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In this supplementary material, we give the comprehensive proof and the generalized theorems. We consider a more general
regression setting:

yi = fo(xi) + εi, (S-1)

where fo : X → R is the unknown true function. We suppose that the true function fo is well approximated by f∗ =∑d∗

r=1

∏K
k=1 f

∗
r

(k) (that is fo ' f∗). When fo = f∗, this generalized regression problem is equivalent to that in the main
body. In that sense, the model (S-1) contains the model in the main body as a special setting fo = f∗.

A. Noise Assumption and PAC-Bayesian Bound
Here we remind our assumption on the noise εi (Assumption 1). There are a lot of choices of noise conditions to establish
PAC-Bayesian bounds. Here we employ a condition with which we can utilize an extension of Stein’s identity. Now define
a function

mε(z) := −E[ε11{ε1 ≤ z}] = −
∫ z
−∞ ydFε(y) =

∫∞
z
ydFε(y),

where Fε(z) = P (ε1 ≤ z) is the cumulative distribution function of the noise, and 1{·} is the indicator function. Since
E[ε1] = 0, one can check thatmε(z) is non-negative and achieves its maximum at 0: maxz∈Rmε(z) = mε(0) = E[|ε1|]/2.
Then we impose the following assumption on the noise ξ.

Assumption A.1. E[ε21] < ∞ and the measure mε(z)dz is absolutely continuous with respect to the density function
dFε(z) with a bounded Radon-Nikodym derivative, i.e., there exists a bounded function gξ : R→ R+ such that∫ b

a
mε(z)dz =

∫ b
a
gε(z)dFε(z), ∀a, b ∈ R.

This characterization of noise gives an extension of the Gaussian noise. Indeed the following examples satisfy the assump-
tion:

• If ε1 obeys the Gaussian N (0, σ2), then gε(z) = σ2,

• If ε1 obeys the uniform distribution on [−a, a], then gε(z) = max(a2 − z2, 0)/2.
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Under Assumption 1, Theorem 1 of (Dalalyan & Tsybakov, 2008) gives the following PAC-Bayesian bound. For a prob-
ability measure ρ that is absolutely continuous with respect to Π, let K(ρ,Π) be the KL-divergence between ρ and Π,
K(ρ,Π) :=

∫
log( dρ

dΠ (f))dρ(f).

Theorem A.1. Suppose Assumption 1 is satisfied and β ≥ 4‖gε‖∞. Then for all probability measure ρ that is absolutely
continuous with respect to Π, we have

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤
∫
‖f − fo‖2ndρ(f) +

βK(ρ,Π)

n
. (S-2)

In the following, we assume that β is chosen so that β ≥ 4‖gξ‖∞ is satisfied.

B. Upper bound analysis
LetH(r,k),λ be the “scaled” version of an RKHSH(r,k). That isH(r,k),λ it the RKHS associated with the kernel k̃

m,λ
(k)
r

=

kr,k/λ
(k)
r .

The quantitative evaluation of the mass around the true function is given by the following concentration function (van der
Vaart & van Zanten, 2011; 2008a):

φ
(r,k)

f∗r
(k)(ε, L, λ) := inf

h∈H(r,k):‖h−f∗r (k)‖∞≤ε

(
‖h‖2H(r,k),λ

∨ 1
)
− log GP(r,k)({f : ‖f‖n ≤ ε/

√
2}|λ),

− log GP(r,k)({f : ‖f‖∞ ≤ L/
√

2}|λ), (S-3)

where a ∨ b := max(a, b). It can be shown that φ(r,k)

f∗r
(k)(ε, λ) equals − log GP(r,k)({f : ‖f∗r

(k) − f‖∞ ≤ ε}|λ) up to
constants (van der Vaart & van Zanten, 2008b).

B.1. Generalized upper bound

Define
Š := {r | 1 ≤ r ≤ dmax, ∃k s.t. f∗r

(k) 6∈ H(r,k)}.

Theorem B.1 (Convergence rate of GP-Tensor). Let

R̂K,max :=

(
R+ 2 max

r,k
L(r,k)

)2(K−1)

,

and set cr = 1 if r 6∈ Š, and cr = K otherwise. Then, there exists a constant C1 depending on only β such that the
convergence rate of Bayesian-MKL is bounded as

EY1:n|x1:n

[
‖f̂ − fo‖2n

]
≤ 2‖fo − f∗‖2n

+ C1 inf
ε(r,k),L(r,k),λ(r,k)>0;ε(r,k)≤L(r,k)

{ ∑
r=1,...,d∗

cr

K∑
k=1

(
R̂K,maxε

2
(r,k) +

1

n
φ

(r,k)

f∗r
(k)(ε(r,k), L(r,k), λ(r,k)) +

λ(r,k)

n
−

log(λ(r,k))

n

)

+ R̂K,max

∑
r∈Š

√∑K

k=1
ε2(r,k)

