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Abstract
We investigate the statistical efficiency of a non-
parametric Gaussian process method for a non-
linear tensor estimation problem. Low-rank ten-
sor estimation has been used as a method to learn
higher order relations among several data sources
in a wide range of applications, such as multi-
task learning, recommendation systems, and spa-
tiotemporal analysis. We consider a general set-
ting where a common linear tensor learning is ex-
tended to a nonlinear learning problem in repro-
ducing kernel Hilbert space and propose a non-
parametric Bayesian method based on the Gaus-
sian process method. We prove its statistical con-
vergence rate without assuming any strong con-
vexity, such as restricted strong convexity. Re-
markably, it is shown that our convergence rate
achieves the minimax optimal rate. We apply our
proposed method to multi-task learning and show
that our method significantly outperforms exist-
ing methods through numerical experiments on
real-world data sets.

1. Introduction
Tensor structure naturally arises in the analysis of complex
interactions between several data sources. For example, in
a movie recommendation system, user ratings of movies
are described by a three-way tensor, which is referenced
by (user, movie, context) (Karatzoglou et al., 2010). The
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noteworthy success of tensor data analysis is based on the
notion of the low rank property of a tensor. The low rank
decomposition of a tensor, which is analogous to that of a
matrix, plays an important role in tensor learning, since it
enables us to decompose a tensor into a few factors that can
be analyzed, e.g., CP-decomposition (Hitchcock, 1927a;b)
and Tucker decomposition (Tucker, 1966).

Parametric models based on low rank decomposition have
been intensively investigated. A naive approach to com-
puting tensor decomposition is to find a best approximate
decomposition that minimizes the squared error (Kolda &
Bader, 2009). However, this type of problem is not convex
and therefore it is difficult to derive an optimal solution.
In order to overcome the computational difficulty, convex
relaxation methods have been proposed by some authors
(Liu et al., 2009; Signoretto et al., 2010; Gandy et al., 2011;
Tomioka et al., 2011; Tomioka & Suzuki, 2013). The main
idea of convex relaxations is to unfold a tensor into some
matrices and apply a well investigated trace norm regular-
ization method to these matrices.

On the other hand, Bayesian methods have also been pro-
posed (Chu & Ghahramani, 2009; Xiong et al., 2010; Xu
et al., 2011; Rai et al., 2014). In the context of sparse es-
timation, it is known that a Bayesian method does not re-
quire strong conditions on the design to derive an optimal
convergence rate (Dalalyan & Tsybakov, 2008; Alquier &
Lounici, 2011). In fact, in low rank linear tensor estima-
tion, a minimax optimal convergence rate for predictive er-
ror can be achieved without assuming strong convexity on
the design (Suzuki, 2015).

In addition to the linear models as described above, non-
parametric tensor learning has also been considered (Xu
et al., 2011; Signoretto et al., 2013; Shen & Ghosal, 2016).
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In particular, Signoretto et al. (2013) extended linear ten-
sor learning to the non-parametric learning problem using
a kernel method; they proposed applying a regularization
method on the reproducing kernel Hilbert space (RKHS) of
the tensor product. However, this approach is not guaran-
teed to produce a global optimal solution and the statistical
optimality of that is not theoretically justified.

In this paper, we consider a Bayesian method that em-
ploys the Gaussian process prior as a distinct approach for
learning functions on the RKHS. We theoretically investi-
gate the Bayesian tensor estimator and derive a fast con-
vergence rate without assuming any strong condition on
the design through a PAC-Bayesian technique (Dalalyan &
Tsybakov, 2008; Alquier & Lounici, 2011; Rigollet & Tsy-
bakov, 2011). Our bound is considerably general in a sense
that it gives the learning rate for estimation in a general
RKHS, and it also covers a situation where the true func-
tion is not exactly included in the RKHS by utilizing the
notion of interpolation space (Bennett & Sharpley, 1988).
Furthermore, we derive the minimax optimal lower bound
and it is shown that the convergence rate of the Gaussian
process method achieves the minimax optimal rate.

We also apply our proposed method to a multi-task learning
problem. We conduct extensive experiments, the results
of which show that the nonlinear Gaussian process method
significantly outperforms the existing linear tensor learning
methods (Romera-Paredes et al., 2013; Wimalawarne et al.,
2014; Suzuki, 2015).

2. Problem formulation
Suppose that we are given n input-output samples
{(xi, yi)}ni=1. The input xi is a concatenation of K vari-
ables, i.e., xi = (x

(1)
i , · · · , x(K)

i ) ∈ X1 × · · · × XK = X ,
where each x(k)

i is an element of a set Xk. We consider
the regression problem where these samples are generated
according to the non-parametric model (Signoretto et al.,
2013):

yi =

d∗∑
r=1

K∏
k=1

f∗(k)
r (x

(k)
i ) + εi, (1)

where {εi}ni=1 represents an i.i.d. zero-mean noise. In this
regression problem, our objective is to estimate the true
function f∗(x(1), . . . , x(K)) =

∑d∗

r=1

∏K
k=1 f

∗(k)
r (x(k)).

