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Abstract
Nonparametric extension of tensor regression is
proposed. Nonlinearity in a high-dimensional
tensor space is broken into simple local functions
by incorporating low-rank tensor decomposition.
Compared to naive nonparametric approaches,
our formulation considerably improves the con-
vergence rate of estimation while maintaining
consistency with the same function class under
specific conditions. To estimate local functions,
we develop a Bayesian estimator with the Gaus-
sian process prior. Experimental results show
its theoretical properties and high performance in
terms of predicting a summary statistic of a real
complex network.

1. Introduction
Tensor regression deals with matrices or tensors (i.e., multi-
dimensional arrays) as covariates (inputs) to predict scalar
responses (outputs) (Wang et al., 2014; Hung & Wang,
2013; Zhao et al., 2014; Zhou et al., 2013; Tomioka et al.,
2007; Suzuki, 2015; Guhaniyogi et al., 2015). Suppose
we have a set of n observations Dn = {(Yi, Xi)}ni=1;
Yi ∈ Y is a respondent variable in the space Y ⊂ R and
Xi ∈ X is a covariate with Kth-order tensor form in the
space X ⊂ RI1×...×IK , where Ik is the dimensionality of
order k. With the above setting, we consider the regression
problem of learning a function f : X → Y as

Yi = f(Xi) + ui, (1)

where ui is zero-mean Gaussian noise with variance σ2.
Such problems can be found in several applications. For ex-
ample, studies on brain-computer interfaces attempt to pre-
dict human intentions (e.g., determining whether a subject
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imagines finger tapping) from brain activities. Electroen-
cephalography (EEG) measures brain activities as electric
signals at several points (channels) on the scalp, giving
channel × time matrices as covariates. Functional mag-
netic resonance imaging captures blood flow in the brain as
three-dimensional voxels, giving X-axis × Y-axis × Z-axis
× time tensors.

There are primarily two approaches to the tensor regression
problem. One is assuming linearity to f as

f(Xi) = 〈B,Xi〉, (2)

where B ∈ RI1×...×IK is a weight parameter
with the same dimensionalities as X and 〈B,X〉 =∑I1,...,IK
j1,...,jK=1Bj1...jKXj1...jK denotes the inner product.

Since B is very high-dimensional in general, several au-
thors have incorporated a low-rank structure toB (Dyrholm
et al., 2007; Zhou et al., 2013; Hung & Wang, 2013; Wang
et al., 2014; Suzuki, 2015; Guhaniyogi et al., 2015). We
collectively refer to the linear models (2) with low-rank B
as tensor linear regression (TLR). As an alternative, a non-
parametric approach has been proposed (Zhao et al., 2013;
Hou et al., 2015). When f(X) belongs to a proper func-
tional space, with an appropriately choosing kernel func-
tion, the nonparametric method can estimate f perfectly
even if f is nonlinear.

In terms of both theoretical and practical aspects, the bias-
variance tradeoff is a central issue. In TLR, the function
class that the model can represent is critically restricted due
to its linearity and the low-rank constraint, implying that
the variance error is low but the bias error is high if the
true function is either nonlinear or full rank. In contrast,
the nonparametric method can represent a wide range of
functions and the bias error can be close to zero. However,
at the expense of the flexibility, the variance error will be
high due to the high dimensionality, the notorious nature
of tensors. Generally, the optimal convergence rate of non-
parametric models is given by

O(n−β/(2β+d)), (3)
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which is dominated by the input dimensionality d and the
smoothness of the true function β (Tsybakov, 2008). For
tensor regression, d is the total number of X’s elements,
i.e.,

∏
k Ik. When each dimensionality is roughly the same

as I1 ' · · · ' IK , d = O(IK1 ), which significantly wors-
ens the rate, and hinders application to even moderate-sized
problems.