2}
+
d∗

n
log

(
1

ζ(1− ζ)

)
. (S-4)

B.2. Proof of Theorem B.1

We go along the same line with (Suzuki, 2012). Fix ε(r,k), λ(r,k), L(r,k) > 0 for r = 1, . . . , dmax and k = 1, . . . ,K. The
typical approach to prove the theorem is that we substitute some “dummy” posterior distribution into ρ in Eq. (S-2) of
Theorem A.1 (the PAC-Bayes bound). For ε(r,k) > 0 and L(r,k) > 0, define a set S(r,k) of a function as

S(r,k) := {f : X → R | ‖f‖n ≤ ε(r,k), ‖f‖∞ ≤ L(r,k)}.
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We define h̃(r,k) ∈ H(r,k) for each r, k so that it is an approximation of f∗r
(k) as follows. If f∗r

(k) ∈ H(r,k), then we take
h̃(r,k) as h̃(r,k) = f∗r

(k). Otherwise, we take h̃(r,k) ∈ H(r,k) such that

‖h̃(r,k)‖2H(r,k),λ(r,k)
≤ 2 inf

h∈H(r,k):‖h−f∗r (k)‖∞≤ε(r,k)
‖h‖2H(r,k),λ(r,k)

, (S-5)

h̃(r,k) − f∗r
(k) ∈ S(r,k). (S-6)

The process (Wx + h̃(r,k)(x) : x ∈ Xk) induces the “shifted” Gaussian process GP
W+h̃(r,k)

(r,k) (df
(k)
r |λ) such that

GP
W+h̃(r,k)

(r,k) (A|λ) := GP(r,k)(A− h̃(r,k)|λ) for a measurable set A. Now our choice of ρ is given as follows:

ρ(df) =
∏

r=1,...,d∗

K∏
k=1

∫
λ(r,k)

2 ≤λ̃(r,k)≤λ(r,k)

GP
W+h̃(r,k)

(r,k) (df
(k)
r |λ̃(r,k))1{f

(k)
r − h̃(r,k) ∈ S(r,k)}

GP(r,k)(S(r,k)|λ̃(r,k))
G(dλ̃(r,k))

G({λ̃(r,k) :
λ(r,k)

2 ≤ λ̃(r,k) ≤ λ(r,k)})

×
∏
r>d∗

K∏
k=1

δ0(df (k)
r ).

According to the proof of Theorem 3 in Suzuki (2012), it is shown that ρ is absolutely continuous with respect to the prior
Π. Therefore, we may apply Theorem A.1.

Let R := maxr,k{‖f∗r
(k)‖∞}. Then, since h̃(r,k) satisfies ‖h̃(r,k) − f∗r

(k)‖∞ ≤ L(r,k) by the definition (Eq. (S-6)), it
holds that

‖h̃(r,k)‖∞ ≤ ε(r,k) +R.

Similarly, for all f (k)
r in the support of ρ, we have that ‖f (k)

r − h̃(r,k)‖∞ ≤ L(r,k) and by assuming ε(r,k) ≤ L(r,k),

‖f (k)
r ‖∞ ≤ ε(r,k) + L(r,k) +R ≤ 2L(r,k) +R. (S-7)

Note that for f =
∑dmax

r=1

∏K
k=1 f

(k)
r and f∗ =

∑dmax

r=1

∏K
k=1 f

∗
r

(k), it holds that∫
‖f − fo‖2ndρ(f) ≤ 2

∫
‖f − f∗‖2ndρ(f) + 2

∫
‖f∗ − fo‖2ndρ(f).

Thus we just need to bound the first term of the RHS:∫
‖f − f∗‖2ndρ(f)

=

∫ ∥∥∥∥∥
dmax∑
r=1

(
K∏
k=1

f (k)
r −

K∏
k=1

f∗r
(k)

)∥∥∥∥∥
2

n

dρ(f)

=

∫ ∥∥∥∥∥
d∗∑
r=1

(
K∏
k=1

f (k)
r −

K∏
k=1

f∗r
(k)

)∥∥∥∥∥
2

n

dρ(f)

=

d∗∑
r=1

∫ ∥∥∥∥∥
K∏
k=1

f (k)
r −

K∏
k=1

f∗r
(k)

∥∥∥∥∥
2

n

dρ(f)

− 2
∑

r 6=r′:1≤r,r′≤d∗

∫ 〈 K∏
k=1

f (k)
r −

K∏
k=1

f∗r
(k),

K∏
k=1

f
(k)
r′ −

K∏
k=1

f∗r′
(k)

〉
n

dρ(f).