This model captures the effect of non-linear higher order
interactions among the input components {x(k)}Kk=1 to the
output y, and thus, is useful for a regression problem where
the output is determined by complex relations between the
input components. This type of regression problem ap-
pears in several applications, such as multi-task learning,
recommendation systems and spatiotemporal data analysis
(Karatzoglou et al., 2010; Romera-Paredes et al., 2013; Ba-

hadori et al., 2014) (see Sec. 6.1 for the multi-task learning
formulation).

Relation to the linear tensor model To understand the
model in Eq. (1), it is helpful to consider a linear case as
a special case (Chu & Ghahramani, 2009; Tomioka et al.,
2011). In general, the linear tensor model is formulated as

Yi = 〈A∗, Xi〉+ εi. (2)

Here, Xi, A∗ are tensors in RM1×···×MK and
the inner product 〈·, ·〉 is defined by 〈A,X〉 =∑M1,...,MK

i1,...,iK=1Ai1...iKXi1...iK . A∗ is assumed to be
low rank in the sense of CP-rank (Hitchcock, 1927a;b),
i.e., A∗ is decomposed as

∑d∗

r=1 u
∗(1)
r ◦ · · · ◦ u∗(K)

r ,
where the vector u

∗(k)
r ∈ RMk and the symbol ◦

represents the vector outer product. If we also as-
sume Xi is rank-1, i.e., Xi = x

(1)
i ◦ · · · ◦ x(K)

i ,
then the inner product in Eq.(2) is written as:
〈A∗, Xi〉 = 〈

∑d
r=1 u

∗(1)
r ◦ · · · ◦u∗(K)

r , x
(1)
i ◦ · · · ◦x

(K)
i 〉 =∑d∗

r=1

∏K
k=1〈u

∗(k)
r , x

(k)
i 〉. This is equivalent to the case

where we limit f∗r
(k) in Eq. (1) to the linear function

〈u∗(k)
r , x(k)〉. Hence, the linear model based on CP-

decomposition can be understood as a special case of our
proposed model.

3. Estimation of nonlinear tensor model
Our approach analyzed in this paper is a Bayesian method
in which a Gaussian process prior is employed for each
f

(k)
r . We can compute the posterior distribution by using

MCMC technique and give the statistical convergence rate
of the posterior mean estimator.

3.1. Gaussian process prior and corresponding
reproducing kernel Hilbert space

We place a zero-mean Gaussian process prior GPr,k with a
kernel k(r,k) to estimate the function f∗r

(k) on Xk. A zero-
mean Gaussian process f = (f(x) : x ∈ X ) on some input
space X is a set of random variables (f(x))x∈X indexed
by X such that each finite subset (f(x1), . . . , f(xj)) (j =
1, 2, . . . ) obeys a zero-mean multivariate normal distribu-
tion, where (x1, . . . , xj) ⊆ X is an arbitrary finite subset
of X . The kernel function k : X × X → R corresponding
to the Gaussian process is the covariance function defined
by k(x, x′) = E[f(x)f(x′)]. Since the kernel function is
symmetric and positive definite, we can define its corre-
sponding RKHS in the usual manner (Aronszajn, 1950).

We denote byH(r,k) the RKHS corresponding to the kernel
k(r,k). It is known that the RKHS is usually much smaller
than the support of the Gaussian process in an infinite di-
mensional setting. In fact, typically the prior has proba-
bility mass 0 on the infinite dimensional RKHS (van der
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Vaart & van Zanten, 2011). This leads to the fact that, un-
der the assumption f∗r

(k) ∈ H(r,k), estimating the func-
tion f∗r

(k) through the standard Bayesian procedure with
a Gaussian process prior never achieves the optimal rate
in some important examples (van der Vaart & van Zanten,
2011). To overcome this issue, we scale the process by the
factor of λ(r,k) and make the estimator close to the small
spaceH(r,k).

3.2. The posterior distribution and the corresponding
estimator

Given a rank d, let F = (f
(k)
r )r=1,...,d, k=1,...,K be a

concatenation of functions {f (k)
r }r=1,...,d, k=1,...,K . Let

the Gaussian process prior GPr,k(·|λ(r,k)) with a pa-
rameter λ(r,k) > 0 be the process associated with a
“scaled” kernel function k(r,k)/λ(r,k). We consider the
following prior distribution on the product space dF =

(df
(k)
r )r=1,...,d, k=1,...,K :

Π(dF|d)=

d∏
r=1

K∏
k=1

∫
λ(r,k)>0

GPr,k(df (k)
r |λ(r,k))G(dλ(r,k)),

where G denotes the exponential distribution, G(dλ(r,k)) =
exp(−λ(r,k))dλ(r,k), which is a conjugate prior for the
scale of the Gaussian process priors. It will be shown that,
by involving the scaling parameter λ(r,k), the estimator is
able to achieve the optimal convergence rate while it can
not without scaling as described above. Putting a prior dis-
tribution on λ(r,k) rather than fixing it to some optimally
chosen value is rather for theoretical purpose, but by doing
so, the estimator possesses an adaptivity against a property
of f∗. Finally, we place a prior distribution on the rank
1 ≤ d ≤ dmax as

π(d) =
ξd∑dmax

d′=1 ξ
d′
, (3)

where 0 < ξ < 1 is some positive real number and dmax is
a sufficiently larger number than the supposed true rank d∗.

