
Extreme F-Measure Maximization using Sparse Probability Estimates

A. Probabilistic label trees
An example of a probabilistic label tree (PLT) for 4 labels (y1, y2, y3, y4) is given in Fig. 2. To estimate posterior probability
⌘(x, j) = P(yj = 1 |x), PLT uses a path from a root to the j-th leaf. In each node t, we associate with a training instance
(x,y) a label zt such that:

zt = J
P

j2L(t) yj � 1K (or equivalently zt =
W

j2L(t) yj)

Recall that L(t) is a set of all leaves of a subtree with the root in the t-th node. In leaf nodes the labels zj , j 2 L, correspond
to original labels yj .

P(y1 _ y2 _ y3 _ y4 |x)

P(

ztz }| {
y1 _ y2 |

zpa(t)z }| {
y1 _ y2 _ y3 _ y4=1,x)

P(y1 | y1 _ y2=1,x)

y1

P(y2 | y1 _ y2=1,x)

y2

P(y3 _ y4 | y1 _ y2 _ y3 _ y4 = 1,x)

P(y3 | y3 _ y4=1,x)

y3

P(y4 | y3 _ y4=1,x)

y4

Figure 2. An example of a probabilistic label tree for 4 labels (y1, y2, y3, y4).

Consider the leaf node j and the path from the root to this leaf node. Using the chain rule of probability, we can express ⌘(x, j)
in the following way:

⌘(x, j) =

Y

t2Path(j)

⌘T (x, t) , (10)

where ⌘T (x, t) = P(zt = 1 | zpa(t) = 1,x), for all non-root nodes t, and ⌘(x, t) = P(zt = 1 |x), if t is the root node
(denoted by r(T)).

To see the correctness of (10) notice that zt = 1 implies zpa(t) = 1. So, for non-root nodes t and pa(t) we have:

⌘T (x, t)⌘T (x, pa(t)) = P(zt = 1 | zpa(t) = 1,x)P(zpa(t) = 1 | zpa(pa(t)) = 1,x)

=

P(zt = 1, zpa(t) = 1,x)

P(zpa(t) = 1,x)

P(zpa(t) = 1, zpa(pa(t)) = 1,x)

P(zpa(pa(t)) = 1,x)

=

P(zt = 1,x)

P(zpa(t) = 1,x)

P(zpa(t) = 1,x)

P(zpa(pa(t)) = 1,x)

=

P(zt = 1,x)

P(zpa(pa(t)) = 1,x)

.

In words, the probability associated with the parent node pa(t) cancels out and we can express ⌘T (x, t)⌘T (x, pa(t)) as the
product of probabilities associated only with node t and its grandparent node pa(pa(t)). Applying the above rule consecutively
to
Q

t2Path(j) ⌘T (x, t) and recalling that for the root note ⌘T (x, r(T)) = P(zr(T) = 1 |x), we finally get ⌘(x, j).

Below we show that PLTs posses strong theoretical guarantees. We derive a relation between estimation error minimized
by the node classifiers and estimation error of posterior probabilities ⌘(x, j). This relation states that we can upperbound
the latter error by the former. This also implies that for optimal node classifiers we get optimal multi-label classifier in terms
of estimation of posterior probabilities.

We are interested in bounding the estimation error of posterior probabilities of labels at point x

`(⌘(x), ⌘̂(x)) =

1

m

m
X

j=1

|⌘(x, j)� ⌘̂(x, j)| ,

in terms of an estimation error of node classifiers

`(⌘T (x, t), ⌘̂T (x, t)) = |⌘T (x, t)� ⌘̂T (x, t)| .

Extreme F-Measure Maximization using Sparse Probability Estimates

Expressing ⌘(x, j) and ⌘̂(x, j) by (10) and applying Lemma 2 from (Beygelzimer et al., 2009a), we get:

|⌘(x, j)� ⌘̂(x, j)| 
X

t2Path(j)

|⌘T (x, t)� ⌘̂T (x, t)| . (11)

Equation (11) already shows that minimization of the estimation error by node classifiers improves the overall performance
of PLTs. We can show, however, even a more general result concerning surrogate regret bounds by referring to the theory
of strongly proper composite losses (Agarwal, 2014).

Assume that a node classifier has a form of a real-valued function ft. Moreover, there exists a strictly increasing (and therefore
invertible) link function : [0, 1] ! R such that ft(x) = (⌘̂T (x, t)). Recall that the regret of ft in terms of a loss function
` at point x is defined as:

reg`(ft |x) = L`(ft |x)� L

⇤
` (x) ,

where L`(ft |x) is the expected loss at point x:

L`(f |x) = Eyj |x [`(yj , ft(x))] ,

and L

⇤
` (x) is the minimum expected loss at point x.

