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A Proof and derivation of manifold-related ingredients
The concrete computations of the optimization-related ingredients presented in the paper are discussed below.

The total space is M := St(ri,n1) X St(rz,n2) x St(rs,ng) x R™*72%73 Each element z € M has the ma-
trix representation (Uy,Us,Us, G). Invariance of Tucker decomposition under the transformation (Uy,Us,Us, G) —
(U101,U204,U303, G x 10{ ><QO§ ><3O3T) for all O, € O(ry), the set of orthogonal matrices of size of 74 X 4 results in
equivalence classes of the form [z] = [(Uy, Uz, Uz, G)] := {(U;01, U305, U303, G x 107 X203 x303) : Og € O(r4)}.
A.1 Tangent space characterization and the Riemannian metric

The tangent space, T, M, at x given by (Uy, U, Us, G) in the total space M is the product space of the tangent spaces of
the individual manifolds. From (Absil et al., 2008), the tangent space has the matrix characterization

Tg;./\/l — {(ZU17ZU27ZU37ZQ) € RM1XT1 5 RN2XT2 5 RU3XT3 5 RT1XT2XT3

Uy Zy, +Z,U4 =0, ford € {1,2,3}}. (A-)

The proposed metric g, : T, M x T, M — R is

9o (asme) = (€uysmu, (G1GY)) + (€us, 02 (G2G3 ) + (Guy s 105 (G3G3)) + (€gmg), (A2)
where &, 1. € T, M are tangent vectors with matrix characterizations ({u,, u,, Sus, €g) and (v, , Nu,, MU, NG ), TESPEC-
tively and (-, -) is the Euclidean inner product.

A.2 Characterization of the normal space

Given a vector in R™*71 x R"2*72 x R78X7"s x R XT2X"3 _jtg projection onto the tangent space 7, M is obtained by
extracting the component normal, in the metric sense, to the tangent space. This section describes the characterization of
the normal space, N ;M.

Let ¢ = (Cus»CussCussCg) € NoM, and 9, = (u,, MUy, MussMg) € TpM. Since ¢, is orthogonal to 17, i.e.,
92 (Cz, M) = 0, the conditions

Trace(GaGy ¢S ,mu,) = 0, ford € {1,2,3} (A3)
must hold for all 7,, in the tangent space. Additionally from (Absil et al., 2008), iy, has the characterization

77Ud = UdQ + UdJ_Ka (A4)
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where 2 is any skew-symmetric matrix, K is a any matrix of size (ng — r4) x r4, and Ug | is any ng x (nq — rq) that is
orthogonal complement of U,. Let {y, = Cu,GaG, and let (y,, is defined as

(v, = UA+Uy B (A.5)
without loss of generality, where A € R™*"< and B € R(ma—ra)x7a gre to be characterized from (A.3) and (A.4). A few

standard computations show that A has to be symmetric and B = 0. Consequently, C~Ud = U4Sy,, where Sy, = SE ”

Equivalently, (y, = UgSuy, (GdeT)*1 for a symmetric matrix Sy, . Finally, the normal space N, M has the characteriza-
tion

N.M = {(UiSy, (G1GT)~1, UsSy, (G2GE) 1, UsSy, (G3GL)~1,0) A6)
: Sy, € RTax7e 8 =Sy, ford € {1,2,3}}. '

A.3 Characterization of the vertical space

The horizontal space projector of a tangent vector is obtained by removing the component along the vertical direction. This
section shows the matrix characterization of the vertical space V.

V, is the defined as the linearization of the equivalence class [(Uy, Us, Us, G)] at z = [(Uy, Us, Us, G)]. Equivalently, V, is
the linearization of (U101, U305, U303, QX101TX205X303T) along O4 € O(ry) at the identity element for d € {1,2,3}.
From the characterization of linearization of an orthogonal matrix (Absil et al., 2008), we have the characterization for the

vertical space as
Ve = {(U121, U209, U303, —(G X121 + Gx2822 + GXx33)) :

Qe RTxma QT = —Q,ford € {1,2,3}}. (AD

A.4 Characterization of the horizontal space
The characterization of the horizontal space H,, is derived from its orthogonal relationship with the vertical space V.

Let & = (§u,, U, &us, &) € Hen and ¢ = (Cu,,Cu,,Cus,,(g) € Vi. Since & must be orthogonal to (., which is
equivalent to g, (€., () = 0 in (A.2), the characterization for £, is derived from (A.2) and (A.7).

