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Abstract

Have you ever wanted to multiply an n X d ma-
trix X, with n > d, on the left by an m x n
matrix G of i.i.d. Gaussian random variables,
but could not afford to do it because it was too
slow? In this work we propose a new random-
ized m x n matrix T', for which one can compute
T - X in only O(nnz(X)) + O(m'® - d®) time,
for which the total variation distance between the
distributions 7 - X and G - X is as small as de-
sired, i.e., less than any positive constant. Here
nnz(X) denotes the number of non-zero entries
of X. Assuming nnz(X) > m!5 - d3, this is a
significant savings over the naive O(nnz(X)m)
time to compute G- X. Moreover, since the to-
tal variation distance is small, we can provably
use T - X in place of G - X in any application
and have the same guarantees as if we were us-
ing G-X, up to a small positive constant in error
probability. We apply this transform to nonnega-
tive matrix factorization (NMF) and support vec-
tor machines (SVM).

1. Introduction

One approach to handle high dimensional data, often in the
form of a matrix, is to first project the data to a much lower
dimensional subspace. This is an example of sketching and
the last decade has seen a systematic study of this approach.
A linear sketch of a matrix replaces the original matrix by
a smaller matrix which is often obtained by a random pro-
jection of the original matrix (see, e.g., (Woodruff, 2014)
for a survey). Random projections have been successfully
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applied to speed up least squares regression and have been
implemented with remarkable success (Avron et al., 2010).
This is impressive considering the fact that these solvers
have been highly optimized over the last few decades, ex-
ploiting both algorithmic improvements and machine de-
pendent optimizations.

Many of these works rely on fast projection matrices, such
as the Subsampled Randomized Hadamard Transform or
the CountSketch, the latter being particularly well-suited
for sparse data (see, e.g., (Woodruff, 2014) and references
therein). However, there are certain applications for which
multiplying by a Gaussian matrix is the only way that is
known to reduce the dimensionality of the data. This arises
mainly because the application requires rotational symme-
try, which is often not preserved by other fast transforms,
or because additional properties, such as spreading out a
sparse vector to a vector with non-spiky elements, do not
hold for transforms like CountSketch (some of these hold
for the Fast Hadamard Transform, but the latter are not
known to be able to exploit sparsity). We give two such
applications below, one to nonnegative matrix factorization
(NMF), and one to support vector machines (SVM).

1.1. Our Results

A New Randomized Transform. In this work we propose
a new randomized transform 7', which we call the Count-
Gauss. It is simply a product of a CountSketch matrix and a
Gaussian matrix. That is, given an n x d matrix X which we
would like to multiply by an m x n matrix G of Gaussians,
we instead let T = G - S, where S is a B x d CountSketch
matrix where B = O(d?>m%), and G is an mm x B matrix of
i.i.d. Gaussians. Recall that a CountSketch matrix .S satis-
fies that each column of S has only a single non-zero entry
chosen in a uniformly random position. That non-zero is
1 with probability 1/2, and —1 with probability 1/2. The
columns of S are independent of each other. Importantly,
computing S - X can be done in O(nnz(X)) time, and this
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significantly reduces the number of rows of X. Then com-
puting G - (S - X) can now be done in O(m!>d?) time.
While such a composition of matrices has been used before
in the context of subspace embeddings for regression, see,
e.g., (Clarkson and Woodruff, 2013b), here we show a new
property of this composition - the distribution of G - S - X
looks like the distribution of G - X! Formally, the statistical
distance between the two distributions is smaller than any
positive constant.

Therefore, in any application which uses G- X, if we re-
place G-X with G-S- X, then if p is the success probability
of the old algorithm, then the success probability of the new
algorithm is at least p — 9§, where § > 0 is an arbitrarily
small constant.

We now give applications.

