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Supplementary Material: Discrete Distribution Estimation Under Local Privacy

A. Proof of Theorem 2
As argued in the proof sketch of Theorem 2, it suffices to show that r`,ε,k,n(Q) obeys the data processing inequality.
Precisely, we need to show that for any row stochastic matrix W, r`,ε,k,n(WQ) ≥ r`,ε,k,n(Q). Observe that this is
equivalent to showing that r`,ε,k,n(Q) ≥ r`,k,n, where r`,k,n is the minimax risk in the non-private setting.

Consider the set of all randomized estimators p̂. Under randomized estimators, the minimax risk is given by

r`,k,n = inf
p̂

sup
p∈Sk

E
Xn∼p,p̂

`(p, p̂),

where the expectation is taken over the randomness in the observations X1, · · · , Xn and the randomness in p̂. Under a
differentially private mechanism Q, the minimax risk is given by

r`,ε,k,n(Q) = inf
p̂Q

sup
p∈Sk

E
Y n∼pQ,p̂Q

`(p, p̂Q),

where the expectation is taken over the randomness in the private observations Y1, · · · , Yn and the randomness in p̂Q.

Assume that there exists a (potentially randomized) estimator p̂∗Q that achieves r`,ε,k,n(Q). Consider the following ran-
domized estimator: Q is first applied to X1, · · · , Xn individually and p̂∗Q is then jointly applied to the outputs of Q. This
estimator achieves a risk of r`,ε,k,n(Q). Therefore, r`,k,n ≤ r`,ε,k,n(Q).

If there is no estimator that can achieve r`,ε,k,n(Q), then there exists a sequence of (potentially randomized) estimators
{p̂iQ} such that limi→∞ p̂iQ achieves the minimax risk. In other words, if ri`,ε,k,n(Q) represents the risk under p̂iQ, then
limi→∞ ri`,ε,k,n(Q) = r`,ε,k,n(Q). Using an argument similar to the one presented above, we get that r`,k,n ≤ ri`,ε,k,n(Q).
Taking the limit as i goes to infinity on both sides, we get that r`,k,n ≤ r`,ε,k,n(Q). This finishes the proof.
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B. Proof of Proposition 3
Fix Q to QKRR and p̂ to be the empirical estimator given in (6). In this case, we have that
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C. Proof of Proposition 4

Fix Q to Qk-RAPPOR and p̂ to be the empirical estimator given in (11), and let C = eε/2−1
eε/2+1

, B = 1
eε/2+1

, and A = eε/2 − 1.
Then C = BA, 1−B = eε/2B, and from Section 4.2 mi = piC +B. Using this notation, we have that

E
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D. Proof of Proposition 5
We want to show that for all p ∈ Sk and all ε ≥ ln k,

E ||p̂KRR − p||22 ≤ E ||p̂RAPPOR − p||22 , (19)

where p̂KRR is the empirical estimate of p under k-RR, p̂RAPPOR is the empirical estimate of p under k-RAPPOR, and p̂ is
the empirical estimator under k-RAPPOR.

From propositions 3 and 4, we have that
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Therefore, we just have to prove that
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for ε ≥ ln k. Alternatively, we can show that
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for ε ≥ ln k. Observe that f(ε, k) is an increasing function of ε and therefore, it suffices to show that
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As a discrete function of k ∈ {2, 3, ....}, f(ln k, k) admits a unique minimum at k = 7. Therefore, we just need to verify
that f(ln 7, 7) > 1. Indeed, f(ln 7, 7) = 3.1559 > 1.

E. Discrete Distribution Estimation
Consider the (k − 1)-dimensional probability simplex

Sk = {p = (p1, ..., pk)|pi ≥ 0,

k∑
i=1

pi = 1}.

The discrete distribution estimation problem is defined as follows. Given a vector p ∈ Sk, samples X1, ..., Xn are drawn
i.i.d according to p. Our goal is to estimate the probability vector p from the observation vector Xn = (X1, ..., Xn).