92(&:C) = (bu,, i (G1GY)) + (€ua, 2 (G2GY) + (€us» Cus (G3G3 ) + (€g. (o)
= (&0, (U11)(G1GY)) + (u,» (U2£22)(G2Gy)) + (€us, (Us$23)(G3G3))
+(g, —(Gx121 + G X200 + GX3823))
(Switch to unfoldings of G.)
= Trace((G1GY )&, (Ur€)) + Trace((G2G3 )&g, (U29s)) + Trace((G3G3 )&, (UsQs))
+Trace(ég, (—21G1)T) + Trace(ég, (—Q2G2)T) 4 Trace(ég, (—23G3)T)

= Trace [{(G1G?)§€1U1 + EGlGlT} Ql} + Trace H(GQGQT)&QUQ + §G2G2T} QQ}
+Trace [{ (G3GF ), Us + 6,65 } )
where &g, is the mode-d unfolding of £g. Since g, (&, () above should be zero for all skew-matrices Qg4, &, =
(€u,, U, &us, Eg) € H, must satisfy

(GdeT)EgdUd + &6,GL  is symmetric for d € {1,2,3}. (A.8)

A.5 Proof of Proposition 1

We first introduce the following lemma:

Lemma 1. Let (U, Uy, U3, G) € St(ry,n1) x St(rg,na) x St(rs,n3) x R™*™X7s and &y, u,,u,,6) be a tan-
gent vector to the quotient manifold at [(U1,Us,Us, G)|. The horizontal lifts of &, u,,us,6) at (U1, Uz, Us, G) and
(U101,U50,, U303, gxlofoOg ><3O3T) are related for Og € O(ry) as follows,

(£U1017£U2027§U303a£g><10¥"><203"><30§") = (€U1017£U2027£U3037£QX10{X205X30‘§)~ (A9)
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Proof. Let f : (St(r1,n1) X St(ra, ng) x St(rz, ng) x R™*72%73 /(O(r1) x O(ry) x O(r3))) — R be an arbitrary smooth
function, and define

f = fom:(St(ry,n1) x St(re,na) x St(rz,ng) x R1X72%73 /(O(ry) x O(ry) x O(r3))) — R,
where 7 is the mapping 7 : M — M/ ~ defined by z — [z].
Consider the mapping
h: (U1, Uz, Us, G) — (U101, U302, U303, G107 X203 x303),
where Q4 € O(ry). Since w(h(Uy,Us, Us, G)) = m(Uy, Uy, Us, G) for all (Uy,Us, Us, G), we have

f(h(UlaUZaU&g)) = f(UlaUQ»U3»g)'

By taking the differential of both sides,
Df(h(U1> Us, Us, g))[Dh(Ula Uz, Us, g)[(EUl 3 §U27 €U3a 59)]] = Df(U17U27 Us, g)[(é-Ul ) §U2 ) §U3 ) gg)] (A.10)

By noting the definition of (&y,, &u,, &uss &g )s €., DT(Uy, Uz, Us, G)[€u, , Eus, Eus» €] = {i(ey, <u, €y, .€0))> the right
side of (A.10) is

Df (U, Uz, Us, 9)[(€u, , v, €us-€0)] = Df(m(U1,Us, Us, G))[D(Uy, Uz, Us, G)[(€u, - €us - Eus- 0]
= Df(m(U1,U2,Us, G))[§[(v,.U.Us.6));

where the chain rule is applied to the first equality.

Moreover, from the directional derivatives of the mapping h, the bracket of the left side of (A.10) is obtained as

Dh(Ul,UQ,Ug,g)[(£U1,£U2,£U3,£g)] = (£U1017£U2027£U3037£9X10TX205X30'§)'
Therefore, (A.10) yields

DJ?(U1017U2027 U303, G x 101T XQngsosT)[(gUl 01, 8u,02,8u,03,&g XlO?XZOg ><3O§)]

A.11
= Df(m(U101,U202,U303,G x10{ x203 x303))[£/(, Uz,Us,0)])» @l

where we address the equivalence class (U, Us, Us, G) = 7(U101, U302, U303, gxlofxgog Xgog). The left side
of (A.11) is further transformed by the chain rule as

Df (U101, U202, U303, G x10{ X203 x303)[(éu, 01, {u, 02, £u, 03, £g 107 X203 X305 )]
= Df(n(U;101,Us05, U303, G x 107 X502 x302))[D7(U;01, U0, U303, G x 107 x,0% x300)]
[(éu, 01, 0,02, §u, 03, &g X107 X203 X303 ).
(A.12)
By comparing the right sides of (A.11) and (A.12), since this equality holds for any smooth function f, it implies that