Non-negative Matrix Factorization.  Learning low
rank structures and representations is a fundamental
problem in machine learning. With the rise of data-driven
decision making, many businesses, government agencies,
and scientific laboratories are collecting increasingly
large amounts of data each day. For instance, the large
Hadron Collider (LHC) experiments represent about 150
million sensors acquiring around 40 million samples per
second. Even working with 0.001 percent of the sensor
data, the data flow from all four LHC experiments is
around 25 petabytes per day (Brumfiel, 2011). This means
the traditional approach of storing the data, and then
processing it later, may be infeasible. One approach would
be to subsample the incoming streams. However, we may
lose valuable information in the form of infrequent events.

We use our transform to solve the nonnegative matrix fac-
torization (NMF) problem. Previous approaches (Damle
and Sun, 2014; Benson et al., 2014; Tepper and Sapiro,
2015) have used random matrices for the projection. How-
ever, these approaches can be slow if the dimensionality of
the data is high since they rely on multiplying by Gaussian
matrices, e.g., for natural images or structural Magnetic
Resonance Imaging brain scans. Recent work by Smola
et al. (Le et al., 2013) have shown that sometimes dense
random Gaussian matrices can be replaced by faster trans-
forms, and moreover, each row of the transform is equally
likely to be in any direction on the unit sphere. To show
the correctness of the NMF algorithm, however, we need
a much stronger property than this, namely that any small
subset of rows of the transform has the property that its
product with a fixed matrix X has low variation distance
to the distribution of a product of a Gaussian matrix with
X. These latter properties, of having a fast transform with
equal representation of directions on the sphere, do not
seem to have been exploited in the context of NMF. Our
transformation, since it has low variation distance to multi-

plying by a Gaussian matrix, directly applies here and we
can use existing analysis.

We note that the classical way of speeding up Gaus-
sian transforms via the Fast Hadamard or Fast Fourier
Transform (see, e.g., (Tropp, 2011)) do not work in this
context, since they miss large sections of the sphere, and
we provide a formal counterexample in the full version
of the paper. Intuitively, while it is fine to miss directions
along large sections of the sphere to approximate the norm
of a vector, it is not fine to miss directions for NMF, where
the corresponding polytope partitions the sphere into a
small number of caps, and each cap should have a random
direction chosen from it.

Support Vector Machines. We also apply random
projections to the support vector machines (SVM) prob-
lem. Previously, the CountSketch (CW) (Clarkson and
Woodruff, 2013a) projection and random Gaussian (RG)
projection have been applied to the linear SVM problem.
Despite Countsketch being much faster than the Gaussian
projection, the overall running time of projection together
with the SVM solver was similar for both projections (Paul
et al., 2014), since the training of the projected data was
faster when using Gaussian projections. Our projection
combines the CW matrix with a smaller Gaussian matrix
thereby getting the best of both worlds — similar projec-
tion time as CountSketch and similar Gaussian properties
of RG that are useful for SVM.

Experiments. We empirically validate our results for
both NMF and SVM applications. For NMF, we give an
experimental evaluation by comparing with state-of-the-art
algorithms such as SPA (Gillis et al., 2014), XRAY (Kumar
et al., 2013), naive random projections (Damle and Sun,
2014) , structured Gaussian random projections (Tepper
and Sapiro, 2015), and Tall-Skinny QR factorization (Ben-
son et al., 2014) for NMF problems with applications to
breast cancer, flow cytometry, climate data and movie
analysis. Also, we show experimental speedups using our
projection when combined with linear SVM solvers for
document classification problems (Paul et al., 2014).

2. A New Randomized Transform

A CountSketch matrix S € RZ*™ is a matrix all of whose
rows have exactly one nonzero in a uniformly random loca-
tion, and the value of the nonzero element is independently
chosen to be —1 or +1 with equal probability. We denote
the number of rows in the CountSketch matrix by B.

We prove the next theorem in the full version of our paper,
which gives the formal guarantees of our new transform.

Theorem 1. There exists an absolute constant C > 0
such that for every § € (0,1), every integer m > 1
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and every matrix U € R"*? with orthonormal columns
if B > %C(logn)4 ~d?-ml/? 8 € RBX" is a random
CountSketch matrix, and G € R™*B and G € R™*" gre
matrices of i.i.d. unit variance Gaussians, then the total

variation distance between the joint distribution GSU and
GU is less than .