We now provide the posterior distribution and the corre-
sponding Bayesian estimator. For some β > 0, the poste-
rior measure is constructed as

Π(dF|Dn) =

∑dmax

d=1 Π(Dn|F)∑dmax
d=1

∫
Π(Dn|F̃)Π(dF̃|d)π(d)

Π(dF|d)π(d),

where Π(Dn|F) is a quasi likelihood defined by

Π(Dn|F)=exp

− 1

β

n∑
i=1

(
yi −

d∑
r=1

K∏
k=1

f (k)
r (x

(k)
i )

)2


with a temperature parameter β > 0. Although the noise εi
is not necessarily Gaussian, we suggest using the Gaussian

likelihood as above. It will be shown that even with this
quasi likelihood, we obtain a nice convergence property.
Corresponding to the posterior, we have the postierior mean
estimator f̂ : f̂ =

∫
fΠ(dF|Dn).

3.3. Posterior sampling

Here, we describe the generation of samples from the pos-
terior distribution. In practice, we may estimate the scale
parameter {λ(r,k)}r,k and the rank d by minimizing the val-
idation error. In the following, we fix these parameters for
simplicity. Let f

(k)
r = (f

(k)
r (x

(k)
1 ), . . . , f

(k)
r (x

(k)
n )) ∈ Rn

and f
(−k)
−r =

{
f

(k′)
r′ | (r′, k′) 6= (r, k)

}
. Since the prior

and the likelihood constitute a Gaussian distribution, the
conditional posterior distribution of f

(k)
r given the other

components f
(−k)
−r is also a Gaussian distribution. Thus,

we may apply Gibbs sampling for the computation of the
mean estimator. Let y = (yi)

n
i=1 and the Gram matrix be

K
(k)
r = (k(r,k)(x

(k)
i , x

(k)
j ))i,j ∈ Rn×n. Then, a simple

calculation gives the conditional distribution of f
(k)
r as

π(f (k)
r | f (−k)

−r , Dn) = N(µ(k)
r ,Σ(k)

r ), (4)

µ(k)
r = Σ(k)

r

(
a ∗ (y − b)

)
/β,

Σ(k)
r =K(k)

r −K(k)
r

(
K(k)
r +diag(a2

1, . . . , a
2
n)/β

)−1
K(k)
r ,

where the symbol ∗ is the Hadamard product and N(µ,Σ)
is the multivariate normal distribution with mean µ and
variance-covariance Σ,

a=
(∏
k̃ 6=k

f (k̃)
r (x

(k̃)
i )
)n
i=1

, b=
(∑
r′ 6=r

K∏
k̃=1

f
(k̃)
r′ (x

(k̃)
i )
)n
i=1

. (5)

To perform the Gibbs sampling, we iteratively sample
f

(k)
r ∈ Rn from the conditional distribution given above

by shifting (r, k) cyclically.

Suppose the i-th posterior sample is denoted by (f
(k)
r,[i])r,k.

Then, to predict the function value f∗(x) at a new input
x = (x(1), . . . , x(K)), we compute the conditional poste-
rior mean of f (k)

r (x(k)) conditioned by f
(k)
r,[i] according to

f̂
(k)
r,[i] = k>(r,k)

(
K(k)
r

)−1
f

(k)
r,[i]. (6)

where k(r,k):= (k(r,k)(x
(k)
1 , x(k)), . . . , k(r,k)(x

(k)
n , x(k)))>.

Then we take an average 1
N

∑N
i=1

(∑d
r=1

∏K
k=1 f̂

(k)
r,[i]

)
,

(where N is the number of sampling iterations), over the
entire iteration as the predicted function value at x.

4. Convergence rate analysis
In this section, we provide the statistical convergence rate
of our Gaussian process tensor estimator, and show that the
derived convergence rate is actually minimax optimal (up
to constants).
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4.1. Upper bound for correctly specified setting

First, we assume a condition on the noise εi as follows.

Assumption 1 E[ε21] < ∞ and E[ε1] = 0. Let mε(z) :=∫∞
z
ydFε(y) where Fε(z) = P (ε1 ≤ z) is the cumulative

distribution function of the noise εi. The measure mε(z)dz
is absolutely continuous with respect to the distribution
function Fε(z) with a bounded Radon-Nikodym derivative,
i.e., there exists a bounded function gε : R→ R+ such that∫ b

a
mε(z)dz =

∫ b
a
gε(z)dFε(z), ∀a, b ∈ R.