The first term of the RHS is evaluated by

d∗∑
r=1

∫ ∥∥∥∥∥
K∏
k=1

f (k)
r −

K∏
k=1

f∗r
(k)

∥∥∥∥∥
2

n

dρ(f)
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=

d∗∑
r=1

∫ ∥∥∥∥∥
K∑
k=1

(
k−1∏
k′=1

f (k′)
r

)(
f (k)
r − f∗r

(k)
)( K∏

k′=k+1

f∗r
(k′)

)∥∥∥∥∥
2

n

dρ(f)

=

d∗∑
r=1

K∑
k=1

K∑
k̃=1

∫ 〈( k−1∏
k′=1

f (k′)
r

)(
f (k)
r − f∗r

(k)
)( K∏

k′=k+1

f∗r
(k′)

)
,

 k̃−1∏
k′=1

f (k′)
r

(f (k̃)
r − f∗r

(k̃)
) K∏

k′=k̃+1

f∗r
(k′)

〉
n

dρ(f)

=

d∗∑
r=1

K∑
k=1

K∑
k̃=1

∫ 〈( k−1∏
k′=1

f (k′)
r

)(
f (k)
r − f∗r

(k)
)( K∏

k′=k+1

f∗r
(k′)

)
,

 k̃−1∏
k′=1

f (k′)
r

(f (k̃)
r − f∗r

(k̃)
) K∏

k′=k̃+1

f∗r
(k′)

〉
n

dρ(f).

If k 6= k̃ and r 6∈ Š, then the summand of the RHS is 0, otherwise the summand is bounded by
1
2

∑
k′′=k,k̃

∫ ∥∥∥(∏k′′−1
k′=1 f

(k′)
r

)(
f

(k′′)
r − f∗r

(k′′)
)(∏K

k′=k′′+1 f
∗
r

(k′)
)∥∥∥2

n
dρ(f). Hence, by setting cr = 1 if r 6∈ Š, and

cr = K otherwise, then Lemma B.1 and Eq. (S-7) give an upper bound of the RHS as

d∗∑
r=1

cr

K∑
k=1

∫ ∥∥∥∥∥
(
k−1∏
k′=1

f (k′)
r

)(
f (k)
r − f∗r

(k)
)( K∏

k′=k+1

f∗r
(k′)

)∥∥∥∥∥
2

n

dρ(f)

≤
d∗∑
r=1

cr

K∑
k=1

∏
k′ 6=k

(R+ 2L(r,k′))
2

∫
‖f (k)
r − f∗r

(k)‖2ndρ(f)

≤(R+ 2 max
r,k

L(r,k))
2(K−1)

d∗∑
r=1

cr

K∑
k=1

2

∫
(‖f (k)

r − h̃(r,k)‖2n + ‖h̃(r,k) − f∗r
(k)‖2n)dρ(f)

≤4

(
R+ 2 max

r,k
L(r,k)

)2(K−1) d∗∑
r=1

cr

K∑
k=1

ε2(r,k). (S-8)

On the other hand, using Lemma B.1 again, an analogous reasoning gives a bound of the second term as∣∣∣∣∣
∫ 〈 K∏

k=1

f (k)
r −

K∏
k=1

f∗r
(k),

K∏
k=1

f
(k)
r′ −

K∏
k=1

f∗r′
(k)

〉
n

dρ(f)

∣∣∣∣∣
=

∣∣∣∣∣
〈

K∏
k=1

h̃(r,k) −
K∏
k=1

f∗r
(k),

K∏
k=1

h̃(r′,k) −
K∏
k=1

f∗r′
(k)

〉
n

∣∣∣∣∣
≤

0, (r 6∈ Š or r′ 6∈ Š),(
R+ 2 maxr̃,k̃ L(r̃,k̃)

)2(K−1)√∑K
k=1 ε

2
(r,k)

√∑K
k=1 ε

2
(r′,k), (otherwise).

(S-9)

Now define

φ̂(r,k)
f∗r

(k)(ε(r,k), L(r,k), λ) := inf
h∈H(r,k):‖h−f∗r (k)‖∞≤ε

(
‖h‖2H(r,k),λ

∨ 1
)
− log GP(r,k)(S(r,k)|λ).

Then, along with the proof of Theorem 3 in Suzuki (2012), the KL-divergence between the “posterior” ρ and the prior Π
is bounded as

1

n
K(ρ,Π)
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≤ C ′1
d∗∑
r=1

K∑
k=1

(
1

n
φ̂(r,k)

f∗r
(k)(ε(r,k), L(r,k), λ(r,k)) +

1

n
λ(r,k) −

1

n
log

(
λ(r,k)

2

))
+
d∗

n
log

(
1

ζ(1− ζ)

)
, (S-10)

where C ′1 is a universal constant. Here, since both of the sets {f : ‖f‖n ≤ ε} and {f : ‖f‖∞ ≤ L} are convex and
symmetric, we obtain by Proposition B.2 that

− log GP(r,k)(S(r,k)|λ) ≤ − log GP(r,k)({f : ‖f‖n ≤ ε(r,k)/
√

2}|λ)− log GP(r,k)({f : ‖f‖∞ ≤ L(r,k)/
√

2}|λ).