We note that Theorem 1 applies to matrices U with or-
thonormal columns. This is sufficient for applying our
transform to an arbitrary matrix X, since we can write
X = UR, where the columns of U form an orthonor-
mal basis for the range of X, and apply the theorem to U.
Since G- S - U is close the G - U in total variation distance,
G-S-UR=G-S-Xiscloseto G-UR =G - X in total
variation distance as well. We note that the role of d and
n in Theorem 1 is swapped in comparison to our notation
for application to NMF below. The notation in Theorem 1
is more consistent with the numerical linear algebra litera-
ture, and we thus prefer to state the theorem in this form.

In the full version of our paper we also first present a
weaker version of Theorem 1, which establishes exactly the
same guarantees but instead with B > 5% -d? -m. This ver-
sion has a much simpler proof.

We first present the intuition behind the simpler version of
Theorem 1. Consider the distribution of the first row of
the two matrices, namely GU versus GSU. Both random
variables are Gaussians in dimension d, but while the for-
mer is an ideal isotropic Gaussian, the latter, despite being
Gaussian, has correlated entries. The correlations between
the entries are due to the fact that the CountSketch matrix
S is not a perfect isometry: the correlation is given exactly
by UTSTSU, which is the identity in expectation, but not
for most realizations of .S. In order to show that these two
distributions are close in total variation distance, it would
suffice to argue that the covariance matrix U7 ST SU is suf-
ficiently close to the identity. This is exactly how the proof
of the simpler version of Theorem 1 proceeds, which fixes
an S for which U7 ST SU is sufficiently close to the iden-
tity, using a so-called “approximate matrix product” theo-
rem in the linear algebra community. After fixing such an
S, one can use that the rows of G - S and the rows of G
are independent, and then bound the variation distance be-
tween individual rows of G - S and of G. For the latter, it is
convenient to work with Kullback-Leibler divergence (KL
divergence) which is additive over product spaces; here we
bound the KL divergence betwee a standard multivariate
Gaussian and one with covariance matrix U7 ST SU.

While this works for the simpler version of Theorem 1, it
can be seen that since we need to ensure that the joint dis-
tribution of GU is close to the joint distribution of GSU
for most choices of S, we would need to set B to be at least
~ d*m as opposed to d?,/m, as in our bound in Theorem
1. The idea behind the stronger result is to crucially use

the fact that the distribution of GSU is a mixture of Gaus-
sians with varying covariance matrices. When B ~ d?/m,
one can see that most Gaussians G\SU in the mixture are
too far in distribution from GU. However, we show that
these differences that exist for most choices of the CountS-
ketch matrix S cancel out on average. While mixtures of
Gaussians with varying means and fixed covariance struc-
ture have been analyzed in the literature, to the best of our
knowledge our analysis is the first to handle nontrivial mix-
tures with changing covariance.

3. Preliminaries for the Applications

A few applications of our new randomized transform are
NMF and SVM, which we now formally define.

3.1. Nonnegative Matrix Factorization

Given a nonnegative matrix X of size d x n, we would
like to approximate it as a product of nonnegative matri-
ces as follows: X =~ WH, where W is of size d X k
and H is k x n. This problem was studied by Paatero
and Tapper (Paatero and Tapper, 1994) under the name of
positive matrix factorization and gained a wider popularity
through the work of Lee and Seung (Lee and Seung, 2001).
NMF arises in a wide range of problems and application
domains such as curve resolution in chemometrics and doc-
ument clustering; further references can be found in (Arora
et al., 2012). Various extensions to the original model to
incorporate domain knowledge such as sparsity, orthogo-
nality (Ding et al., 2006), and under-approximation (Gillis
and Glineur, 2010) have also been studied. Commonly
used measures of approximation include the Frobenius
norm, Itakuro-Saito (IS), and Bregman divergence with ap-
plications in image processing, speech and music analy-
sis (Yilmaz et al., 2011) among other places. Typical al-
gorithms use alternating minimization to solve the non-
convex objective function arising from NMF.