In this paper, to overcome the curse of dimensionality, we
propose additive-multiplicative nonparametric regression
(AMNR), a new class of nonparametric tensor regression.
Intuitively, AMNR constructs f as the sum of local func-
tions taking the component of a rank-one tensor as inputs.
In this approach, functional space and the input space are
concurrently decomposed. This “double decomposition”
simultaneously reduces model complexity and the effect of
noise. For estimation, we propose a Bayes estimator with
the Gaussian Process (GP) prior. The following theoretical
results highlight the desirable properties of AMNR. Under
some conditions,

• AMNR represents the same function class as the gen-
eral nonparametric model, while

• the convergence rate (3) is improved as d = Ik′ (k′ =
argmaxk Ik), which is

∏
k 6=k′ Ik times better.

We verify the theoretical convergence rate by simulation
and demonstrate the empirical performance for real appli-
cation in network science.

2. AMNR: Additive-Multiplicative
Nonparametric Regression

First, we introduce the basic notion of tensor decompo-
sition. With a finite positive integer R∗, the CANDE-
COMP/PARAFAC (CP) decomposition (Harshman, 1970;
Carroll & Chang, 1970) of X ∈ X is defined as

X =

R∗∑
r=1

λrx
(1)
r ⊗ x(2)r ⊗ . . .⊗ x(K)

r , (4)

where ⊗ denotes the tensor product, x(k)r ∈ X (k) is a unit
vector in a set X (k) := {v|v ∈ RIk , ‖v‖ = 1}, and λr is
the scale of {x(1)r , . . . , x

(K)
r } satisfying λr ≥ λr′ for all

r > r′. In this paper, R∗ is the rank of X .

A similar relation holds for functions. Here, Wβ(X ) de-
notes a Sobolev space, which is β times differentiable func-
tions with support X . Let g ∈ Wβ(S) be such a function.
If S is given by the direct product of multiple supports as
S = S1 × · · · × SJ , there exists a (possibly infinite) set of
local functions {g(j)m ∈ Wβ(Sj)}m satisfying

g =
∑
m

∏
j

g(j)m (5)

for any g (Hackbusch, 2012, Example 4.40). This relation
can be seen as an extension of tensor decomposition with
infinite dimensionalities.

2.1. The Model

For brevity, we start with the case wherein X is rank
one. Let X =

⊗
k xk := x1 ⊗ · · · ⊗ xK with vec-

tors {xk ∈ X (k)}Kk=1 and f ∈ Wβ(
⊗

k X (k)) be a
function on a rank one tensor. For any f , we can con-
struct f̃(x1, . . . , xK) ∈ Wβ(X (1) × . . . × X (k)) such
that f̃(x1, . . . , xK) = f(X) using function composition
as f̃ = f ◦ h with h : (x1, . . . , xK) 7→

⊗
k xK . Then,

using (5), f is decomposed into a set of local functions
{f (k)m ∈ Wβ(X (k))}m as:

f(X) = f̃(x1, . . . , xK) =

M∗∑
m=1

K∏
k=1

f (k)m (x(k)), (6)

where M∗ represents the complexity of f (i.e., the “rank”
of the model).

With CP decomposition, (6) is amenable to extend for X ∈
X having a higher rank. For R∗ ≥ 1, we define AMNR as
follows:

fAMNR(X) :=

M∗∑
m=1

R∗∑
r=1

λr

K∏
k=1

f (k)m (x(k)r ). (7)

Aside from the summation with respect to m, AMNR (7)
is very similar to CP decomposition (4) in terms of that it
takes summation over ranks and multiplication over orders.
In addition, as λr indicates the importance of component
r in CP decomposition, it controls how component r con-
tributes to the final output in AMNR. Note that, forR∗ > 1,
equality between fAMNR and f ∈ Wβ(X ) does not hold
in general; see Section 4.

3. Truncated GP Estimator
3.1. Truncation of M∗ and R∗

To construct AMNR (7), we must know M∗. However,
this is unrealistic because we do not know the true func-
tion. More crucially, M∗ can be infinite, and in such a
case the exact estimation is computationally infeasible. We
avoid these problems using predefined M <∞ rather than
M∗ and ignore the contribution from {f (k)m : m > M}.
This may increase the model bias; however, it decreases
the variance of estimation. We discuss how to determine
M in Section 4.2.