D7 (U101, U0, U303, G107 205 x303)[(€u, 01, {u, 02, {u, 03, £g X107 X205 x303 )]

(A.13)

= E[(Ul ,U2,U3,G9)]-
Finally, =~ we check whether  (£u,01,&u,02,6u,0s,66x107 x50 x302)  is  an  element  of
H(U,0,,0,0,,U505.6 x,07 x,07 x507)- Addressing that the mode-1 unfolding of gxlOlTXQOQTXg,O:{ is

07G1(0] ® O)7, plugging (€u, 01, Eu, 02, &u, 03, &g X107 X203 x307) into (G4Gl)EL Uy + &6,GY in (A8)
yields

T
(07G:1(0F ©0F)7) (0761(0F © O)T) " (60,01)7 (U104) + (0] ) ¢, (OF © OF)(07G1(0F © 0F)")”
= O;GlGlT(;)l + ongglGlToT1
=05 (G161 )&, U1 + 86,61 )01
(A.14)
Since  (&u,,&u,:8us,&g) is a symmetric matrix, the obtained result is also symmetric. Therefore,
(fUlOl,£U202,£U303,§g><10f><205><30§) is a horizontal vector at (U101,U2027U303,gxlOlTXQnggOg).
This  implies that (£y,O1,&u,02,Eu,03,6g%x10] X202 x30%) is  the horizontal lift of & at
(U101, U202,U303, G x 101T ><202T ><303T), and the proof is completed. O
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Now, the proof of Proposition 1 is given below using the result (A.9) in Lemma 1.

Proof. Plugging f{h = {u,0,> 17{}1 = 1nu,0,, and Gll = 0] G, (0 ® 0F) into the first term of (A.2) yields

Trace(&] o, 0,0, (G1GY"))
Trace((&u, 01) nu, 01(G,G))

T
Trace | (60,01)7(m,01)(07 61 (0F  0])7) (0761 (05 = 01)7)

(60,041,710, 0, (G1G)))

(A.9)

[k

Trace |(u,01)" (0, 01)07 61(0F © 0F)7(0] © 07)GT 0,
= Trace 0{55117U10101TG1G1T01]

= Trace |¢f,m0,G1G] |

= (€u,, 0, (G1GY)).

Since the same equalities against the each term in the metric (A.2) corresponding to U, Uz and G hold, we finally obtain
the invariant property that the proposition claims;

9(U1,U0,,U3,G) ((§U1 ) £U2 ) €U3 ) gg)’ (UU1 » U2 TNU3 779))
= 9(U,01,U205,U305,6 x, 07 x 507 x507) ((§U101 , €005+ §U5055 G x, 07 %207 x507 ),
(nU101 » U202 U303 5 77gx101T %207 x 307 ))

A.6 Proof of Proposition 2 (derivation of the tangent space projector)

Proof. The tangent space T, M projector is obtained by extracting the component normal to 7,,,M in the ambient space.
The normal space N, M has the matrix characterization shown in (A.6). The operator ¥, : R™1 %" x R™2X72 x R™3X7s x
Rrxr2xrs — T M : (Yu,, Yu,, Yus, Yo ) = . (Yu,, Yu,, Yu,, Yg) has the expression

U, (Yu,, Yu, Yu, Yg) = (Yu,—UiSy, (G1GY) ™!, Yy,~ UsSy, (G2G3 ) ™!, Yy,— UsSy, (G3G3 ) ™1, Yg).
(A.15)

From the definition of the tangent space in (A.1), U, should satisfy

no,Ua+Ulnu, = (Yu, —UdSu,(GaGY) ) Us + UJ (Yu, — UaSu, (GaGy) ™)
= Y{,Us— (GaGY)7'S{, UT U, + UL Yy, — UJU,Su, (GaGJ) ™!
= Y{,Us— (GaG)) 'Sy, + Ul Yy, — Su,(GaG]) ™
= 0.

Multiplying (G4G?) from the right and left sides results in
(GaGJ)'Su, +Su,(GaG)) ™' = Y{,Us+ Ul Yy,

Su,GiGy +GaGjSu, = GaGJ(Y{,Us+ UlYy,)G4G].