Thus

φ̂(r,k)
f∗r

(k)(ε(r,k), L(r,k), λ(r,k)) ≤ φ(r,k)
f∗r

(k)(ε(r,k), L(r,k), λ(r,k)). (S-11)

Finally, combining Eq. (S-9), Eq. (S-8), and Eq. (S-10) with Eq. (S-11), we obtain the assertion.

Lemma B.1. For f(x) =
∏K
k=1 fk(x) : X 7→ R such that ‖fk‖∞ ≤ R (∀k), it holds that

‖f‖2n ≤ RK−1‖fk‖2n,

for all k = 1, . . . ,K. In addition, for f ′(x) =
∏K
k=1 f

′
k(x) : X 7→ R such that ‖f ′k‖∞ ≤ R (∀k), it holds that

〈f, f ′〉n ≤ RK−1‖fk‖n‖f ′k‖n,

for all k = 1, . . . ,K.

Proof.

‖f‖2n =
1

n

n∑
i=1

K∏
k=1

fk(xi)
2

≤ 1

n

n∑
i=1

fk(xi)
2
∏
k′ 6=k

max
i=1,...,n

{fk′(xi)2} ≤ RK−1 1

n

n∑
i=1

fk(xi)
2.

Using the same reasoning, we obtain the second assertion by noticing 1
n

∑n
i=1 |fk(xi)f

′
k(xi)| ≤ ‖fk‖‖f ′k‖.

Schechtman et al. (1998); Li (1999) showed the following theorem.

Proposition B.2. Let ρ be a centered Gaussian measure on a separable Banach space E. Then for any 0 < λ < 1, any
symmetric, convex sets A and B in E,

ρ(A ∩B)ρ(λ2A+ (1− λ2)B) ≥ ρ(λA)ρ((1− λ2)1/2B).

In particular,
ρ(A ∩B) ≥ ρ(λA)ρ((1− λ2)1/2B).

Schechtman et al. (1998) probed the above statement for λ = 1/
√

2 and E = Rn, and Li (1999) extended the results as
above.

B.3. Proof of Theorems 1 and 2 in the main body

We just need to bound the following term for each r, k:

R̂K,maxε
2
(r,k) +

1

n
φ

(r,k)

f∗r
(k)(ε(r,k), L(r,k), λ(r,k)) +

1

n
λ(r,k) −

1

n
log

(
λ(r,k)

2

)
, (S-12)

by choosing an appropriate ε(r,k), L(r,k), λ(r,k) such that ε(r,k) ≤ L(r,k).
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By the definition, we have

‖f∗r
(k)‖θ,∞,H(r,k)

= sup
t>0

inf
h
(k)
r ∈H(r,k)

{t−θ‖f∗r
(k) − h(k)

r ‖∞ + t1−θ‖h(k)
r ‖H(r,k)

}.

With a slight abuse of notation, we denote by ‖f∗r
(k)‖θ,∞ = ‖f∗r

(k)‖θ,∞,H(r,k)
. If inf

h
(k)
r ∈H(r,k)

‖f∗r
(k) − h(k)

r ‖∞ > 0,

then the term t−θ‖f∗r
(k) − h

(k)
r ‖∞ can be arbitrary large. Therefore the assumption R ≥ ‖f∗r

(k)‖θ,∞ ensures that
there exists h(k)

r ∈ H(r,k) such that ‖f∗r
(k) − h

(k)
r ‖∞ ≤ ε for all ε > 0. Using this, we evaluate the RKHS norm

of the approximator: infh∈H(r,k):‖h−f∗r (k)‖∞≤ε(r,k) ‖h‖
2
H(r,k)

. For all t > 0, there exists h(k)
r [t] ∈ H(r,k) such that

2‖f∗r
(k)‖θ,∞ ≥ t−θ‖f∗r

(k) − h
(k)
r [t]‖∞ + t1−θ‖h(k)

r [t]‖H(r,k)
. This gives 2‖f∗r

(k)‖θ,∞ ≥ t−θ‖f∗r
(k) − h

(k)
r [t]‖∞ so that

we have t ≥ 2−
1
θ ‖f∗r

(k)‖θ,∞
− 1
θ ‖f∗r

(k) − h(k)
r [t]‖

1
θ∞, and hence 2‖f∗r

(k)‖θ,∞ ≥ t1−θ‖h(k)
r [t]‖H(r,k)

yields

‖h(k)
r [t]‖H(r,k)

≤ t−(1−θ)2‖f∗r
(k)‖θ,∞ ≤ 2

1
θ ‖f∗r

(k)‖θ,∞
1
θ ‖f∗r

(k) − h(k)
r [t]‖

− 1−θ
θ∞ .