For R∗, we adopt the same strategy as M∗, i.e., we prepare
some R < R∗ and approximate X as a rank- R tensor. Be-
cause this approximation reduces some information in X,
the prediction performance may degrade. However, if R is
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not too small, this preprocessing is justifiable for the fol-
lowing reasons. First, this approximation possibly removes
the noise in X . In real data such as EEG data, X often
includes observation noise that hinders the prediction per-
formance. However, if the power of the noise is sufficiently
small, the low-rank approximation discards the noise as the
residual and enhances the robustness of the model. In ad-
dition, even if the approximation discards some intrinsic
information of X , its negative effects could be limited be-
cause λs of the discarded components are also small.

3.2. Estimation Method and Algorithm

For each local function f
(k)
m , consider the GP prior

GP (f
(k)
m ), which is represented as multivariate Gaussian

distribution N (0Rn,K
(k)
m ) where 0Rn is the zero element

vector of size Rn and K
(k)
m is a kernel Gram matrix of

size Rn×Rn. The prior distribution of the local functions
F := {f (k)m }m,k is then given by:

π(F) =

M∏
m=1

K∏
k=1

GP (f (k)m ).

From the prior π(F) and the likelihood∏
iN(Yi|f(Xi), σ

2), Bayes’ rule yields the posterior
distribution:

π(F|Dn)

=
exp(−

∑n
i=1(Yi −G[F](Xi))

2/σ)∫
exp(−

∑n
i=1(Yi −G[F̃](Xi))2/σ)π(F̃)dF̃

π(F),

(8)

where G[F](Xi) =
∑M
m=1

∑R
r=1 λr,i

∏K
k=1 f

(k)
m (x

(k)
r,i ).

F̃ = {f̃ (k)m }m,k are dummy variables for the integral.
We use the posterior mean as the Bayesian estimator of
AMNR:

f̂n =

∫ M∑
m=1

R∑
r=1

λr,i

K∏
k=1

f (k)m dπ(F|Dn)dF. (9)

To obtain predictions with new inputs, we derive the mean
of the predictive distribution in a similar manner.

Since the integrals in the above derivations have no analyt-
ical solution, we compute them numerically by sampling.
The details of the entire procedure are summarized as fol-
lows. Note that Q denotes the number of random samples.

• Step 1: CP decomposition of input tensors
With the dataset Dn, apply rank-R CP decomposition
to Xi and obtain {λr,i} and {x(k)r,i } for i = 1, . . . , n.

• Step 2: Construction of the GP prior distribution
π(F)

Construct a kernel Gram matrix K
(k)
m from {x(k)r }

for each m and k, and obtain random samples of
the multivariate Gaussian distribution N (0Rn,K

(k)
m ).

For each sampling q = 1, . . . , Q, obtain a value
f
(k)
m (x

(k)
r,i ) for each r,m, k, and i = 1, . . . , n.

• Step 3: Computation of likelihood
To obtain the likelihood, calculate∑
m

∑
r λr

∏
k f

(k)
m (x

(k)
r,i ) for each sampling q

and obtain the distribution by (8). Obtain the
Bayesian estimator f̂ and select the hyperparameters
(optional).

• Step 4: Prediction with the predictive distribution
Given a new input X ′, compute CP decomposi-
tion and obtain λ′r and {x′(k)r }r,k. Then, sample
f
(k)
m (x′

(k)
r ) from the prior for each q. By multiply-

ing the likelihood calculated in Step 3, derive the pre-
dictive distribution of

∑
m

∑
r λr

∏
k f

(k)
m (x′

(k)
r ) and

obtain its expectation with respect to q.