Finally, we obtain the Lyapunov equation as
Su,GaGy +GaGiSu, = GG (Y{,Uq+UlYy,)GsG) ford e {1,2,3}, (A.16)

that are solved efficiently with the Matlab’s 1yap routine.
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A.7 Proof of Proposition 3 (derivation of the horizontal space projector)

Proof. We consider the projection of a tangent vector 1, = (nu,,NU,,Mus:Ng) € TxM into a vector & =
(€u,,€u,,&us,Eg) € H,. This is achieved by subtracting the component in the vertical space V,. in (A.7) as

n, = nu, —UiQ+UiQy,

—— S~
:gUl EH, €V,

n, = nu, — U2Qs + UaQs,

ns = nus — Us8s + UsQs,

ng = Ng — (—(Gx1Q1 +Gx2Qs + Gx303)) + (—(Gx1Q1 + Gx2Q + Gx303)).

As a result, the horizontal operator I, : T, M — H,, : n, — I1,(n,) has the expression
He(nz) = (nu, — U1, nu, — U2, nu; — Uz, ng — (—(G X121 + G X202 + Gx303))), (A.17)

where 7, = (U, , MUy, MUs, Ng) € T M and 4 is a skew-symmetric matrix of size r4 X r4. The skew-matrices €24 for
d = {1, 2,3} that are identified based on the conditions (A.8).

It should be noted that the tensor G <127 + G X282 + G x 3823 in (A.7) has the following equivalent unfoldings.

mode —1

Gx1921 + GXx2Qs + Gx383 011Gy + Gl(lr:s ® QQ)T + Gl(n?’ ® Im)T
mode —2 G2(IT3 ® QI)T + Q5Gy + G2(Q3 ® Im )T

203 Gy, @ )T +G3(Q @ L,)T + Q3Gs.

Plugging &y, = nu, — U192 and &g, = 161 +21G1 + G1 (L, ® Q)T + G (23 ®1,.,)T into (A.8) and using the relation
(A@B)T = AT @ BY results in

(G1G])EE U &6, G = (G1G)(nu, — U12)TU; + {n61 + (2161 + G1 (I, © )T + G (30 1,,)T) } G
= (G1G])nf Ur — (G1G])(U121)" Uy + 16, G| + 21G1G] + Gi (I, ® 2)7GY
+G1(Q3 @ L,)TGT
= (G1G])nd Ur + (G1G])Q + 16, G] + 21G1G] — G (L, ® )G — G4 (230 1L,)G],

which should be a symmetric matrix due to (A.8), i.e., (G1G] )& Ui &, GT = ((G1G1)&h Ui, GT)T.
Subsequently,

(G1G] g Ut + (G1G ) + 16,61 + 21G1G] — G (I, ® 22)G] — G1(23®1,,)G]
= U, (G1G]) — 2 G1G] + Ging, — G1GT Q1 + G (I, @ )G +G1 (23 ®1,,)GT

which is equivalent to
G1G{ Q1 + 2,G,G] —Gi(I, ® )G] —G1(®]1,,)G] = Skew(U]ny,G1G7) + Skew(G1n&, ).

Here Skew (-) extracts the skew-symmetric part of a square matrix, i.e., Skew(D) = (D — D7) /2.

Finally, we obtain the coupled Lyapunov equations

G1G?Q1 + Q1G1G? -G(I,, ® QQ)G? —G1 (23 ® IT'2)G?

= Skew (U7 7y, G1GT ) + Skew (G174, ),
G2GI s + GG — Go(L, © 21)GE — Go(Qs © 1,,)GF

= Skew(ULny,G2GL) + Skew (Gang, ),
G3G3 Q3 + 363G — Ga(I,, ® 21)G3 — G3(2, 91,,)Gy

= SkeW(U3T77U3G3G§) + SkeW(GSW(T,s)7

(A.18)

that are solved efficiently with the Matlab’s pcg routine that is combined with a specific preconditioner resulting from the
Gauss-Seidel approximation of (A.18).

O
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A.8 Proof of Proposition 4 (derivation of the Riemannian gradient formula)

Proof. Let f(X) = ||[Pa(X) — Pa(X*)[%/|Q] and S = 2(Pq(Gx1U; x2Usx3U3) — Po(X*))/|| be an auxiliary
sparse tensor variable that is interpreted as the Euclidean gradient of f in R™t*72X7s,

The partial derivatives of f(Uy, Uy, Us, G) are

0N B Us, G1) - ﬁ(PQ(UlGl(Us ©Us)T) — Pa(X]))(Us @ Up)GT
1 = 8$1(Us ® Us)GT,

05 B Us, Ga) T (Pa(UaGa(Us & Un)T) = Pa(X5)(Us & UG
i = $(U;®Uy)G3,

af3(U1’;é;U3’ CGa) _ ﬁ(m(ugcg(uz @ U)T) = Po(X5))(Uy @ Up )G

= S$3(U,®U1)G],
2
8f(U17U2aU3ag) 7(PQ(g><1U1X2U2><3U3) — ’PQ(X*)) X1 UT X9 Ug X3 Ug