Roughly speaking, this assumption indicates the noise has
a light tail probability. In fact, the Gaussian noise N(0, 1)
satisfies this assumption with gε(z) = σ2. See Dalalyan &
Tsybakov (2008) for more details.

Next, we introduce a quantity that measures the complex-
ity of the RKHSs. More specifically, we assume that the
RKHSs defined by the kernels have a polynomial order
complexity of the metric entropy of their unit balls. Let
N(B, ε, d) denote the ε-covering number of the space B
with respect to the metric d (van der Vaart & Wellner,
1996), that is, the smallest number of ε-balls that are re-
quired to cover B, where the radius ε of the ε-balls is mea-
sured by the metric d. The metric entropy is the logarithm
of the covering number. Let BH(r,k)

be the unit ball of the
RKHSH(r,k).

Assumption 2 There exists a real value 0 < s(r,k) < 1
and C0 > 0 such that

logN(BH(r,k)
, ε, ‖ · ‖n) ≤ C0ε

−2s(r,k) (ε > 0). (7)

Moreover, the kernel function is bounded as
supx kr,k(x, x) ≤ 1.

An interesting fact is that the metric entropy condition in
Eq. (7) controls the small ball probability of the corre-
sponding Gaussian process as − log(GPr,k({f : ‖f‖n ≤
ε})) = O

(
ε−2s(r,k)/(1−s(r,k))

)
(Kuelbs & Li, 1993; Li &

Shao, 2001). This assumption is usually satisfied by prac-
tically used kernels. For example, the Gaussian kernel sat-
isfies this condition with an arbitrary s(r,k) with a different
constant C0 with high probability.

Next, we assume that the prior has a sufficient mass on
bounded functions. This is a technical assumption and
practically used kernels usually satisfy this assumption.

Assumption 3 There exists c1 > 0 such that

− log(GPr,k({f : ‖f‖∞ ≤ 1})) ≤ c1 (∀r, k).

Moreover, we assume the following condition on the true
function f∗.

Assumption 4 f∗r
(k) is included in H(r,k) for all 1 ≤

r ≤ dmax and 1 ≤ k ≤ K. There exists R such that
max(r,k) ‖f∗r

(k)‖H(r,k)
≤ R. The true tensor is low rank,

that is, there exists d∗ such that f∗r
(k) = 0 for all r > d∗

and 1 ≤ k ≤ K.

Under these assumptions, we have the following estimation
error bound.

Theorem 1 Suppose that Assumptions 1, 2, 3, and 4 are
satisfied, and β ≥ 4‖gε‖∞. Then, there exists a constant
C > 0 depending on β, C0, c1 and s(r,k) such that

EY1:n|x1:n

[
‖f̂ − f∗‖2n

]
≤C

{
(3R ∨ 1)2(K−1)

d∗∑
r=1

K∑
k=1

n
− 1

1+s(r,k) +
d∗

n
log

(
1

κ

)}
,

where EY1:n|x1:n
indicates the expectation with respect

to the outputs Y1, . . . , Yn conditioned by the inputs
x1, . . . , xn, and κ = ξ(1− ξ).

The proof is given in the supplementary material. Basi-
cally, the proof is obtained by using the PAC-Bayes bound
(McAllester, 1998; 1999; Catoni, 2004) (the version we
used was developed by Dalalyan & Tsybakov (2008)), and
applying the small ball probability theorems of Gaussian
processes (Kuelbs & Li, 1993; Li & Shao, 2001).

IfK = 1, the convergence rate coincides with the usual one
of the ordinary kernel ridge regression (Steinwart & Christ-
mann, 2008). Note that we do not assume any (restricted)
strong convexity on the design. Remarkably, the conver-
gence rate is determined by the true rank d∗ (not dmax).
This implies that the posterior of the rank based on the prior
in Eq. (3) properly concentrates around the true rank. The
second term d∗

n log
(

1
κ

)
represents the complexity of the

model selection. This term is almost negligible as n→∞.
Moreover, if we know d∗ beforehand and fix d = dmax,
then this term disappears. It will be shown that this con-
vergence rate is actually minimax optimal (see Theorem 4
below).