4. Theoretical Analysis
Our main interest here is the asymptotic behavior of dis-
tance between the true function that generates data and an
estimator (9). Preliminarily, let f0 ∈ Wβ(X ) be the true
function and f̂n be the estimator of f0. To analyze the dis-
tance in more depth, we introduce the notion of rank addi-
tivity1 for functions, which is assumed implicitly when we
extend (6) to (7).

Definition 1 (Rank Additivity). A function f : X → Y is
rank additive if

f

(
R∗∑
r=1

x̄r

)
=

R∗∑
r=1

f(x̄r),

where x̄r := λrx
(1)
r ⊗ . . .⊗ x(K)

r .

Letting f∗ be a projection of f0 onto the Sobolev space
f ∈ Wβ satisfying rank additivity, the distance is bounded
above as

‖f0 − f̂n‖ ≤ ‖f0 − f∗‖+ ‖f∗ − f̂n‖. (10)

Unfortunately, the first term ‖f0 − f∗‖ is difficult to eval-
uate, aside from a few exceptions; if R∗ > 0 or f0 is rank
additive, ‖f0 − f∗‖ = 0.

Therefore, we focus on the rest term ‖f∗ − f̂n‖. By def-
inition, f∗ is rank additive and the functional tensor de-
composition (6) guarantees that f∗ is decomposed as the

1This type of additivity is often assumed in multivariate and
additive model analysis (Hastie & Tibshirani, 1990; Ravikumar
et al., 2009).
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Figure 1. Functional space and the effect of M∗.

AMNR form (7) with some M∗. Here, the behavior of the
distance strongly depends on M∗. We consider the follow-
ing two cases: (i) M∗ is finite and (ii) M∗ is infinite. In
case (i), the consistency of f̂n to f∗ is shown with an ex-
plicit convergence rate (Theorem 1). More surprisingly, the
consistency also holds in case (ii) with a mild assumption
(Theorem 2).

Figure 1 illustrates the relations of these functions and the
functional space. The rectangular areas are the classes of
functions represented by AMNR with small M∗, AMNR
with largeM∗, and Sobolev spaceWβ with rank additivity.

Note that the formal assumptions and proofs of this section
are shown in supplementary material.

4.1. Estimation with Finite M∗

The consistency of Bayesian nonparametric estimators is
evaluated in terms of posterior consistency (Ghosal et al.,
2000; Ghosal & van der Vaart, 2007; van der Vaart & van
Zanten, 2008). Here, we follow the same strategy. Let
‖f‖2n := 1

n

∑n
i=1 f(xi)

2 be the empirical norm. We de-
fine ε(k)n as the contraction rate of the estimator of local
function f (k), which evaluates the probability mass of the
GP around the true function. Note that the order of ε(k)n de-
pends on the covariance kernel function of the GP prior, in
which the optimal rate of ε(k)n is given by (3) with d = Ik.
For brevity, we suppose that the variance of the noise ui
is known and the kernel in the GP prior is selected to be
optimal.2 Then, we obtain the following result.

Theorem 1 (Convergence analysis). Let M = M∗ < ∞.
Then, with Assumption 1 and some finite constant C > 0,

E‖f̂n − f∗‖2n ≤ Cn−2β/(2β+maxk Ik).

Theorem 1 claims the validity of the estimator (9). Its con-

2We assume that the Matérn kernel is selected and the weight
of the kernel is equal to β. Under these conditions, the optimal
rate is achieved (Tsybakov, 2008).

vergence rate corresponds to the minimax optimal rate of
estimating a function in Wβ on compact support in RIk ,
showing that the convergence rate of AMNR depends only
on the largest dimensionality of X .

4.2. Estimation with Infinite M∗

When M∗ is infinite, we cannot use the same strategy used
in Section 4.1. Instead, we truncate M∗ by finite M and
evaluate the bias error caused by the truncation. To evaluate
the bias, we assume that the local functions are in descend-
ing order of their volumes f̄m :=

∑
r

∏
k f

(k)
m , i.e., {f̄m}

are ordered as satisfying ‖f̄m′‖2 ≥ ‖f̄m‖2 for all m′ > m.
We then introduce the assumption that {‖f̄m‖2}∞m=1 de-
cays to zero polynomially with respect to m.

