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1. Proof that the feasibility subproblem of (1)
is NP-Complete

First, given an instance x, computing the sign of f(x) can
be done in time at most proportional to the model size.
Thus the feasibility problem is in NP. It is further NP-
complete by a linear time reduction from 3-SAT as fol-
lows. We encode in z the assignment of values to the vari-
ables of the 3-SAT instance S. By convention, we choose
x; > 0.5 if and only if variable ¢ is set to true in S. Next,
we construct f by arranging each clause of S as a binary
regression tree. Each regression tree has exactly one inter-
nal node per level, one for each variable appearing in the
clause. Each internal node holds a predicate of the form
x; > 0.5 where 7 is a clause variable. The nodes are ar-
ranged such that there exists a unique prediction path cor-
responding to the falseness of the clause. For this path, the
prediction value of the leaf is set to the opposite of the num-
ber of clauses in S, which is also the number of trees in the
reduction. The remaining leaves predictions are set to 1.
Figure 1 illustrates this construction on an example.

Figure 1. Regression tree for the clause x¢ V —x1 V x2. In this
example, S has 13 clauses.

It is easy to see that S is satisfiable if and only if there exists
x such that f(x) > 0. Indeed, a satisfying assignment
for S corresponds to z such that f(z) = |7] > 0 and
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any non-satisfying assignment for .S’ corresponds to x such
that f(z) < —1 < 0 because there is at least one false
clause which corresponds to a regression tree which output

is —|T7.

2. Objective weights

Recall that for each feature dimension 1 < k < n, we
have a collection of predicate variables (p;);=1..x asso-
ciated with predicates =), < 7i,...,x) < Tx where the
thresholds are sorted 71 < - -+ < Tx. Thus, the p variables
effectively encode the interval to which ) belongs to, and
any feature value within the interval will lead to the same
prediction f(z'). There are exactly K + 1 distinct possible
valuations for the binary variables p; < p, < -+ < pg
and the value domain mapping ¢ : p — (R U {—o0; 00})?
is:

Ty € ¢(p) = [7i, Tig1)
i =max{klp, =0,0 <k < K+ 1}

where by convention py = 0, pgry; = 1 and 79 = —oo,
Ti+1 = 00. Setting aside the L, case for now, consider
p € N the norm we are interested in for d. Instead of di-
rectly minimizing ||z — 2’| ,, our formulation equivalently
minimizes |z —2'||/. By minimizing the latter, we are able
to consider the contributions of each feature dimension in-
dependently:

n
lz —'Ip = > o — ail”
k=1

We take 0° = 0 by convention. At the optimal solution,
|z — x.|” can only take K + 1 distinct values. Indeed,
if 2}, and xj, belong to the same interval, then z) = xj
minimizes the distance along feature %, and this distance is
zero. If 2, and xj, do not belong to same interval, then set-
ting x}, at the border of ¢(p) that is closest to x;, minimizes
the distance along k. If ¢(p) = [;, Ti+1), this distance is
simply equal to min{|zy — 7;|?, |z — 7+1|°}. Note that
because of the right-open interval, the minimum distance is
actually an infimum. In our implementation, we simply use
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a guard value ¢ = 10~* of the same magnitude order than
the numerical tolerance of the MILP solver.

Hence, we can express the minimization objective of prob-
lem (1) as a weighted sum of p variables without loss of
generality. Let 0 < j < K +1 be the indices such that xj, €
[7,Tj+1). Let (w;)i=0..kr+1 such that for any valid valu-
ation of p we have nggl wip; = infyr cgp) [Tx — zp|P.
By the discussion above and exhaustively enumerating the
K + 1 valuations of p, w is the solution to the following
K + 1 equations:

Wil = |z — Tk |’

wig + Wi = |2k — Tr-1]°

W1+ o+ Wi = [Tk — Tl
wj +wjq1 + - F w1 =0

wj,1+wj+wj+1+~~+w;<+1:|xk—Tj—e\p

wy +wy +wz + -+ w1 = [T — T2 — €’

wo +wy +we + w3+ Fwr g = |z — 11— €]”

Note that this system of linear equations is already in tri-
angular form and obtaining the w values is immediate. To
obtain the full MILP objective, we repeat this process for
every feature 1 < k < n and take the sum of all weighted
sums of subsets of p.

Finally, for the L., case, we use 1 continuous variable

b. We introduce n additional constraints to the formula-

tion, one for each feature dimension k. As per the pre-

vious discussion, we can generate the weights w such that
K+1 . , ..

Doiso Wip; = N ) |z, — x| (this is the p = 1 case).

The additional constraint on dimension % is then:

K+1

=0

and the MILP objective is simply the variable b itself.