An estimator p̂ is a mapping from Xn to a point in Sk. The performance of p̂ may be measured via a loss function ` that
computes a distance-like metric between p̂ and p. Common loss functions include, among others, the absolute error loss
`1(p, p̂) =

∑k
i=1 |pi − p̂i| and the quadratic loss `22(p, p̂) =

∑k
i=1(pi − p̂i)2. The choice of the loss function depends on

the application; for example, `1 loss is commonly used in classification and other machine learning applications. Given a
loss function `, the expected loss under p̂ after observing n i.i.d samples is given by

r`,k,n(p, p̂) = E
Xn∼Multimial(n,p)

`(p, p̂). (21)

E.1. Maximum likelihood and empirical estimation

In the absence of a prior on p, a natural and commonly used estimator of p is the maximum likelihood (ML) estimator.
The maximum likelihood estimate p̂ML of p is defined as

p̂ML = argmax
p∈Sk

P (X1, ..., Xn|p)

In this setting, it is easy to show that the maximum likelihood estimate is equivalent to the empirical estimator of p, given
by p̂i = Ti/n where Ti is the frequency of element i. Observe that the empirical estimator is an unbiased estimator for p
because E[p̂i] = pi for any k, n, and i. Under maximum likelihood estimation, the `22 loss is the most tractable and simplest
to analyze loss function. Because Ti ∼ Binomial(pi, n), we have E[Ti] = npi, Var(Ti) = npi(1 − pi), and the expected
`22 loss of the empirical estimator is given by
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Let pU =
(
1
k , · · · ,

1
k

)
and observe that

r`22,k,n(p, p̂ML) ≤ r`22,k,n(pU, p̂ML) =
1− 1

k

n
. (22)

In other words, the uniform distribution is the worst distribution for the empirical estimator under the `22 loss. From
(Kamath et al., 2015), the asymptotic performance of the empirical estimator under the `1 loss functions is given by

r`1,k,n(p, p̂ML) ≈
k∑
i=1

√
2pi(1− pi)

πn
,

where an ≈ bn means limn→∞ an/bn = 1. As in the `22 case, notice that

r`1,k,n(p, p̂ML) ≤ r`1k,n(pU, p̂ML) ≈
√

2(k − 1)

πn
, (23)

for any p ∈ Sk. In other words, the uniform distribution is the worst distribution for the empirical estimator under the `1
loss as well. Observe that the `1 loss scales as

√
k/n whereas the `22 loss scales as 1/n.

E.2. Minimax estimation

Another popular estimator that is widely studied in the absence of a prior is the minimax estimator p̂MM. The minimax
estimator minimizes the expected loss under the worst distribution p:

p̂MM = argmin
p̂

max
p∈Sk

E
Xn∼p

`(p, p̂). (24)

The minimax risk is therefore defined as

r`,k,n = min
p̂
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p∈Sk

E
Xn∼p

`(p, p̂).

For the `22 loss, it is shown in (Lehmann & Casella, 1998) that
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is the minimax estimator, and that the minimax risk is

r`22,k,n =
1− 1

k

(
√
n+ 1)2

. (26)

Observe that unlike the empirical estimator, the minimax estimator is not even asymptotically unbiased. Moreover, it
improves on the empirical estimator only slightly (compare Equations (22) to (26)), increasing the the denominator from
n to n+2

√
n+1 under the worst case distribution (the uniform distribution). This explains why the minimax estimator is

almost never used in practice.

The minimax estimator under `1 loss is not known. However, the minimax risk is known for the case when k is fixed and
n is increased. In this case, it is shown in (Kamath et al., 2015) that

r`1,k,n =

√
2(k − 1)

πn
+O

(
1

n3/4

)
. (27)

Comparing Equations (23) to (27), we see that the worst case loss under the empirical estimator is again roughly as good
as the minimax risk.
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F. Maximum Likelihood Estimation for k-ary Mechanisms
F.1. k-RR

Proposition 6 The maximum likelihood estimator of p under k-RR is given by

p̂i =

[
Ti
λ
− 1

eε − 1

]+
, (28)

where [x]+ = max(0, x), Ti is the frequency of element i calculated from Y n, and λ is chosen so that

k∑
i=1

[
Ti
λ
− 1

eε − 1

]+
= 1. (29)

Moreover, finding λ can be done in O(k log k) steps.