Assumption 1. With some constant γ ≥ 1,

‖f̄m‖2 = o
(
m−γ−1

)
,

as m→∞.

Then we claim the main result in this section.

Theorem 2. Suppose we construct the estimator (9) with

M � (n−2β/(2β+maxk Ik))γ/(1+γ),

where� denotes equality up to a constant. Then, with some
finite constant C > 0,

E‖f̂n − f∗‖2n ≤ C(n−2β/(2β+maxk Ik))γ/(1+γ).

The above theorem states that, even if we truncate M∗ by
finite M , the convergence rate is nearly the same as the
case of finite M∗ (Theorem 1), which is slightly worsened
by the factor γ/(1 + γ).

Theorem 2 also suggests how to determine M . For exam-
ple, if γ = 2, β = 1, and maxk Ik = 100, M � n1/70

is recommended, which is much smaller than the sample
size. Our experimental results (Section 6.3) also support
this. Practically, very small M is sufficient, such as 1 or 2,
even if n is greater than 300.

Here, we show the conditional consistency of AMNR,
which is directly derived from Theorem 2.

Corollary 1. For all function f∗ ∈ Wβ with finite M =
M∗ or Assumption 1, the estimator (9) satisfies

E‖f̂n − f0‖2n → 0,

as n→∞.

5. Related Work
5.1. Nonparametric Tensor Regression

The tensor GP (TGP) (Zhao et al., 2014; Hou et al., 2015)
in a method that estimates the function inWβ(S) directly.
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TGP is essentially a GP regression model that flattens a
tensor into a high-dimensional vector and takes the vector
as an input. Zhao et al. (2014) proposed its estimator and
applied it to image recognition from a monitoring camera.
Hou et al. (2015) applied the method to analyze brain sig-
nals. Although both studies demonstrated the high perfor-
mance of TGP, its theoretical aspects such as convergence
have not been discussed.

Signoretto et al. (2013) proposed a regression model with
tensor product reproducing kernel Hilbert spaces (TP-
RKHSs). Given a set of vectors {xk}Kk=1, their model is
written as ∑

j

αj
∏
k

f
(k)
j (xk), (11)

where αj is a weight. The key difference between TP-
RKHSs (11) and AMNR is in the input. TP-RKHSs take
only a single vector for each order, meaning that the input is
implicitly assumed as rank one. On the other hand, AMNR
takes rank-R tensors whereR can be greater than one. This
difference allows AMNR to be used for more general pur-
poses, because the tensor rank observed in the real world
is mostly greater than one. Furthermore, the properties of
the estimator, such as convergence, have not been investi-
gated. Kanagawa et al. (2016) proposed a similar model
and investigated its theoretical properties more deeply such
as minimax optimality.

5.2. TLR

For the matrix case (K = 2), Dyrholm et al. (2007) pro-
posed a classification model as (2), where B is assumed
to be low rank. Hung & Wang (2013) proposed a logistic
regression where the expectation is given by (2) and B is
a rank-one matrix. Zhou et al. (2013) extended these con-
cepts for tensor inputs. Suzuki (2015) and Guhaniyogi et al.
(2015) proposed a Bayes estimator of TLR and investigated
its convergence rate.

Interestingly, AMNR is interpretable as a piecewise non-
parametrization of TLR. Suppose B and X have rank-M
and rank-R CP decompositions, respectively. The inner
product in the tensor space in (2) is then rewritten as the
product of the inner product in the low-dimensional vector
space, i.e.,

〈B,Xi〉 =

M∑
m=1

R∑
r=1

λr,i

K∏
k=1

〈b(k)m , x
(k)
r,i 〉, (12)

where b(k)m is the order-K decomposed vector of B. The
AMNR formation is obtained by replacing the inner prod-
uct 〈b(k)m , x

(k)
r 〉 with local function f (k)m .