If a node classifier is trained by a learning algorithm that minimizes a strongly proper composite loss, e.g., squared, exponential,
or logistic loss, like in our implementation (see in Appendix B), then the bound (11) can be expressed in terms of the regret
of this loss function:

�

�

⌘T (x, t)�

�1
(ft)

�

� 
r

2

�

p

reg`(ft |x)

where � is a strong properness constant specific for a given loss function (for more detail, see (Agarwal, 2014)). By putting
the above inequality into (11), we get

|⌘(x, j)� ⌘̂(x, j)| 
X

t2Path(j)

|⌘T (x, t)� ⌘̂T (x, t)| =
X

t2Path(j)

�

�

⌘T (x, t)�

�1
(ft)

�

� 
X

t2Path(j)

r

2

�

p

reg`(ft |x)

B. Training of node classifiers
In each node t we trained a linear classifier ft(x) = w · x, where x = (1, x1, . . . , xp). To this end we used a variant of
stochastic gradient descent to minimize logistic loss. Albeit successfully used in large scale learning, the optimization of
empirical loss using stochastic gradient descent is a particularly challenging task when the number of features and labels
is large. The step function should ensure a quick convergence in order to reduce the number of required training epochs.
Furthermore, it should support sparse updates of the weights (i.e., only weights for non-zero features should be updated
to ensure fast training time). Duchi & Singer (2009) propose a two phase gradient step:

wt+ 1
2
= wt � �tgt

wt+1 = argmin

w

⇢

1

2

�

�

w �wt+ 1
2

�

�

2
+ ��tr(w)

�

where wt is the weight vector at time step t, r(w) is a regularization function, � is regularization parameter, and �t is an
adaptive step size, and gt is the gradient vector at xt of logistic loss applied to the linear model ft.

For stochastic gradient descent with L

2
2 regularization, the step function reduces to

wt+1 =

wt � �tgt

1 + ��t

By using

⇧t =

t
Y

i=1

(1 + ��t) and

˜

wt = ⇧twt ,

Extreme F-Measure Maximization using Sparse Probability Estimates

we can rewrite the step function to the following form:

˜

wt+1 =

˜

wt �⇧t�tgt

Thanks to this transformation, we are able to make sparse updates by storing only the current value of ⇧t (one value for each
node classifier). This is because the i-th component of ˜

w does not change when xi is zero. More formally,

w̃i,t+1 = w̃i,t, if gi,t = 0 .

During prediction or computation of gradient gt, we use:

wt =
˜

wt

⇧t
.

In our implementation we adapt the step size �t as suggested in (Bottou, 2012):

�t =
�

1 + ��t

,

where � is an initial parameter.

C. Tuning of hyperparameters
A PLT has only one global hyperparameter which is the degree of the tree denoted by b. The other hyperparameters are
associated with the node classifiers. To tune the stochastic gradient descent described above we varied values of �, �, and
the number of epochs. All hyperparameters were tuned by using the open-source hyperparameter optimizer SMAC (Hutter
et al., 2011) with a wide range of parameters, which is reported in Table 3. The validation process was carried out by using
a 80/20 split of the training data for every dataset we used.

Table 3. The hyperparameters of the PLT method and their ranges used in hyperparameter optimization,
Hyperparameter Validation range

b {2, . . . , 256}
� [10� 0.000001]

� [10� 0.000001]

Num. of epochs {5, . . . , 30}

D. F-scores by tuning the input parameters a and b of OFO algorithms
In our experimental study described in Section 6, we did not tune the input parameter a of the OFO algorithm but set all of
its components to 1. We carried out experiments for assessing the impact of the input parameter a on the performance of OFO.
Its optimal value was selected from the set C = {10000, 1000, 200, 100, 50, 20, 10, 7, 5, 4, 3, 2} based on the same validation
process like in case ofb and we took into account the fact that ai/bi should be in range (⇡̂j/(⇡̂j + 1), 0.5], as it was pointed out
in (5). The macro F-scores computed for the test and validation set are shown in Table 4 along with the validated values of ai and
bi. For sake of readability, we repeat here the scores achieved by STO and FTA reported earlier in Table 2. The macro F-scores
achieved by OFO are slightly better thanks to the additional degree of freedom, and thus, the OFO algorithm outperforms FTA
and STO algorithm on almost every datasets except the Amazon dataset in which case the OFO and FTA algorithms are tied.

Extreme F-Measure Maximization using Sparse Probability Estimates

Table 4. The test macro F-scores obtained by validating both input parameters a and b. The numbers in bold indicate the best score achieved
on each dataset.

OFO FTA STO
Algorithm Dataset ai bi Valid. F-score Test F-score Test F-score Test F-score

PLT RCV1 300 20000 22.20 22.00 20.41 21.16
PLT AmazonCat 700 5000 33.37 35.30 34.83 31.64
PLT wiki10 100 200 55.27 30.28 29.98 24.02
PLT Delicious-200K 100 200 34.88 11.20 11.12 10.96
PLT WikiLSHTC 100 200 39.94 14.00 12.31 16.22
PLT Amazon 100 200 54.84 51.28 51.77 46.94

FASTXML RCV1 1000 100000 19.84 19.28 17.04 19.58
FASTXML AmazonCat 10000 100000 50.21 41.48 41.07 37.28
FASTXML wiki10 5000 100000 54.72 29.91 29.88 28.26
FASTXML Delicious-200K 100 500 35.02 11.20 11.18 10.83
FASTXML WikiLSHTC 5000 100000 45.78 21.38 21.24 20.41
FASTXML Amazon 10000 100000 53.91 52.86 52.86 47.53