Therefore we have that

inf
h∈H(r,k):‖h−f∗r (k)‖∞≤ε(r,k)

‖h‖2Hr,k ≤ 2
2
θ ‖f∗r

(k)‖θ,∞
2
θ
ε
− 2(1−θ)

θ

(r,k) ≤ (2R)
2
θ ε
− 2(1−θ)

θ

(r,k) , (S-13)

because for all ε > 0 there exists t such that ‖f∗r
(k) − h(k)

r [t]‖∞ ≤ ε.

Setting (i): From now on, we assume that 1− θ− s(r,k) ≥ 0. Here, the metric entropy condition (Assumption 2) gives that
there exists C ′0 such that

− log(GPr,k({f : ‖f‖n ≤ ε})) ≤ C ′0ε
−

2s(r,k)
1−s(r,k)

(Kuelbs & Li, 1993; Li & Shao, 2001). Similary, Assumption 6 gives that there exists C ′1 such that

− log(GPr,k({f : ‖f‖∞ ≤ L})) ≤ C ′1L
−

2s̃(r,k)
1−s̃(r,k) .

This and Eq. (S-13) give that

φ
(r,k)

f∗r
(k)(ε(r,k), λ(r,k)) ≤ (2R)

2
θ λ(r,k)ε

− 2(1−θ)
θ

(r,k) + C ′0

(√
λ(r,k)ε(r,k)√

2

)− 2s(r,k)
1−s(r,k)

+ C ′1

(√
λ(r,k)L(r,k)√

2

)− 2s̃(r,k)
1−s̃(r,k)

(S-14)

where we used

‖f‖2H(r,k),λ
= λ‖f‖2H(r,k)

,

− log(GPr,k({f : ‖f‖n ≤ ε(r,k)}|λ(r,k))) = − log(GPr,k({f : ‖f‖n ≤
√
λ(r,k)ε(r,k)})),

− log(GPr,k({f : ‖f‖∞ ≤ L(r,k)}|λ(r,k))) = − log(GPr,k({f : ‖f‖∞ ≤
√
λ(r,k)L(r,k)})).

Now λ(r,k) = (R ∨ 1)−
2(1−s(r,k))

θ ε
2(1−θ−s(r,k))

θ

(r,k) balances the first two terms in the right hand side of Eq. (S-14) up to

constants. In addition to λ(r,k), we set L(r,k) = (R ∨ 1)
1−s(r,k)

θ . With this λ(r,k)and L(r,k), the RHS of Eq. (S-12) is
bounded as

R̂K,maxε
2
(r,k) +

1

n
φ

(r,k)

f∗r
(k)(ε(r,k), L(r,k), λ(r,k)) +

λ(r,k)

n
−

log(λ(r,k))

n

≤R̂K,maxε
2
(r,k) +

(2
2
θ + C ′02

s(r,k)
1−s(r,k) )

n
(R ∨ 1)

2s(r,k)
θ ε

−
2s(r,k)
θ

(r,k)
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+
C ′12

2s̃(r,k)
1−s̃(r,k)

n
ε
−

2(1−θ−s(r,k))s̃(r,k)
θ(1−s̃(r,k))

(r,k)

+
ε

1−θ−s(r,k)
θ

(r,k)

n
−

log(ε
1−θ−s(r,k)

θ

(r,k) )

n
. (S-15)

Here, we set ε2(r,k) = n
− 1

1+s(r,k)/θ . When 1− θ − s(r,k) ≥ 0, by the assumption that s̃(r,k) ≤
s(r,k)
1−θ ,

ε
−

2(1−θ−s(r,k))s̃(r,k)
θ(1−s̃(r,k))

(r,k) ≤ ε−
2s(r,k)
θ

(r,k) . (S-16)

Therefore, by applying Eq. (S-16) to the RHS of Eq. (S-15), the RHS of Eq. (S-15) is bounded by

C

(
R̂K,max ∨ (R ∨ 1)

2s(r,k)
θ

)
n
− 1

1+s(r,k)/θ . (S-17)

where C is a constant independent of n,R.

Setting (ii): As for the situation, 1− θ − s(r,k) ≤ 0, we also use the same setting. Then
√
λ(r,k)L(r,k) ≥ 1. Thus we have

another bound like

− log(GPr,k({f : ‖f‖∞ ≤
√
λ(r,k)L(r,k)})) ≤ − log(GPr,k({f : ‖f‖∞ ≤ 1})) ≤ − log(c1).

Then along with the same reasoning as for the situation 1 − θ − s(r,k) ≥ 0, the same upper bound of Eq. (S-12) as Eq.
(S-17) with a different constant. This concludes the proof of Theorem 2 by substituting the setting (ε(r,k), L(r,k), λ(r,k)) as
described above into Eq. (S-4) in the statement of Theorem B.1.

Theorem 1 is proved by the same reasoning, but it should be noticed that Š = ∅, θ = 1 and (R ∨ 1)
2s(r,k)
θ ≤ (R ∨ 1)2

because of s(r,k) < 1.