From this perspective, we see that AMNR incorporates the
advantages of TLR and TGP. AMNR captures nonlinear re-

lations between Y and X through f (k)m , which is impossi-
ble for TLR due to its linearity. Nevertheless, in contrast to
TGP, an input of the function constructed in a nonparamet-
ric way is given by an Ik-dimensional vector rather than an
(I1, . . . , IK)-dimensional tensor. This reduces the dimen-
sion of the function’s support and significantly improves
the convergence rate (Section 4).

5.3. Other Studies

Koltchinskii & Yuan (2010) and Suzuki & Sugiyama
(2013) investigated Multiple Kernel Learning (MKL) con-
sidering a nonparametric p-variate regression model with
an additive structure:

∑p
j=1 fj(xj). To handle high dimen-

sional inputs, MKL reduces the input dimensionality by the
additive structure for fj and xj . Note that both studies deal
with a vector input, and they do not fit to tensor regression
analysis.

Table 1. Comparison of related methods.

METHOD
TENSOR
INPUT

NON-
LINEARITY

CONVERGENCE
RATE WITH (3)

TLR
√

d = 0
TGP

√ √
d =

∏
k Ik

TP-RKHSS RANK-1
√

N/A
MKL

√
N/A

AMNR
√ √

d = max Ik

Table 1 summarizes the methods introduced in this section.
As shown, MKL and TP-RKHSs are not applicable for gen-
eral tensor input. In contrast, TLR, TGP, and AMNR can
take multi-rank tensor data as inputs, and their applicability
is much wider. Among the three methods, AMNR is only
the one that manages nonlinearity and avoids the curse of
dimensionality on tensors.

6. Experiments
6.1. Synthetic Data

We compare the prediction performance of three models:
TLR, TGP, and AMNR. In all experiments, we gener-
ate datasets by the data generating process (dgp) as Y =
f∗(X) + u and fix the noise variance as σ2 = 1. We set
the size of X ∈ R20×20, i.e., K = 2 and I1 = I2 = 20. By
varying the sample size as n ∈ {100, 200, 300, 400, 500},
we evaluate the empirical risks by the mean-squared-error
(MSE) for the testing data, for which we use one-half of
the samples. For each experiment, we derive the mean and
variance of the MSEs in 100 trials. For TGP and AMNR,
we optimize the parameter of the kernel function by grid
search in the training phase.
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Figure 2. Synthetic data experiment: Low-rank data.
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Figure 3. Synthetic data experiment: Full-rank data.
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Figure 4. Synthetic data experiment: Sensitivity of R.
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Figure 5. Synthetic data experiment: Sensitiv-
ity of M .

6.1.1. LOW-RANK DATA

First, we consider the case that X and the dgp are exactly
low rank. We set R∗, the true rank of X , as R∗ = 4 and

f∗(X) =

R∗∑
r=1

λr

K∏
k=1

(1 + exp(γTx(k)r ))−1

where [γ]j = 0.1j. The results (Figure 2) show that AMNR
and TGP clearly outperform TLR, implying that they suc-
cessfully capture the nonlinearity of the true function. To
closely examine the difference between AMNR and TGP,
we enlarge the corresponding part (Figure 2(b)), which
shows that AMNR consistently outperforms TGP. Note that
the performance of TGP improves gradually as n increases,
implying that the sample size is insufficient for TGP due to
its slow convergence rate.

6.1.2. FULL-RANK DATA

Next, we consider the case that X is full rank and the
dgp has no low-rank structure, i.e., model misspecifica-
tion will occur in TLR and AMNR. We generate X as

Xj1j2 ∼ N (0, 1) with

f∗(X) =

K∏
k=1

(1 + exp(−‖X‖2/
∏
k

Ik))−1.

The results (Figure 3) show that, as in the previous experi-
ment, AMNR and TGP outperform TLR. Although the dif-
ference between AMNR and TGP (Figure 3(b)) is much
smaller, AMNR still outperforms TGP. This implies that,
while the effect of AMNR’s model misspecification is not
negligible, TGP’s slow convergence rate is more problem-
atic.