We analyze the convergence rate more closely. To do so, let
us consider a special case of the Matérn prior, and assume
the domain of the input is a hypercube: x(k) ∈ [0, 1]pk .
The Matérn prior is a Gaussian process prior correspond-
ing to a kernel function that has a spectral density given as
ψ(s) = 1

(1+‖s‖2)α+p/2 , where α is a smoothness parame-
ter and p is the dimension of the input. It is known that
the corresponding RKHS is included in a Sobolev space
Wα+p/2[0, 1]p with the smoothness α+p/2 (van der Vaart
& van Zanten, 2011), and thus, the metric entropy exponent
can be evaluated as s ≤ p/(2α+p) (with high probability).
We consider a simple situation where the Gaussian process
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prior on f (k)
r is the Matérn prior with the same smoothness

parameter α for all r, k. Then, according to Theorem 1, we
obtain the following convergence rate in this situation:

EY1:n|x1:n

[
‖f̂ − f∗‖2n

]
≤ C

{
d∗∑
r=1

K∑
k=1

n
− 1

1+
pk

2α+pk

}
.

This could be much smaller than the optimal convergence
rate O(n−

1
1+p/(2α+p) ) for the nive estimation of f∗ ∈

Wα+p/2[0, 1]p on the whole space X = X1 × · · · × XK
because the full dimension p =

∑K
k=1 pk is larger than

individual dimension pk. However, an estimation fully uti-
lizing the nonlinear tensor product model in Eq. (1) can
alleviate the curse of dimensionality.

4.2. Upper bound for misspecified setting

Here, we give a convergence rate in a situation where the
true function is not necessarily included in the RKHS. In a
practical situation, it is slightly demanding to assume that
the true function is included exactly in our specified RKHS.
For example, the RKHS corresponding to the Gaussian ker-
nel is dense in L2(X ), but the function space itself is much
smaller than L2(X ). Thus, we develop an extended analy-
sis where such a misspecified situation is allowed. To han-
dle a function f : X → R, which might be outside an
RKHSH, we consider the following norm:

‖f‖θ,∞,H := sup
t>0

t−θ
[

inf
h∈H
{‖f − h‖∞ + t‖h‖H}

]
,

where 0 < θ ≤ 1 is a parameter. This norm defines a real
interpolation space

[L∞,H]θ,∞ := {f : X → R | ‖f‖θ,∞,H <∞}.

We can check that H ↪→ [L∞,H]θ,∞ ↪→ L∞ if the corre-
sponding kernel is bounded (where ↪→ represents continu-
ous embedding) (Bennett & Sharpley, 1988). The param-
eter θ controls the size of the interpolation space as com-
pared with the RKHS H. In particular, θ = 1 indicates
[L∞,H]θ,∞ = H.

Accordingly, we relax Assumption 4 as follows.

Assumption 5 There exists 0 < θ ≤ 1 such that f∗(k)
r ∈

[L∞,H(r,k)]θ,∞ for all r and k. There exists R such that

max(r,k) ‖f
∗(k)
r ‖θ,∞,H(r,k)

≤ R. The true tensor is low
rank, that is, there exists d∗ such that f∗r

(k) = 0 for all
r > d∗ and 1 ≤ k ≤ K.

To control the infinity norm of the estimator, we replace
Assumption 3 to the following one.

Assumption 6 If 1 − θ − s(r,k) ≥ 0, there exists 0 <
s̃(r,k) < 0 and C ′1 ≥ 0 such that

logN(BH(r,k)
, L, ‖ · ‖∞) ≤ c′1L−2s̃(r,k) (L > 0). (8)

Otherwise, Assumption 3 is satisfied.

Note that Eq. (8) implies − log(GPr,k({f : ‖f‖∞ ≤

L})) ≤ C ′1L
−

2s̃(r,k)
1−s̃(r,k) for some C ′1 > 0 by the relation be-

tween a small ball probability and a metric entropy (Kuelbs
& Li, 1993; Li & Shao, 2001). Under these assumptions,
we obtain the following convergence rate.

Theorem 2 Suppose that Assumptions 1, 2, 5, and 6 are
satisfied, and β ≥ 4‖gε‖∞. Then, there exists a constant
C > 0 depending on β, C0, C ′1 and s(r,k) such that

EY1:n|x1:n

[
‖f̂ − f∗‖2n

]
≤C ′


[
d∗∑
r=1

(∑K

k=1
n
− 1

1+s(r,k)/θ

)1/2
]2

+
d∗

n
log

(
1

κ

)
where C′=CK

[
R+2(R∨1)

max
r,k
{1−s(r,k)}

θ

]2(K−1)∨max
r,k
{2s(r,k)/θ}

.

The proof is given in the supplementary material. Now,
we again consider the Matérn prior on Xk = [0, 1]pk . It
is shown that the interpolation space [L∞(Xk),Wα(Xk)]
with respect to a Sobolev space Wα(Xk) is included in a
Besov space and satisfies the metric entropy condition (7),
where s(r,k) is replaced with s′(r,k) = pk

2αθ =
s(r,k)
θ (Theo-

rem 2 of Edmunds & Triebel (1996) and Section A.5.6 of
Steinwart & Christmann (2008))). Thus, the convergence
rate to estimate one function f∗r

(k) by the ordinary kernel

ridge regression is given by n
− 1

1+s(r,k)/θ . In that sense, the
convergence rate in Theorem 1 yields a more general re-
sult in a tensor estimation situation. Moreover, we do not
need to know the parameter θ beforehand, but the Gaussian
process estimator possesses adaptivity against the unknown
parameter θ.