Until recently, the complexity of the NMF problem was
unknown. Vavasis established that the NMF problem is
NP-hard (Vavasis, 2009). However, if the data satisfies the
separability condition, a condition introduced by Donoho
and Stodden (Donoho and Stodden, 2003), then tractable
algorithms exist and have been recently proposed by Arora
et al. (Arora et al., 2012; Recht et al., 2012). Formally, a
nonnegative matrix X is k-separable if it satisfies the fol-
lowing condition: X = X;H, where [ is an index set of
size k corresponding to the columns of the data matrix X.
Geometrically, this assumption implies that the columns of
X lie in a cone generated by the k selected columns of X
indexed by I. One can view these k selected columns as the
extreme points of a polytope containing all other columns.
In practice, k is much smaller than both d and n. We will
assume k-separability.
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Given X, one can solve for X by solving a nonnegative
least squares problem (Damle and Sun, 2014), and there-
fore our focus is on finding X, or equivalently, the index
set I of extreme points of the point cloud formed by the
columns of X.

To understand the guarantees of our algorithm, we define a
few geometric notions also used in (Damle and Sun, 2014),
which we refer to for more background. The normal cone
of a convex set C' at a point x is the cone

Ne(z) = {w € R? | wT (y — ) <O forany y € C},

that is, it is the cone defined by the outward normals of
supporting hyperplanes at the point . One can define a
measure w(K') on any cone K, which for full-dimensional
cones K satisfies w(K) = Pr[f € K N S%1] where 0 is
a uniformly random point on the sphere S?~! in d dimen-
sions. This measure is known as the solid angle of K. For
any convex polytope C, if P is the set of its extreme points,
then >°  p w(Nc(p)) = 1, that is, the solid angles of the
normal cones at the extreme points sum to 1. If we label the
points p; € P, we will use the shorthand w; = w(N¢(p;)).

A key property we will use is that for a unit vector u and
a convex set C', the maximum inner product of v with any
point p € C is achieved by an extreme point p of C'. More-
over, the maximum is achieved by the extreme point p pre-
cisely when u € N¢(p). This follows since the inner prod-
uct with a fixed vector w is a linear function, which is max-
imized by an extreme point for any convex set. These con-
ditions also hold if we replace maximum with minimum.

Our results, as in (Damle and Sun, 2014), depend on the

condition number x = ——————_ The larger & i,

k108t )
the more pointed the polytope defined by the columns of X
is, whereas if k is small, the polytope has “fatter” vertices.

3.2. Support Vector Machines

Given a dataset of samples and labels {z;,v;}~, where
x; corresponds to sample ¢ and y; the corresponding label
belonging to one of two classes denoted by {—1,1}, we
would like to find a maximum-margin hyperplane that sep-
arates the two classes. The primal form for the linear SVM
problem is as follows:

1 C &
maniﬂwﬂg—kN;max(O,l—yi<w,xi>) (1)
where C' is soft-margin parameter which allows for mis-
classfication errors in the dataset and w is the maximum-
margin hyperplane that we are learning from the data. The
dual form for the linear SVM problem is given as follows:

1
min —o' X' Xa—1Ta ()
0<a<C 2

Previously (Paul et al., 2014) have shown that the margin
(hyperplane) and minimum enclosing ball of the original
data is preserved after projection up to a multiplicative fac-
tor. However, in their original formulation it is possible to
just replace all points with zero to achieve the same guaran-
tee. We strengthen the theorems by requiring that the pro-
jected data upper bound the objective of the original data.
The details are in the full version of our paper.