The proof of the above proposition is provided in Supplementary Section F.2.

F.2. Proof of Proposition 6

The maximum likelihood estimator under k-RR is the solution to

p̂ML = argmax
p∈Sk

P (Y1, ..., Yn|p) ,

where the Yi’s are the outputs of k-RR. Since the log(.) function is a monotonic function, the above maximum likelihood
estimation problem is equivalent to

p̂ML = argmax
p∈Sk

logP (Y1, ..., Yn|p) .

Given that

P (Y1, ..., Yn|p) =

n∏
i=1

P (Yi|p)

=

n∏
i=1

 k∑
j=1

QKRR(Yi|Xi = j)pj

 ,

we have that

logP (Y1, ..., Yn|p) =
n∑
i=1

log

 k∑
j=1

QKRR(Yi|Xi = j)pj

 .

Observe that

k∑
j=1

QKRR(Yi|Xi = j)pj = QKRR(Yi|Xi = Yi)pYi +
∑
j 6=Yi

QKRR(Yi|Xi = j)pj (30)

=
eε

eε + k − 1
pYi +

1

eε + k − 1
(1− pYi) (31)

=
1

eε + k − 1
((eε − 1)pYi

+ 1) , (32)

and therefore,
n∑
i=1

log

 k∑
j=1

QKRR(Yi|Xi = j)pj

 =

k∑
i=1

Ti log

(
1

eε + k − 1
((eε − 1)pi + 1)

)
,



Discrete Distribution Estimation under Local Privacy

where Ti is the number of Y ’s that are equal to i (i.e., the frequency of element i in the observed sequence Y n). Thus, the
maximum likelihood estimation problem under k-RR is equivalent to

p̂ML = argmax
p∈Sk

k∑
i=1

Ti log ((e
ε − 1)pi + 1) .

The above constrained optimization problem is a convex optimization problem that is well studied in the literature under
the rubric of water-filling algorithms. From (Boyd & Vandenberghe, 2004), the solution to this problem is given by

p̂i =

[
Ti
λ
− 1

eε − 1

]+
,

where [x]+ = max(0, x) and λ is chosen so that

k∑
i=1

[
Ti
λ
− 1

eε − 1

]+
= 1.

Given the Ti’s, p is computed according to the empirical estimator. If all the p̂i’s are non-negative, then the maximum
likelihood estimate is the same as the empirical estimate. If not, p̂ is sorted, its negative entries are zeroed out, and lambda
is computed according to the above equation. Given lambda, a new p̂ can be computed and the above process can be
repeated until all the entries of p̂ are non-negative. Notice that sorting happens once and the process is repeated at most
k−1 times. Therefore, the computational complexity of this algorithm is upper bounded by k log k+k which isO(k log k).

F.3. k-RAPPOR

Proposition 7 The maximum likelihood estimator of p under k-RAPPOR is

argmax
p∈Sk

k∑
j=1

(n− Tj) log ((1− δ)− (1− 2δ)pj)

+ Tj log ((1− 2δ)pj + δ)

where Tj =
∑n
i=1 Y

(j)
i and δ = 1/(eε/2 + 1).

The proof of the above proposition is provided in Supplementary Section F.4. Observe that unlike k-RR, a k-dimensional
convex program has to be solved in this case to determine the maximum likelihood estimate of p.

F.4. Proof of Proposition 7

The maximum likelihood estimator under k-RAPPOR is the solution to

p̂ML = argmax
p∈Sk

P (Y1, ..., Yn|p) ,

where the Yi’s are the outputs of k-RAPPOR. Since the log(.) function is a monotonic function, the above maximum
likelihood estimation problem is equivalent to

p̂ML = argmax
p∈Sk

logP (Y1, ..., Yn|p) .