Remark 3 A more general theorem that includes both The-
orems 1 and 2 is given in the supplementary material (The-
orem B.1), by using which it is possible to derive a mix-
ture of both theorems; that is, some components f∗r

(k) are
included in the RKHS and the others are not. Moreover,
a convergence rate for a linear model as given in Suzuki
(2015) is also derived from the generalized theory.

4.3. Minimax lower bound

Here, we give the minimax lower bound. To simplify the
problem, we specify the structure of the problem. We as-
sume that each component x(k) ∈ Xk of the input x =
(x(1), . . . , x(K)) ∈ X can be further decomposed as

x(k) = (x(1,k), . . . , x(d∗,k)) ∈ X(1,k)×· · ·×X(d∗,k) = Xk.

Then, each RKHS H(r,k) takes x(r,k) ∈ X(r,k) as an in-
put; that is, for any f

(k)
r ∈ H(r,k), there is a function
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f̃(r,k) : X(r,k) → R such that f (k)
r (xk) = f̃(r,k)(x(r,k)).

We assume that the distribution of the input xk ∈ Xk is a
product measure PXk = PX(1,k)

× · · · × PX(d∗,k) and the
distribution of the whole input x = (x(1), . . . , x(K)) ∈ X
is also a product of PXk : PX = PX1 ×· · ·×PXK . We may
assume that all functions f (k)

r ∈ H(r,k) have zero mean
without loss of generality: EX∼PXk [f

(k)
r (X)] = 0. Then,

by the set up of PX , we have that

‖f‖2L2(PX ) = EX∼P (X)[f
2(X)] =

d∗∑
r=1

K∏
k=1

‖f (k)
r ‖2L2(PXk )

for f =
∑d∗

r=1

∏K
k=1 f

(k)
r where f (k)

r ∈ H(r,k). More-
over, we assume that the noise is distributed from a normal
distribution: εi ∼ N(0, σ2) (i.i.d.).

To simplify the analysis, we assume that the complexities
of all RKHSs H(r,k) are the same and have the following
lower bound of the metric entropy.

Assumption 7 There exists a real value 0 < s < 1 such
that

logN(BH(r,k)
, ε, L2(PX(r,k)

)) ∼ ε−2s. (9)

Moreover, the kernel function is bounded as
supx kr,k(x, x) ≤ 1, and there exists c1 > 0 such
that ∃f̂ (k)

r ∈ BH(r,k)
satisfying ‖f̂ (k)

r ‖L2(PXk ) ≥ c1 for all
r, k.

Let H(r,k)(R) := {f ∈ H(r,k) | ‖f‖H(r,k)
≤ R} be the

ball with radius R in H(r,k). Then, we define a set of ten-
sors as

H(d∗,K)(R) :=

{
f =

d∗∑
r=1

K∏
k=1

f (k)
r

∣∣∣∣ f (k)
r ∈ H(r,k)(R)

}
.

Under these settings, we have the following minimax opti-
mal lower bound of the estimation error.

Theorem 4 If every Xk is a compact metric space, every
k(r,k) is continuous, and the radius R of the tensor set
H(d∗,K)(R) satisfies R ≥ 1+c1

c1
, then there is a constant

C1 > 0 independent of d∗,K, n such that

inf
f̂

sup
f∗∈H(d∗,K)(R)

E[‖f − f̂‖2L2(PX )] ≥ C1d
∗Kn−

1
1+s ,

where the inf is taken over all estimators f̂ .

The proof is given in the supplementary material. In the
proof, we utilize the information theoretic technique devel-
oped by Yang & Barron (1999). This theorem states that
the learning rate of our Gaussian process tensor estimator
(Theorem 1) is actually minimax-optimal up to constants.

5. Related work
Here, we discuss the relations and differences between our
work and related work.

Our model is based on Signoretto et al. (2013). They pro-
posed using an RKHS to model the nonlinear relations be-
tween several data sources x(1), . . . , x(K). Their proposed
learning method is an alternating regularized least squares
method. That is, f (k)

r is updated by minimizing the reg-
ularized empirical risk, while other components are fixed.
However, there is no statistical guarantee of the alternating
minimization in the context of nonparametric estimation.

Recently, independently of our study, Imaizumi & Hayashi
(2016) developed a novel theory of a Bayes estimator
for a product of functions on a tensor space. The point
at which their study differs most widely is that they as-
sume that the input x = (x(1), . . . , x(K)) is given by the
CP-decomposition of a certain tensor X ∈ Rp1×···×pK .
Therefore, the input is restricted to an Euclidean vec-
tor and cannot be applied to more general input such as
graphs and “tasks” as in multi-task learning. Moreover,
CP-decomposition is not necessarily uniquely determined
(at least there is a freedom of signs) (see Kolda & Bader
(2009) for more details). The minimax lower bound was
not given. In contrast, our method can be applied to any
space where kernel functions can be defined, and our anal-
ysis shows the minimax optimality in the general setting.