4. Application to NMF

We consider the separable NMF problem as defined in Sec-
tion 3. We first review an algorithm proposed by Damle and
Sun (Damle and Sun, 2014). Their algorithm involves the
computation of GX where G is of dimensions m x d for a
parameter m, and the element-wise entries are distributed
as N (0, 1). Notice that we need to first compute the m X d
random matrix G which is itself dense. We also need to
compute the matrix product GX with the input data. This
is computationally expensive and is of the order O(mnd)
in practice. Fast matrix multiplication routines (Copper-
smith and Winograd, 1990; Williams, 2012) can be used
in theory, but the time will still be at least k“~2nd, where
w ~ 2.376 is the exponent of fast matrix multiplication.
Instead, we propose to use our new transform to signifi-
cantly speed up the computations for extracting the extreme
points in the dataset. Note that both approaches are easily
amenable to distributed-data settings by simply sharing the
seed of the random number generator which allows identi-
cal matrix transformations on all the computational nodes.
Our new algorithm is called Count Gauss NMF or Count-
Gauss and is as follows: Instead of using Gaussian random

Algorithm 1 CountGauss NMF (CG)
Initialize the index sets 1,44, Imin to empty.

1. Let T = G - S where G is an m x B matrix of i.i.d
Gaussians, and S is a B x d CountSketch matrix. Here
B = Cn®*m"®log* n/s.

2. Compute the product Z = T'X.

3. Find the indices which give the maximum and
minimum across each row of Z corresponding to

Imaza Imzn

matrices for the projection, we approximate them by the
following projection matrix 7' = G - S, where the matrices
are defined in Algorithm 1.

Consider the convex polytope defined by the columns of X
and their negations. As defined in Section 3, we assume
k-separability, namely, that there are k£ columns of X, in-
dexed by I, for which X = X;H for a nonnegative matrix
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H. The columns of X are the extreme points of a convex
polytope C'. By definition of an extreme point of a convex
polytope, the indices found in step 3 of Algorithm 1 belong
to the index set 1.

Damle and Sun show the following.

Theorem 2. (Theorem 3.3 of (Damle and Sun, 2014)) Con-
sider a modification to Algorithm 1 in which we replace T
by an m x d matrix of i.id. N(0,1) random variables,
where m = kk 1og(§), where recall k = m is
the condition number. Then the probability that the out-
put Lin U LLae of Algorithm 1 contains the index set I of

extreme points of X is at least 1 — 6.

Using Theorem 1, we analyze the performance of Algo-
rithm 1.

Theorem 3. Let & > 0 be given. Suppose in Algo-
rithm 1 we set the parameter m = kk 1og(§), where

K = +———-— Is the condition number, and choose
kmax; 1—2w;

B > %C’(log d)* - n? - m'? for a sufficiently large con-
stant C' > 1 as per Theorem 1. Then the probability that
the output I,in U Inae of Algorithm 1 contains the index
set I of extreme points of X is at least 1 — 20.

Proof. Let I be the index set of extreme points of the poly-
tope defined by the columns of X. By definition of an ex-
treme point, in each iteration of step 4 of the algorithm, we
add an index ¢ € [ to [,,4; and an index j € [ to I,,n
(since we are taking the inner product with a linear func-
tion). Therefore, the behavior of Algorithm 1 is the same if
we instead, in each invocation of step 2, compute the prod-
uct Z =TXj.

By our assumption on m, since X; is a d X k matrix we
may apply Theorem 1, with the role of n and d in that the-
orem swapped, to obtain that the variation distance of the
distributions of 7"X; and @XI is at most 1 — &, where Gis
a matrix of i.i.d. N(0,1) random variables. Therefore, we
can apply Theorem 2 to conclude by a union bound that the
output of Algorithm 1 contains the set I with probability at
least 1 — 24. O

We obtain the same guarantee as Theorem 2 with consid-
erably faster computation time. Indeed, our matrix product
TX can be computed in O(nnz(X)) 4+ O(m"'®n?) time
using our transform 7', as opposed to the O(dnm) time
needed in (Damle and Sun, 2014) to compute the product
GX for a matrix G of i.i.d. Gaussians. This is significant
when d is very large.