6.2. Sensitivity of Hyperparameters

Here, we investigate how the truncation of R∗ and M∗ af-
fect prediction performance. In the following experiments,
we fix the sample size as n = 300.

First, we investigate the sensitivity of R. We use the same
low-rank dgp used in Section 6.1.1 (i.e., R∗ = 4.) The
results (Figure 4) show that AMNR and TGP clearly out-
perform TLR. Although their performance is close, AMNR
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beats TGP when R is not too large, implying that the nega-
tive effect of truncating R∗ is limited.

Next, we investigate the sensitivity of M . We use the same
full-rank dgp used in Section 6.1.2. Figure 5 compares the
training and testing MSEs of AMNR, showing that both
errors increase as M increases. These results imply that
the model bias decreases quickly and estimation error is
more dominant. Indeed, the lowest testing MSE is achieved
at M = 2. This agrees satisfactory with the analysis in
Section 4.2, which recommends small M .

6.3. Convergence Rate

Here, we confirm how the empirical convergence rates of
AMNR and TGP meet the theoretical convergence rates.
To clarify the relation, we generate synthetic data from dgp
with β = 1 such that the difference between TGP and
AMNR is maximized. Let parameters of the kernel func-
tion fit the known β. To do so, we design the dgp function
as f∗(X) =

∑R
r=1

∏K
k=1 f

(k)(x
(k)
r ) and

f (k) =
∑
l

µlφl(γ
Tx),

where φl(z) =
√

2 cos((l− 1/2)πz) is an orthonormal ba-
sis function of the functional space and µl = l−3/2 sin(l).3

SETTING K R∗ I1 I2 I3 d IN (3)
NO. TGP AMNR

(I) 3 2 10 10 10 1000 10
(II) 3 2 3 3 3 27 3
(III) 3 2 10 3 3 90 10

Table 2. Synthetic data experiment: Settings for convergence rate.

For X we consider three variations: 3× 3× 3, 10×, 3× 3,
and 10 × 10 × 10 (Table 2). Figure 6 shows testing MSEs
averaged over 100 trials. The theoretical convergence rates
are also depicted by the dashed line (TGP) and the solid
line (AMNR). To align the theoretical and empirical rates,
we adjust them at n = 50. The result demonstrates the
theoretical rates agree with the practical performance.

6.4. Prediction of Epidemic Spreading

Here, we deal with the epidemic spreading problem in com-
plex networks (Anderson & May, 1991; Vespignani, 2012)
as a matrix regression problem. More precisely, given an
adjacency matrix network Xi, we simulate the spreading
process of a disease by the susceptible-infected-recovered
(SIR) model as follows.

1. We select 10 nodes as the initially infected nodes.

3This dgp is derived from a theory of Sobolev ellipsoid; see
(Tsybakov, 2008).
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Figure 6. Comparison of convergence rate.

2. The nodes adjacent to the infected nodes become in-
fected with probability 0.01.

3. Repeat Step 2. After 10 epochs, the infected nodes
recover and are no longer infected (one iteration = one
epoch).

After the convergence of the above process, we count the
total number of infected nodes as Yi. Note that the number
of infected nodes depends strongly on the network struc-
ture and its prediction is not trivial. Conducting the simu-
lation is of course a reliable approach; however, it is time-
consuming, especially for large-scale networks. In con-
trast, once we obtain a trained model, regression methods
make prediction very quick.

As a real network, we use the Enron email dataset (Klimt &
Yang, 2004), which is a collection of emails. We consider
these emails as undirected links between senders and re-
cipients (i.e., this is a problem of estimating the number of
email addresses infected by an email virus). First, to reduce
the network size, we select the top 1, 000 email addresses
based on frequency and delete emails sent to and received
from other addresses. After sorting the remaining emails
by timestamp, we sequentially construct an adjacency ma-
trix from every 2, 000 emails, and we finally obtain 220
input matrices.