Recall that under k-RAPPOR, Yi = [Y
(1)
i , · · · , Y (k)

i ] is a k-dimensional binary vector, which implies that

P(Y (j)
i = 1) =

(
eε/2 − 1

eε/2 + 1

)
pj +

1

eε/2 + 1
, (33)
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for all i ∈ {1, · · · , n} and j ∈ {1, · · · , k}. Therefore,

logP (Y1, ..., Yn|p) = log

n∏
i=1

k∏
j=1

(
Y

(j)
i (pj(1− δ) + (1− pj)δ) + (1− Y (j)

i )(pjδ + (1− pj)(1− δ))
)

=

n∑
i=1

k∑
j=1

log
(
Y

(j)
i (pj(1− δ) + (1− pj)δ) + (1− Y (j)

i )(pjδ + (1− pj)(1− δ))
)

=

n∑
i=1

k∑
j=1

log
(
(1− 2δ)(2Y

(j)
i − 1)pj − Y (j)

i (1− 2δ) + (1− δ)
)
,

where δ = 1/(1 + eε/2). Therefore, under k-RAPPOR, the maximum likelihood estimation problem is given by

argmax
p∈Sk

k∑
j=1

(n− Tj) log ((1− δ)− (1− 2δ)pj) + Tj log ((1− 2δ)pj + δ)

where Tj =
∑n
i=1 Y

(j)
i .

G. Conditions for Accurate Decoding under k-RR
For accurate decoding, we must satisfy three criteria: (i) k and C must be large enough that the input strings to be
distinguishable, (ii) k and C must be large enough that the linear system in (18) is not underconstrained, and (iii) n must
be large enough that the variance on estimated probability vector p̂ is small.

Let us first consider string distinguishability. Each string s ∈ S is associated with a C-tuple of hashes it can produces
in the various cohorts: HASH

(k)
C (s) = 〈HASH

(k)
1 (s), HASH

(k)
2 (s), · · · , HASH

(k)
C (s)〉 ∈ XC . Two strings si ∈ S and

sj ∈ S are distinguishable from one another under the encoding scheme if HASH
(k)
C (si) 6= HASH

(k)
C (sj), and a string s is

distinguishable within the set S if HASH
(k)
C (s) 6= HASH

(k)
C (sj)∀sj ∈ S\s.

Because HASH
(k)
C (s) is distributed uniformly over XC , P(HASH

(k)
C (s) = xC) ≈ 1

kC
for all xC ∈ XC . It follows that the

probability of two strings being distinguishable is also 1
kC

. Furthermore, the probability that exactly one string from S
produces the hash tuple xC is:

Binomial(1;
1

kC
, S) =

S(kC − 1)S−1

(kC)S

Thus, the expected number of xC ∈ XC associated with exactly one string in S, which is also the expected number of
distinguishable strings in a set S is:

∑
xC∈YC

(
S(kC − 1)S−1

(kC)S

)
= S

(
kC − 1

kC

)S−1
(34)

and the probability that a string s is distinguishable within the set S is
(
kC−1
kC

)S−1
.

Consider a probability distribution p ∈ SS . The expected recoverable probability mass is the the mass associated with the

distinguishable strings within the set S is
∑
s∈S ps

(
kC−1
kC

)S−1
=
(
kC−1
kC

)S−1
Therefore, if we hope to recover at least

Pt of the probability mass, we require
(
kC−1
kC

)S−1
≥ Pt, or equivalently, kC ≥ 1

1−P
1

S−1
t

.

Now consider ensuring that the linear system in (18) is not underconstrained. The system has S variables and kC indepen-
dent equations. Thus, the system is not underconstrained so long as kC ≥ S.
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H. Supplementary Figures

Figure 4: The true input distribution p for open-set and closed-set experiments in sections 4.4 and 5 is the geometric
distribution with mean at |input alphabet|/5, truncated and renormalized. In the k-ary experiments of Section 4.4, the input
alphabet is size k; in the open alphabet experiments of Section 5, the input alphabet is size S = 256.

Figure 5: The improvement in `2 decoding of the projected k-RR decoder (left) and projected k-RAPPOR decoder (right).
This figure demonstrates that the same patterns hold in `2 as in `1 for the conditions shown in Figure 1.
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Figure 6: The improvement (negative values, blue) of the best k-RR decoder over the best k-RAPPOR decoder varying the
size of the alphabet k (rows) and privacy parameter ε (columns). This figure demonstrates that the same patterns hold in `2
as in `1 for the conditions shown in Figure 2.
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(a) Full ε range. (b) Low ε range.