Distributed Environments: Our results naturally provide
solutions to NMF in a distributed environment in which the
columns of X are partitioned across multiple servers. In-
deed, the servers can agree upon a short random seed of
length O(d) words to generate T'. Each server can then

compute its local sets 1,44, Imin, and send them to a coor-
dinator who can find the global maxima and minima.

5. Other Related work

Over the last couple of years, many approaches have been
proposed to solve the separable-NMF problem.

XRAY Selects the anchors one at a time by expanding a
cone until all columnds in the dataset are contained in it.
At each step, XRAY finds the datapoint (column) which
maximizes the inner product with the current residual ma-
trix. It then computes the residual matrix corresponding to
the new set of anchor points (Kumar et al., 2013).

SPA Successive projection algorithm (Aradjo et al., 2001;
Gillis et al., 2014) is a family of recursive algorithms where
the projections are given by strongly convex functions.
TSQR Use tall and thin QR factorization when the num-
ber of rows/features is really large (Benson et al., 2014).
This approach is especially attractive when the number of
features is really large (> 10°) and number of samples is
small (< 10°).

SC In (Tepper and Sapiro, 2015), an algorithm similar to
the one proposed by Damle and Sun (Damle and Sun,
2014) is proposed. The difference is that instead of choos-
ing a Gaussian or FastFood projection matrix, the projec-
tion is chosen to be a matrix which depends on X (data de-
pendent projection), namely, one that is found via the sub-
space power iteration (see Figure 3 of (Tepper and Sapiro,
2015)). This approach is expensive in the case of dis-
tributed settings since the projection matrix depends on all
the samples.

6. Experiments

We show experiments validating our projection operator
countGauss (CG) for NMF problems on various synthetic
and real-world datasets. Also, we apply CG on the SVM
problem for the TechTC300 datasets. In all our experi-
ments!, we set B = 5m.

Synthetic datasets. Similar to Damle and Sun (Damle and
Sun, 2014), we generate the data as follows: We set a grid
of tuples (k,m) such that m/k = logk. For each tuple,
we generate 500 separable datasets, say X, such that they
are of size 1000 x 500 and have nonnegative rank k. Set
matrix U with i.i.d. samples from the uniform random dis-
tribution in [0, 1] of size d x k. Also, generate matrix V'
with the identity matrix for the top k indices and the rest
with i.i.d samples from the uniform distribution. Normal-
ize each row of the matrix V' to unit norm and compute the
matrix product X = UVT. From Figure 1, we see that the
CountGauss algorithm also requires O(k log k) optimiza-
tions to find all k£ extreme points with high probability. We

"https://github.com/marinkaz/nimfa
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5 15 25 35 45 5 15 25 35 45
Figure 1: The fraction of trials in which the CG algorithm correctly extracted all “k’ extreme points. For each value of k
and m, we generated 500 matrices such that data matrix is of size 1000 x 500 and shown is how often we successfully

recovered the original anchors (black indicates success). (Left) We contrast gaussian random projections (GP) with (right)
our algorithm countGauss. Note that we recover the anchors with a similar success rate as GP.

T T T
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Figure 2: We show the scree plots at 20 noise levels and notice that there are sharp transitions at 20 corresponding to the
rank of the data. (Top) Gaussian random projections and (bottom) our algorithm countGauss are applied to the dataset. For
each noise value in {0.01, 0.02, 0.03, 0.05,0.08,0.12,0.22,0.36, 0.6, 1}, we generate 100 datasets. At higher noise levels,
we note that both the algorithms GP and CG have most of the features active and there is no longer a sharp transition at 20.