C. Proof of minimax lower bound (Theorem 4)
Proof. (Theorem 4) The δ-packing number M(G, δ, ‖ · ‖) of a function class G with respect to a norm ‖ · ‖ is the largest
number of functions {f1, . . . , fM} ⊆ G such that ‖fi − fj‖ ≥ δ for all i 6= j. Generally, it holds that

N(G, δ/2, ‖ · ‖) ≤M(G, δ, ‖ · ‖) ≤ N(G, δ, ‖ · ‖). (S-18)

For a given δn > 0 and εn > 0, let Q be the δn packing number M(H(d∗,K)(R), δn, L2(PX )) of H(d∗,K)(R) and N
be the εn covering number N(H(d∗,K)(R), εn, L2(PX )) of H(d∗,K)(R). (Raskutti et al., 2010) utilized the techniques
developed by (Yang & Barron, 1999) to show the following inequality in their proof of Theorem 2(b) :

inf
f̂

sup
f∗∈H(d∗,K)(R)

E[‖f̂ − f∗‖2L2(PX )] ≥ inf
f̂

sup
f∗∈H(d∗,K)(R)

δ2
n

2
P [‖f̂ − f∗‖2L2(PX ) ≥ δ

2
n/2]

≥ δ2
n

2

(
1−

log(N) + n
2σ2 ε

2
n + log(2)

log(Q)

)
.

Thus by taking δn and εn to satisfy

n

2σ2
ε2
n ≤ log(N), (S-19a)

8 log(N) ≤ log(Q), (S-19b)
4 log(2) ≤ log(Q), (S-19c)

the minimax rate is lower bounded by δ2n
4 .
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From now on, we are going to evaluate log(N) and log(Q) in terms of δn and εn. For all f, f ′ ∈H(d∗,K)(R), it holds that

‖f − f ′‖2L2(PX ) =

∥∥∥∥∥
d∗∑
r=1

(

K∏
k=1

f (k)
r −

K∏
k=1

f ′
(k)
r )

∥∥∥∥∥
2

L2(PX )

=

d∗∑
r=1

∥∥∥∥∥
K∏
k=1

f (k)
r −

K∏
k=1

f ′
(k)
r

∥∥∥∥∥
2

L2(PX )

by the construction of L2(PX ) and the assumption that E[f
(k)
r (X)] = 0 for all f (k)

r ∈ H(r,k).

To evaluate the covering number and packing numbers, we construct a packing sets on the “sphere” of each H(r,k). Since
Xk is a compact metric space and k(r)k is continuous, Mercer’s theorem gives the orthogonal decomposition of the kernel
function k(r,k) as

k(r,k)(x, x
′) =

∞∑
i=1

µ(r,k),iψ(r,k),i(x)ψ(r,k),i(x
′), (S-20)

where the convergence is absolute and uniform, {ψ(r,k),i}∞i=1 forms an orthonormal system and µ(r,k),i ≥ 0 is the i-th
eigen-value (see Theorem 4.49 in Steinwart & Christmann (2008) for example). We assume that µ(r,k),1 ≥ µ(r,k),2 ≥ · · · .
As in Assumption 7, there exists f̂ (k)

r ∈ BH(r,k)
such that ‖f̂ (k)

r ‖L2(PXk ) ≥ c1. Without loss of generality, we may assume

that f̂ (k)
r =

√
µ(r,k),1ψ(r,k),1 because

√
µ(r,k),1ψ(r,k),1 = argmax

f∈BH(r,k)

‖f‖L2(PX ).

This can be seen by the relation ‖f‖2H(r,k)
=
∑n
i=1

∫ ∫
f(x)f(x′)ψ(r,k),i(x)ψ(r,k),i(x

′)/µ(r,k),idPX (x)dPX (x′). Now,

we consider a subspace which is perpendicular to f̂ (k)
r . Let H⊥,(r,k) := {f ∈ H(r,k) | 〈f, f̂

(k)
r 〉L2(PX ) = 0}. Then, by

the orthogonal decomposition (S-20) and the Mercer representation of RKHSs (Theorem 4.51 of Steinwart & Christmann
(2008)), the spaceH⊥,(r,k) can be represented by

H⊥,(r,k) =

{ ∞∑
i=2

αiψ(r,k),i |
∞∑
i=2

α2
i /µ(r,k),i <∞

}

where 0/0 is defined as 0. H⊥,(r,k) is also an RKHS with a kernel function

k⊥,(r,k)(x, x
′) =

∞∑
i=2

µ(r,k),iψ(r,k),i(x)ψ(r,k),i(x
′),

and ‖f‖H⊥,(r,k) = ‖f‖H(r,k)
for all f ∈ H⊥,(r,k). Now, we evaluate the covering number of H⊥,(r,k). Proposition C.3

with Assumption 7 gives that µ(r,k),i ∼ i−1/s(r,k) . Thus, we again use Proposition C.3 to obtain that

logN(BH⊥,(r,k) , ε, L2(PX(r,k)
)) ∼ ε−2s(r,k) .