Figure 7: `1 loss when decoding open alphabets using the O-RR and O-RAPPOR for n = 106 users with input drawn from
an alphabet of S = 256 symbols under a geometric distribution with mean=S/5, as depicted in Figure 4. Free parameters
are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096], c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] to minimize the
median loss over 50 samples at the given ε value. Lines show median `1 loss while the (narrow) shaded regions indicate
90% confidence intervals (over 50 samples). Baselines indicate expected loss from (1) using an empirical estimator directly
on the input s and (2) using the uniform distribution as the p̂ estimate.

(a) Full ε range. (b) Low ε range.

Figure 8: `1 loss when decoding decoding a known alphabet using the O-RR and O-RAPPOR (via permutative perfect
hash functions) for n = 106 users with input drawn from an alphabet of S = 256 symbols under a geometric distribution
with mean=S/5, as depicted in Figure 4. Free parameters are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096],
c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] to minimize the median loss over 50 samples at the given ε value. Lines
show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over 50 samples). Note that
the k-RAPPOR and O-RAPPOR lines in (b) are nearly indistinguishable. Baselines indicate expected loss from (1) using an
empirical estimator directly on the input s and (2) using the uniform distribution as the p̂ estimate.
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(a) `1 = 0.02 (b) `1 = 0.05

(c) `1 = 0.10 (d) `1 = 0.20

(e) `1 = 0.30

Figure 9: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for open alphabets
(lower ε is better). Input is generated from an alphabet of S = 256 symbols under a geometric distribution with mean=S/5,
as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples at the given ε
and fixed parameter values.
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(a) `1 = 0.02 (b) `1 = 0.05

(c) `1 = 0.10 (d) `1 = 0.20

(e) `1 = 0.30

Figure 10: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for closed alphabets
(lower ε is better). Input is generated from an alphabet of S = 256 symbols under a geometric distribution with mean=S/5,
as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples at the given ε
and fixed parameter values.



Discrete Distribution Estimation under Local Privacy

(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 11: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)



Discrete Distribution Estimation under Local Privacy

(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 12: `1 loss when decoding closed alphabets using the O-RR and O-RAPPOR under various parameter settings, for
n = 106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)



Discrete Distribution Estimation under Local Privacy

(a) n = 106 users (b) n = 108 users

Figure 13: `1 loss when decoding open alphabets using the O-RR and O-RAPPOR, with input drawn from an alphabet
of S = 4096 symbols under a geometric distribution with mean=S/5. Free parameters are set via grid search over
k ∈ [2, 4, 8, . . . , 8192, 16384], c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2] to minimize the median loss over 50 samples at the
given ε value. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over 50
samples). Baselines indicate expected loss from (1) using an empirical estimator directly on the input s and (2) using the
uniform distribution as the p̂ estimate.

(a) `1 = 0.10 (b) `1 = 0.20

(c) `1 = 0.30 (d) `1 = 0.40

Figure 14: Taking `1 loss (the utility) and n (the number of users) as fixed requirements (as is the case in many practical
scenarios), we approximate the degree of privacy ε that can be obtained under O-RR and O-RAPPOR for open alpha-
bets (lower ε is better). Input is generated from an alphabet of S = 4096 symbols under a geometric distribution with
mean=S/5, as depicted in Figure 4. Free parameters are set via grid search to minimize the median loss over 50 samples
at the given ε and fixed parameter values.



Discrete Distribution Estimation under Local Privacy

(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 15: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
106 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)



Discrete Distribution Estimation under Local Privacy

(a) O-RR varying k (b) O-RAPPOR varying k

(c) O-RR varying C (d) O-RAPPOR varying C

(e) O-RAPPOR varying h

Figure 16: `1 loss when decoding open alphabets using O-RR and O-RAPPOR under various parameter settings, for n =
108 users with input drawn from an alphabet of S = 4096 symbols under a geometric distribution with mean=S/5.
Remaining free parameters are set via grid search to minimize the median loss over 50 samples at the given ε and fixed
parameter values. Lines show median `1 loss while the (narrow) shaded regions indicate 90% confidence intervals (over
50 samples for the optimal parameter settings.)