Another relevant study is that of Suzuki (2015) in which
a statistical convergence rate of a Bayes estimator for the
linear tensor model Eq. (2) was given and it was shown
that the Bayes estimator achieves the minimax optimal rate.
However, his analysis is limited to the linear model. In
contrast, our analysis is for a considerably more general
nonlinear model in RKHS.

6. Numerical experiments
Here we numerically evaluate the practical performance
of our Gaussian process tensor estimator. We applied our
method to multi-task learning and conducted several exper-
iments on three real datasets.

6.1. Multi-task learning

We executed our experiments on a nonlinear multi-task
learning problem that is a nonlinear extension of multi-
linear multi-task learning (MLMTL) (Romera-Paredes
et al., 2013; Wimalawarne et al., 2014). In MTMTL, sev-
eral regression tasks are referenced by multiple indices. For
example, if our objective is to predict the users’ ratings
of several aspects of movies, such as the story, cast, and
overall quality, then a natural indexing of the tasks would
be a two dimensional array represented by (movie, aspect).
Here, as in this example, we considered multiple tasks that
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are aligned on a 2-dimensional space.

The original MLMTL was proposed as a special case of
the linear tensor regression problem (2) (Romera-Paredes
et al., 2013; Wimalawarne et al., 2014). We extend the
model to a nonlinear regression problem which has a form
of Eq. (1). Suppose that we observe an input-output
pair (wi, yi) for some task (p, q) ∈ {p1, . . . , pM1

} ×
{q1, . . . , qM2

} as the i-th sample, where wi is the input
feature and yi is the corresponding label. Then we con-
struct a concatenation xi = (x

(1)
i , x

(2)
i , x

(3)
i ) = (p, q,wi)

as an input for the nonlinear model (1), and the output yi is
given as

yi =

d∑
r=1

f (1)
r (x

(1)
i )︸ ︷︷ ︸

f
(1)
r (p)=:αr,p

× f (2)
r (x

(2)
i )︸ ︷︷ ︸

f
(2)
r (q)=:βr,q

× f (3)
r (x

(3)
i )︸ ︷︷ ︸

f
(3)
r (wi)=:fr(wi)

+ εi

=
∑d
r=1 αr,pβr,qfr(wi) + εi.

If the function fr(w) is a linear function, then this model is
reduced to the original MLMTL. An intuition behind this
model is that the regression function is represented by a
linear combination of a latent factor fr and its linear co-
efficient is given by the degree of relevance to each task.
The multi-task learning is reduced to the estimation of αr,p,
βr,q , and fr. In the following, we consider the input wi as
a feature vector in RM3 .

6.2. Real benchmark data sets

Here, we tested our proposed method with two real-
world benchmark data sets, namely the Restaurant data set
(Blanca et al., 2011) and the School data set (Goldstein,
1991). We compared our method with the following meth-
ods:

• Scaled latent convex regularization (scaled latent)
(Wimalawarne et al., 2014): A state-of-the-art con-
vex regularization method for MLMTL. The regular-
ization parameter was chosen so that the test MSE is
minimized.

• Alternating regularized least squares (ALS) (Sig-
noretto et al., 2013): The method that alternatively up-
dates f (k)

r . We used the GRBF (Gaussian radial basis
function) kernel for fr. We chose the regularization
parameter 50 (ALS(50)) and the best performance pa-
rameter (ALS(Best)).

The tensor rank for ALS and GP was fixed d = 3 in both
data sets. For our Gaussian process method, we employed
the linear kernel (linear) and the GRBF kernel (GRBF) as
the kernel function for the GP on fr. We also tested a
mixture of them, i.e., some of three kernels for fr were
the linear and the rest were the GRBF. We did this with
the number of the linear kernels 1 and 2 (indicated by
GRBF(2)+lin(1) and GRBF(1)+lin(2) respectively).

Restaurant data set. The Restaurant & Consumer
Dataset (Blanca et al., 2011) is a dataset for a recommen-
dation system used to predict consumer ratings given to
different restaurants. Each of the M1 = 138 consumers
gave scores to restaurants from M2 = 3 different aspects,
i.e., food quality, service quality, and overall quality. Fol-
lowing the approach of (Romera-Paredes et al., 2013), we
obtained M3 = 44 features from descriptive attributes of
the restaurants and modeled this as a multi-task learning
problem where the objective was to predict a consumer’s
response to a restaurant given the features of that restau-
rant. The total number of instances for all the tasks was
3483. The kernel width σ for the GRBF kernel was set at
100, and the delta kernel was chosen for the kernel func-
tions for Task 1 (restaurant) and Task 2 (aspect). Figure 1a
illustrates the MSEs against the sample size.

