1 if u = 2m, 2m+ 1

0 otherwise
. (8)
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Following the standard CTC forward-backward equations in Graves et al. (2012),
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From (9) and (10), p(Z|x1:τ ) and its derivative become
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where the new backward variable for p(Z|x1:τ ) is
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which results in the simple initialization as

βτ (τ, u) = 1, ∀u. (14)

Then, the error gradients become
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B. Phoneme Recognition on TIMIT

B.1. TIMIT CORPUS

The TIMIT corpus (Garofolo et al., 1993) contains American English recordings of 630 speakers from 8 major dialect
regions in the United States. The training set contains about 3.1 hours of 3,696 utterances from 462 speakers after removing
the SA recordings, in which only two sentences are spoken by multiple speakers. Figure 1 shows the histogram of the length
of the training sequences, where the feature frames are extracted with the 10 ms period. The average length of the training
sequences is 304 frames. We use the core test set with 192 utterances as the test set. The development set contains the
remaining 1,152 utterances that are obtained by excluding the core test set from the complete test set. The corpus also
includes the full phonetic transcriptions.
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Figure 1. Histogram of the length of the sequences in the TIMIT training set (SA removed), where the feature frames are extracted with
the period of 10 ms.

B.2. NETWORK STRUCTURE

The network structure is a deep unidirectional LSTM RNN with 3 LSTM hidden layers, where each LSTM layer has 512
cells. The input is the same log Mel-frequency filterbank feature as in the WSJ experiments. The training procedure is
also similar. The original TIMIT transcriptions are based on 61 phonetic labels. Accordingly, the RNN output is a 62-
dimensional vector that consists of the probabilities of the original 61 phonemes and the extra CTC label. However, after
decoding, they are mapped to 39 phonemes for evaluation as in Lee & Hon (1989).

B.3. TRAINING PROCEDURE

For the experiments, the continuous CTC(2h′; h′) algorithm is employed so that the resulting RNN can run continuously
on a infinitely long stream of the input speech. The networks are pre-trained with ADADELTA (Zeiler, 2012), where the
local learning rates are adaptively adjusted using the statistics of the recent gradient values. Before the online CTC training
with the unroll amount greater than of equal to 512, the pre-training is performed for the 8 M (8 × 220) training frames
with the unroll amount of 2,048, the learning rate of 10−5, the Nesterov momentum of 0.9, and the RMS decay rate of
0.99 for ADADELTA. On the other hand, we pre-trained the network with 12 M frames for the subsequent CTC training
with less than 512 unroll steps. Unlike in the WSJ experiments, it is observed that applying the standard SGD method at
the beginning often fails to initiate the training. We consider this is because the gradient computed by the SGD method is
initially not noisy enough to help the parameters escape from the initial saddle point.

After the pre-training, the standard SGD is applied with the Nesterov momentum of 0.9. The training starts with the
learning rate of 10−4. The intermediate evaluations are performed at every 2 M (2×220) training frames on the development
set with the best path decoding. If the phoneme error rate (PER) fails to improve during 6 consecutive evaluations, the
learning rate decreases by the factor of 2 and the parameters are restored to those of the second best network. The training
finishes when the learning rate becomes less than 10−6.

The network is regularized with dropout (Hinton et al., 2012) in both the pre-training and the main training stages following
the approach in Zaremba et al. (2014), that is, dropout is only applied on the non-recurrent connections. The dropout rate
is fixed to 0.5 throughout the experiments.

B.4. EVALUATION

The networks are evaluated on the very long test stream that is obtained by concatenating the entire test sequences. For the
evaluation, the network output is decoded by the CTC beam search. The experiments are repeated 4 times and the mean
and standard deviation estimates of PERs are reported based on the reduced 39-phoneme set.

The RNNs are unrolled 64, 128, 256, 512, 1,024, and 2,048 times. As shown in Table 1, the various unroll amounts make
little difference to the final PERs on the test set. When the RNN is unrolled only 128 times, which is less than the average
length of training sequences, the best PER of 20.73±0.40% is obtained. On the other hand, the training with the unroll
amount of 2,048 results in slightly degraded performance since it becomes harder for RNNs to catch the dependencies
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Table 1. Comparison of CTC-TR coverages and PERs on the test set after CTC(2h′; h′) training with the varying amounts of unrolling.

# Streams CTC-TR coverage (%) PER (%)
× # Unroll Average Maximum Mean ± Stdev. Min. Max.

8 × 2,048 100.0 100.0 21.14 ± 0.29 20.91 21.57
16 × 1,024 99.80 100.0 20.82 ± 0.17 20.66 21.03
32 × 512 89.48 99.60 21.18 ± 0.40 20.60 21.48
64 × 256 60.69 79.37 20.77 ± 0.24 20.47 20.97

128 × 128 31.53 42.02 20.73 ± 0.40 20.39 21.25
256 × 64 15.77 21.03 21.00 ± 0.16 20.78 21.15

Table 2. Comparison of the proposed online CTC algorithm and the other models in the literature in terms of PER on the test set.

Model Network (# param) Bi- Test sequence PER (%)

Proposed online CTC LSTM (5.5 M) No Almost infinite stream a 20.73

Attention-based model b Conv.c+GRUd Yes Long sequences e About 20
Utterance-wise 17.6

RNN transducer f LSTM (4.3 M) Yes Utterance-wise 17.7

Sequence-wise CTC f LSTM (3.8 M) Yes Utterance-wise 18.4
No 19.6

aGenerated by concatenating all of the 192 test utterances
bChorowski et al. (2015)
cConvolutional features
dGated recurrent unit (Cho et al., 2014)
eGenerated by concatenating 11 utterances
fGraves et al. (2013)

between the input and output sequences due to the noisy input frames from the consecutive sequences.

The performance of the proposed online CTC algorithm is compared with the other models in Table 2. The other models
employ early stopping to prevent overfitting and add weight noise while training for regularization. The bidirectional
attention-based model in Chorowski et al. (2015) shows 17.6% PER with utterance-wise decoding. However, the PER
increases to about 20% with the long test sequences that are generated by concatenating 11 utterances. On the other
hand, our CTC(128; 64)-trained unidirectional RNNs show 20.73±0.40% PER with a very long test stream that is made
by concatenating the entire 192 test utterances. Note that, unlike the CTC-trained unidirectional RNNs, the bidirectional
models require unrolling in test time and have to listen the entire speech before generating outputs. Therefore, the proposed
unidirectional RNN models are more suitable for realtime low-latency speech recognition systems without sacrificing much
performance.
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