Let g[j] (j = 1, . . . ,M(r,k)) be the packing set that gives the packing numberM(r,k) = M(BH⊥,(r,k) , ε, L2(PX(r,k)
)). Note

that logM(r,k) ∼ ε−2s(r,k) . Then, ‖g[j]‖H(r,k)
≤ 1 and thus ‖g[j]‖L2(PX ) ≤ ‖g[j]‖∞ ≤ supx k(r,k)(x, x)‖g[j]‖H(r,k)

≤ 1.
Now let,

g̃[j] =
√

(1− ‖g[j]‖2L2(PX ))
f̂

(k)
r

‖f̂ (k)
r ‖L2(PX )

+ g[j].

By the construction of g[j], we have 〈g[j], f̂
(k)
r 〉L2(PX ) = 0 and thus

‖g̃[j]‖2L2(PX ) = (1− ‖g[j]‖2L2(PX )) + ‖g[j]‖2L2(PX ) = 1. (S-21)
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Moreover, since Assumption 7 gives ‖f̂ (k)
r ‖L2(PX ) ≥ c1, the RKHS norm of g̃[j] is bounded by

‖g̃[j]‖H(r,k)
≤

√
(1− ‖g[j]‖2L2(PX ))

‖f̂ (k)
r ‖L2(PX )

‖f̂ (k)
r ‖H(r,k)

+ ‖g[j]‖H(r,k)
≤ 1 + c1

c1
.

Moreover, {g̃[j]}j satisfies
‖g̃[j] − g̃[j′]‖L2(PX ) ≥ ‖g[j] − g[j′]‖L2(PX ) ≥ ε

where we used the orthogonality between f̂ (k)
r and g[j] − g[j′]. Therefore, we have that

M(r,k) ≤M(BH(r,k)
, ε, L2(PX(r,k)

)).

We denote by G(r,k) := {g̃[j] (j = 1, . . . ,M(r,k))}.

We construct a packing set of H(d∗,K)(R) as follows. Let

G =

{
g =

d∗∑
r=1

K∏
k=1

g(k)
r | g(k)

r ∈ G(r,k)

}
.

Note that

|G| =
d∗∏
r=1

K∏
k=1

M(r,k).

It will be shown later that any g, g′ ∈ G satisfy

‖g − g′‖2L2(PX ) ≥
d∗∑
r=1

min

{
1

K
,

1

2

K∑
k=1

∥∥∥g(k)
r − g′

(k)
r

∥∥∥2

L2(PX )

}
. (S-22)

Thus, if |{(r, k) | g(k)
r 6= g′

(k)
r }| ≥ d∗K

2 , then the right hand side of Eq. (S-22) is lower bounded by

‖g − g′‖2L2(PX ) ≥
d∗K

2
ε2 (S-23)

for sufficiently small ε. Now, by the assumption that s(r,k) = s for all r, k, we may assume that ∃M such that M(r,k) = M

for all r, k. By Lemma C.1, we can construct a subset G̃ of G such that

|G̃| ≥ 1

2

Md∗K(
d∗K
d∗K/2

)
(M + 1)d∗K/2

,

g, g′ ∈ G̃, g 6= g′, ⇒ |{(r, k) | g(k)
r 6= g′

(k)
r }| ≥

d∗K

2
.

Once this is shown, G̃ is actually a packing set of H(d∗,K)(R) with εn = d∗K
2 ε2, and Q = |G̃| satisfies

log |G̃| ≥ d∗K

4
log(M)− d∗K

2
log(2) & d∗K log(M)

for M ≥ 5. Therefore,

log(Q) & d∗K log(M) & d∗Kε−2s.

By setting δn appropriately like δn = Cεn, we have log(Q)/2 ≤ 8 log(N) ≤ log(Q), and let ε to satisfy

n

2σ2
d∗Kε2 . d∗Kε−2s
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then the inequalities (S-19) are satisfied for εn = d∗K
2 ε2. To satisfy this, we set ε ' n−

1
1+s and thus

ε2n '
d∗∑
r=1

K∑
k=1

n
− 1

1+s(r,k) = d∗Kn−
1

1+s ,

then we obtain the assertion.

What remains to be shown is Eq. (S-22). This is shown as follows. First notice that

‖g − g′‖2L2(PX ) = ‖
d∗∑
r=1

(

K∏
k=1

g(k)
r −

K∏
k=1

g′
(k)
r )‖2L2(PX )

=

d∗∑
r=1

∥∥∥∥∥
K∏
k=1

g(k)
r −

K∏
k=1

g′
(k)
r

∥∥∥∥∥
2

L2(PX )

.