also test the algorithm in the noisy case. For that, we gen- k(k+1)/2-dimensional faces of the polytope with extreme
erate U of size 1000 x 20 with uniform entries in [0, 1] and  points chosen by the first 20 columns of X. Now, we add
and set the first 20 columns of data matrix X to U. The re- Gaussian noise to X with noise level o which creates many

maining 190 columns of X are set to the midpoints of the spurious extreme points. The resulting scree plot is shown
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Test Proj SVMfF Margin Proj Algo
mean std mean std mean | std mean std
17.92 | 11.29 || 0.0000 | 0.0000 || 0.89 | 0.38 || 2.1057 | 3.9391 || full full
24.71 | 12.60 || 0.0086 | 0.0042 || 0.38 | 0.19 || 1.6792 | 3.5714 || 128 || countSketch
25.27 | 13.08 || 0.0216 | 0.0047 || 0.16 | 0.11 || 1.6277 | 3.5634 || 128 countGauss
25.07 | 13.20 || 0.3676 | 0.1569 || 0.49 | 0.20 || 1.7143 | 3.7143 || 128 RG
17.92 | 11.29 || 0.0000 | 0.0000 || 0.89 | 0.38 || 2.1057 | 3.9391 || full full
22.56 | 12.42 || 0.0082 | 0.0036 || 0.54 | 0.21 || 1.8778 | 3.6709 || 256 || countSketch
24.34 | 12.23 || 0.0565 | 0.0091 0.21 | 0.07 || 1.8722 | 3.7389 || 256 countGauss
23.66 | 12.86 || 0.8178 | 0.3286 || 098 | 0.35 || 1.8895 | 3.6747 || 256 RG
17.92 | 11.29 || 0.0000 | 0.0000 || 0.89 | 0.38 || 2.1057 | 3.9391 || full full
21.31 | 11.92 || 0.0075 | 0.0032 || 0.72 | 0.28 || 1.9914 | 3.7989 || 512 || countSketch
22.11 | 12.89 || 0.1865 | 0.0228 || 0.45 | 0.11 || 1.9893 | 3.8453 || 512 countGauss
22.42 | 12.37 || 1.6057 | 0.6437 1.88 | 0.67 || 2.0148 | 3.9014 || 512 RG

Table 1: We applied CountGauss (CG), CountSketch (CW) and Random Gaussian (RG) on the TechTC300 dataset con-
sisting of 295 pairs of data matrices and show the resulting mean and standard deviation for the resulting parameters such
as projection time, SVMT time (projection + SVM training time), margin (gamma) and testing error. The results are shown
over 10-fold cross validation with 4 repetitions and 3 runs over the random projection matrices. Note that the mean running

times for our algorithm CG (highlighted) is faster than both CW and RG inspite of slower projection time than CW.

0.8 0 1 opF
0.7h e e CountGauss| | . \ . \ ,
m m GP
o 0.6} 10 - 1 10
05| . . -
(] ™ 15 - 1 15 \
]
0.4}
‘E 20 \ .20 \
8 0.31
Q . . b
e« 0.2t - 0 5 10 15 20 0 5 10 15 20
0.1l "awm, ] Figure 4: Coefficient matrices H are shown for the two
"R aag.y . algorithms GP and CountGauss for the flow cytometry data
0.0

0 2 4 6 8 10 12 14 16 18
Extreme points selected

Figure 3: Relative reconstructive error as function of an-
chors selected by the two algorithms CountGauss and GP
are shown. They are remarkably similar.

in Figure 1.

Flow cytometry. The flow cytometry (FC) data represents
abundances of fluorescent molecules labeling antibodies
that bind to specific targets on the surface of blood cells.
A more detailed description of the dataset can be found
in (Benson et al., 2014). The measurements are represented
as the data matrix A of size 40000 x 5. Since they study
pairwise interactions in the data, the Kronecker product,
X = A® Ais formed which is of size 400002 x 5.

For this dataset, we exploit the data structure as follows.
For some arbitrary input vector g, we know that A ® Ag =

when £ is set to 16. The coefficients tend to be clustered
near the diagonal as has been previously observed.

ATGA where g = vec(G). For each random projection,
we can compute the matrix-matrix product AG very effi-
ciently and in fact do not even need to generate the matrix
G. For our algorithm, we do not need to explicitly com-
pute the kronecker product and the complete NMF prob-
lem, including anchor selection and learning the weight
coefficients, can be solved in a couple of seconds on an
off-the-shelf desktop. As we can see from Figure 4 the re-
sults are pretty consistent from prior work (Benson et al.,
2014). The weight matrix H still maintains a diagonal-like
structure as previously observed.