For the analysis, we set R = 2 for the AMNR and TLR
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methods.4 Although R = 2 seems small, we can still
use the top-two eigenvalues and eigenvectors, which con-
tain a large amount of information about the original ten-
sor. In addition, the top eigenvectors are closely related
to the threshold of outbreaks in infection networks (Wang
et al., 2003). From these perspectives, the good perfor-
mance demonstrated by AMNR with R = 2 is reasonable.
The parameter of the kernel function is optimized by grid
search in the training phase.

Figure 7 shows the training and testing MSEs. Firstly, there
is a huge performance gap between TLR and the nonpara-
metric models in the testing error. This indicates that the
relation between epidemic spreading and a graph structure
is nonlinear and the linear model is deficient for this prob-
lem. Secondly, AMNR outperforms TGP for every n in
both training and testing errors. In addition, the perfor-
mance of AMNR is constantly good and almost unaffected
by n. This suggests that the problem has some extrinsic
information that inflates the dimensionality, and the effi-
ciency of TGP is diminished. On the other hand, it seems
AMNR successfully captures the intrinsic information in a
low-dimensional space by its “double decomposition” so
that AMNR achieves the low-bias and low-variance esti-
mation.
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Figure 7. Epidemic spreading experiment: Prediction perfor-
mance.

7. Conclusion and Discussion
We have proposed AMNR, a new nonparametric model
for the tensor regression problem. The key of AMNR is
that two different decompositions (4) and (5) are involved,
which make the estimation problem easier and improve the
convergence rate (Theorem 1). Although they produce an
estimation bias, we empirically confirmed the bias was not
critical (Sections 6.1.2 and 6.2).

The most important limitation of AMNR is the compu-

4We also tested R = 1, 2, 4, and 8; however, the results were
nearly the same.

tational complexity, which is better than TGP but worse
than TLR. The time complexity of AMNR with the GP
estimator is O(nR

∏
k Ik + M(nR)3

∑
k Ik), where CP

decomposition requires O(R
∏
k Ik) (Phan et al., 2013)

for n inputs and the GP prior requires O(Ik(nR)3) for
the MK local functions. On the contrary, TGP requires
O(n3

∏
k Ik) computation because it must evaluate all the

elements of X to construct the kernel Gram matrix. When
R � n2 and MR3

∑
k Ik �

∏
k Ik, which are satisfied

in many practical situations, the proposed method is more
efficient than TGP. Approximation methods for GP regres-
sion can be used to reduce the computational burden of
AMNR. For example, Williams & Seeger (2001) proposed
the Nyström method, which approximates the kernel Gram
matrix by a low-rank matrix. If we apply rank-L approx-
imation, the computational cost of AMNR can be reduced
to O((L3 + nL2)

∏
k Ik).

Note that the vector set {x(k)r }r,k obtained by CP decompo-
sition (4) is not unique in general (Kolda & Bader, 2009),
and this non-uniqueness violates the i.i.d. condition of
{x(k)r }r,k, which is a necessary condition for the conver-
gence of the estimator (Corollary 1). However, in some
cases, there exists an operation that makes the i.i.d. condi-
tion satisfied. For example, suppose X satisfies Kruskal’s
condition (Kruskal, 1977), which is

K∑
k=1

rk ≥ 2R+K − 1, (13)

where rk is the largest number s such that every subset
of s elements of {x(k)r }r are linearly independent. If (13)
is satisfied, {x(k)r }r,k is unique, except for sign inversion.
For instance, a tensor X with R∗ = 1 and K = 3 has
two equivalent decompositions: (A) x1 ⊗ x2 ⊗ x3 and (B)
x1 ⊗ (−x2) ⊗ (−x3). Nevertheless, by flipping the sign
of the vectors randomly, i.e., of x1, x2, and x3 at random
while maintaining the original sign of X , we can regard
the flipped vectors as i.i.d. When Kruskal’s condition is
not satisfied, it is unknown that whether such the operation
exists. This is an important issue for future research.
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