Next, we lower bound the summand as follows:∥∥∥∥∥
K∏
k=1

g(k)
r −

K∏
k=1

g′
(k)
r

∥∥∥∥∥
2

L2(PX )

=

∥∥∥∥∥g(1)
r

K∏
k=2

g(k)
r − g′

(1)
r

K∏
k=2

g′
(k)
r

∥∥∥∥∥
2

L2(PX )

=

∥∥∥∥∥(g(1)
r − g′

(1)
r )

K∏
k=2

g(k)
r − g′

(1)
r (

K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r )

∥∥∥∥∥
2

L2(PX )

=

∥∥∥∥∥(g(1)
r − g′

(1)
r )

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

− 2

〈
(g(1)
r − g′

(1)
r )

K∏
k=2

g(k)
r , g′

(1)
r (

K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r )

〉
L2(PX )

+

∥∥∥∥∥g′(1)
r (

K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r )

∥∥∥∥∥
2

L2(PX )

=
∥∥∥g(1)
r − g′

(1)
r

∥∥∥2

L2(PX )

K∏
k=2

∥∥∥g(k)
r

∥∥∥2

L2(PX )

− 2
〈
g(1)
r − g′

(1)
r , g′

(1)
r

〉
L2(PX )

×

〈
K∏
k=2

g(k)
r ,

K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

〉
L2(PX )

+
∥∥∥g′(1)

r

∥∥∥2

L2(PX )

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

.

Using Lemma C.2 with Eq. (S-21), the RHS is equivalent to∥∥∥g(1)
r − g′

(1)
r

∥∥∥2

L2(PX )

K∏
k=2

∥∥∥g(k)
r

∥∥∥2

L2(PX )
− 1

2
‖g(1)
r − g′

(1)
r ‖2L2(PX ) ×

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

+
∥∥∥g′(1)

r

∥∥∥2

L2(PX )

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

By using Eq. (S-21), we have that every g(k)
r ∈ G(r,k) satisfies ‖g(k)

r ‖L2(PX ) = 1, and thus the RHS is lower bounded as

∥∥∥g(1)
r − g′

(1)
r

∥∥∥2

L2(PX )
− 1

2
‖g(1)
r − g′

(1)
r ‖2L2(PX ) ×

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

+

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )
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≥
∥∥∥g(1)
r − g′

(1)
r

∥∥∥2

L2(PX )
+

(
1− 1

2
‖g(1)
r − g′

(1)
r ‖2L2(PX )

)∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

≥min

 1

K
,
∥∥∥g(1)
r − g′

(1)
r

∥∥∥2

L2(PX )
+ (1− 1/2K)

∥∥∥∥∥
K∏
k=2

g′
(k)
r −

K∏
k=2

g(k)
r

∥∥∥∥∥
2

L2(PX )

 .

Applying the same argument K times, the right hand side is lower bounded by

min

{
1

K
, (1− 1/2K)K−1

K∑
k=1

∥∥∥g(k)
r − g′

(k)
r

∥∥∥2

L2(PX )

}

≥min

{
1

K
,

1

2

K∑
k=1

∥∥∥g(k)
r − g′

(k)
r

∥∥∥2

L2(PX )

}
.

This shows Eq. (S-22). Then we complete the proof.

Lemma C.1. Let Ω = {1, . . . ,M}s, and define the Hamming distance in Ω as d(x, y) =
∑s
i=1 1[xj 6= yj ]. Then, there is

a subset A ⊆ Ω such that every pair x, y ∈ A s.t. x 6= x′ satisfies

d(x, y) ≥ s/2

and |A| ≥ Ms

2( s
s/2)(M+1)s/2

.

Proof. The proof is given in the proof of Lemma 4 in Raskutti et al. (2012).

Lemma C.2. Suppose that H ⊆ L2(PX ) is a Hilbert space and x, y ∈ H satisfy ‖x‖L2(PX ) = ‖y‖L2(PX ), then it holds
that

〈x− y, y〉L2(PX ) = −1

2
‖x− y‖2L2(PX ).

Proof. Since ‖x‖2L2(PX ) = ‖y‖2L2(PX ), we have that

‖x‖2L2(PX ) = ‖x− y + y‖2L2(PX ) = ‖x− y‖2L2(PX ) + 2〈x− y, y〉L2(PX ) + ‖y‖2L2(PX )

⇒ 0 = ‖x− y‖2L2(PX ) + 2〈x− y, y〉L2(PX ).

This is equivalent to the assertion.

Proposition C.3 (Theorem 15 in Steinwart et al. (2009)). Let H be an RKHS associated with a kernel function k :
X × X → R. Suppose that a kernel function k has an expansion such as

k(x, x′) =

∞∑
i=1

µiψi(x)ψi(x
′)

in L2(PX ) where {φi}i ⊆ H is an orthonormal system and µ1 ≥ µ2 ≥ · · · ≥ 0. Then, given s > 0, we have that
µi ∼ i−1/s if and only if

N (BH, ε, L2(PX )) ∼ ε−2s.
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