Gene expression breast cancer dataset. We utilize the
hereditary breast cancer dataset collected by Hedenfalk et
al. (2001) which consists of the expression levels of 3226
genes on 22 samples from breast cancer patients. The pa-
tients consist of three groups: 7 patients with a BRCA1
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Figure 5: Extracting columns with CG versus using QR factorization. Note that the QR-based methods are optimized for
tall-and-skinny matrices and tend to do poorly for fat matrices. Note that CG (and SC) tends to perform well since it is
based on random projections and is at least an order of magnitude faster than QR-based methods.

mutation, 8 samples with a BRCA2 mutation4, and 7 addi-
tional patients with sporadic cancers. It was analyzed using
separable NMF in (Damle and Sun, 2014) and we similarly
preprocess the dataset by exponentiating to make the log-
expression levels nonnegative and normalize the columns.
The size of the data matrix is 3222 x 22. The result of
applying our algorithm CG and GP are shown in Figure 3.
Notice that we get similar reconstruction error as GP while
we vary the number of anchors.

Climate Dataset. We obtained a climate dataset which was
analyzed in (Tepper and Sapiro, 2015). The data size is
10512 x 23742. First we present the running times and
reconstruction error when using SC versus QR-based algo-
rithms and then show the corresponding results when using
CG algorithm in Figure 5. Note that CG (and SC) which
is based on random projections is an order-of-magnitude
faster compared to QR factorization methods.

SVM TechTC-300 Dataset. We obtained the TechTC-
300 dataset which is a comprehensive directory of the
web. There are 295-pairs of categories which provides a
rich framework for running SVM experiments (Paul et al.,
2014). Each data matrix has 10,000 — 40, 000 words and
150 — 280 documents. LIBSVM was used with a linear
kernel and soft-margin parameter C' set to 500 for all ex-
periments and we set the projections to 128, 256, and 512.
The results are summarized in the Table 1.

7. Discussion

We have presented an efficient way to multiply by a Gaus-
sian matrix, without actually computing the dense matrix
product. Theorem 1 provides our theoretical guarantees on
this much faster transform, showing it has low variation
distance to multiplication by a dense Gaussian matrix. We
refer the reader to the full version of our paper for the for-

mal proof of Theorem 1.

Our transform is useful in a surprising number of applica-
tions — here we apply our transform to NMF and SVM.
The classical way of speeding up Gaussian transforms via
the Fast Hadamard or FFT does not work in our setting
since it misses large sections of the sphere.

Our experiments on synthetic and real-world datasets for
NMF showed that the results obtained by our algorithm
were on par with the state-of-the-art NMF algorithms such
as SC, XRAY and SPA. In particular, for synthetic prob-
lems, we showed similar anchor recovery performance as
random projection (GP) of Damle and Sun (Damle and
Sun, 2014) both in the noiseless and noisy cases. Also,
the performance was remarkably similar to GP when ap-
plied on the breast cancer dataset and also picked up ac-
tivation patterns which might be of biological interest as
previously noted in flow cytometry problems. Experiments
on document classification tasks using the popular SVM
formulation revealed that the new projection leads to faster
SVM solutions than previous methods. Previously, it was
shown that while CountSketch led to faster projection times
it did not lead to overall faster training time and was in fact
was found to be slower than random Gaussian projections
(RG). Our new countGauss projection fixes this by sacri-
ficing projection time compared to countSketch projection
but leads to an overall faster SVM training time and thereby
beats both random Gaussian and CountSketch-based SVM
algorithms (Paul et al., 2014). We note that in practice
for SVM, solution accuracy may be of critical importance
rather than computation time and in these scenarios random
projection based algorithms can be used to explore the op-
timal settings of the SVM parameters such as soft-margin.
In our experiments (not shown) we noticed that these lead
to faster training times while not sacrificing test accuracy.
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