The scaled latent method performed much worse than the
ALS and our method. The linear kernel of our method out-
performed the scaled latent, even though both of them are
linear model and it was numerically unstable when the pro-
portion of observed samples was small. ALS (50) was not
as good as the other nonlinear methods. This is because the
regularization parameter was not optimally chosen. Over-
all, the nonlinear methods (ALS and GRBF) outperformed
the linear models (linear and scaled latent) in small sample
size when the parameters were well tuned. The GRBF of
our method performed slightly better than the ALS method.
Moreover, when the number of samples was above 2000,
the mixture of the linear kernel and the GRBF kernel out-
performed the results of the GRBF kernel.

School data set. The school data set (Goldstein, 1991)
was taken from the Inner London Education Authority
(ILEA) and consists of the examination records of 15362
students at 139 secondary schools in the years 1985, 1986,
and 1987. The objective is to predict examination scores
for students at schools in certain years based on student-
and school-dependent inputs. Following Bakker & Heskes
(2003), we obtained 44 features. Therefore, in this setting,
M1 = 139 (school), M2 = 3 (year), and M3 = 44. The
kernel width σ for the GRBF kernel was set at 15. Follow-
ing Wimalawarne et al. (2014), we used the percentage of
explained variance, 100·(test MSE)/(variance of y), as the
evaluation metric. Figure 1b shows the expected variances
against the sample size.

Here again, the performance of the scaled latent was worst.
We can see that the best performance was achieved by
methods involving the GRBF kernel such as GRBF, linear-
and-GRBF-mixiture, and ALS (Best).

6.3. Prediction of online shopping sales

Next, we apply our method to an online shopping dataset
which is a collection of consumer purchase histories on
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Figure 1. Predictive accuracy comparisons between the scaled latent method (scaled la-
tent), the alternating regularized lease squares (ALS), and the Gaussian process method
with different kernels in the restaurant and the school datasets.
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Figure 2. Predictive accuracy (MSE) of the
Gaussian process method with GRBF on
shops for online shopping prediction. Dif-
ferent kernels on shops are tested.

Yahoo! Japan shopping. The data set also contains the
identities of its registered users: age, gender, industry type
of their occupation, and so on. The website employs a
shopping mall type system where customers can purchase
goods offered by different shops in one place. We selected
100 different products and 570 shops to set up a multi-task
learning problem in which the objective was to predict the
quantity of a product which a consumer would buy at a par-
ticular shop given the features of that consumer. 65 features
were obtained by user identities and the purchase time.

We investigated the effect of kernels on tasks by comparing
three kernels on shops: the delta kernel (no side informa-
tion about shops; (noside)) and two kernels with side infor-
mation ((Euc.) and (cos) respectively). To exploit side in-
formation, we constructed a weighted and undirected graph
G with its vertices V representing shops. Each node had a
real-valued vector whose elements expressed demographic
characteristics, such as the percentage of female customers,
which were calculated using purchase histories including
records of other products. The Laplacian matrix L of G is
defined as the matrix with Li,j =

(∑
j∈V wi,j

)
δi,j − wi,j

where wi,j is the weight between two shops i and j. Then
we constructed the commute-time kernel K = L† (Fouss
et al., 2007) for the kernel on shops, where † denotes the
psuedoinverse matrix. The weight wi,j was calculated in
two manners: the “similarity” weight which is the cosine
similarity (cos) and the “anti-similarity” weight which is
the Euclidean distance (Euc.) between two shops. In con-
trast to the “cos” method, the “Euc.” method puts a large
weight between dissimilar shops. It was observed that in
the data that some customers stay at their own favorite
shops among a similar shops. By using the “anti-similarity”
regularization, we can exclude the effect from the similar
but not the same shops but includes information from shops
in a different category. Finally, we chose the linear kernel
and the GRBF kernel for the GP on fr, and the delta kernel
for products.

Figure 2 shows the MSE on the test data against the sample
size. The MSE of the linear kernel was above 100, which
was much worse than that of the GRBF kernel, and thus
it was omitted. We can see that the kernels with the side-
information performs better than the kernel without side-
information in the small sample size region. In particular,
the anti-similarity kernel always outperforms the others.
This results indicates the effectiveness of using non-linear
kernels on a tensor learning problem.

7. Conclusion and discussion
In this paper, we analyzed a nonparametric tensor learn-
ing method based on the Gaussian process technique. The
statistical convergence rate was derived for both correctly
specified and misspecified settings. It was shown that the
derived bound is minimax optimal up to constants. More-
over, we applied our method to multi-task learning and
showed that our method outperformed the existing convex
optimization method based on the linear model.

The alternating least squares method (ALS) performed al-
most comparably to the Gaussian process method. This is
not so surprising because ALS can be interpreted as a “non-
stochastic” method of the Gaussian process approach. It
would be an important future work to analyze the statisti-
cal properties of ALS.
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