T T T
= 8X1U1 X2U2 ><3U3,

0G 9

where X; is mode-d unfolding of X* and
2

S1 = |£22|(7’9(U1G1(U3®U2)T)—PQ(XY))
S = |Q2|(7>Q(U2G2<U3®U1)T)—’PQ(XE»
S; = @('PQ(UgGg(UQ@)Ul)T)—'PQ(Xg))
s - ﬁ(%(gxlumuﬂgug—PQ(X*)).

Due to the specific scaled metric (A.2), the partial derivatives of f are further scaled by
((G1GT)™1, (G2GL)~1, (G3GE)~', Z), denoted as egrad,, f (after scaling), i.e.,

egrad,f = (S1(Us ® Uz)G{ (G1G] )™, 82(Us ® Up)Gj (G2G3 )1, S5(Uz ® Up )G (G3Gy )Y,
S X1 U,{ X9 Ug X3 Ug:)

Consequently, from the relationship that horizontal lift of grad,, f is equal to grad, f = U(egrad, f), we obtain that,
using (A.15),

the horizontal lift of grady,)f = (S1(Us ® U2)G] (G1G])~! — U;By, (G1G]) ™7,
S2(Us ® Up)GE (G2GE) ™ — UyBy, (GoGE) 7,
Ss (UQ ® Ul)Gg (GgGg)il — UsBy, (GgGg)il,
S X1 U{ X9 Ug X3 Ug),
From the requirements in (A.16) for a vector to be in the tangent space, we have the following relationship for mode-1.
By, G1G| + G1G{ By, = GG (Y, Uy + U] Yy,)G1GT,
where Yy, = (S1(Us ® U)G] (G,G{ )~ 1.
Subsequently,
GlG?(Ygl U, + UTYUl)GlG{ S GlG? {((Sl(Ug ® UQ)G{ (GlG?)il)TUl
+ Ul ($1(Us @ UQ)G{(GIG,{)il} GG/
((S1(Us ® U2)GT)TU1G1GT + GGTUT(S,(Us ® Uy)GT

(G1G{ U] (S1(Us ® Uz)G{)” + G1G{ UT (S1(Us ® Up)G{
= 2Sym(G;G] U (S,(Us ® Uy)GT).
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Finally, By, for d € {1, 2,3} are obtained by solving the Lyapunov equations

By,G1G! + G,GTBy, = 2Sym(G:GTUT(S,(Us ® Uy)GY),
By,G2G2 + GoGIBy, = 2Sym(G,GLUL(S,(Us ® Up)GY),
By,G3G: + G3GIBy, = 2Sym(G3GiUL(S3(U, ® Up)GE),

where Sym(-) extracts the symmetric part of a square matrix, i.e., Sym(D) = (D+D7)/2. The above Lyapunov equations
are solved efficiently with the Matlab’s 1yap routine. O]

B Additional numerical comparisons

In addition to the representative numerical comparisons in the paper, we show additional numerical experiments spanning
synthetic and real-world datasets.

Experiments on synthetic datasets:

Case S1: comparison with the Euclidean metric. We first show the benefit of the proposed metric (A.2) over the
conventional choice of the Euclidean metric that exploits the product structure of M and symmetry. We compare steepest
descent algorithms with Armijo backtracking linesearch for both the metric choices. Figure A.1 shows that the algorithm
with the metric (A.2) gives a superior performance in fest error than that of the conventional metric choice.

Case S2: small-scale instances. We consider tensors of size 100 x 100 x 100, 150 x 150 x 150, and 200 x 200 x 200
and ranks (5, 5,5), (10,10, 10), and (15, 15,15). OS is {10, 20, 30}. Figures A.2(a)-(c) and Figures A.3(a)-(c) show the
convergence behavior of different algorithms on a train set €2 and on a test set I', where Figures A.3(b) is identical to the
figure in the manuscript paper. Figures A.2(d)-(f) and A.3(d)-(f) show the mean square error on €2 and I" on each algorithm.
Furthermore, Figure A.2(g)-(i) and Figure A.3(g)-(i) show the mean square error on {2 and I when OS is 10 in all the five
runs. From Figures A.2 and Figures A.3, our proposed algorithm is consistently competitive or faster than geomCG,
HalRTC, and TOpt. In addition, the mean square errors on a train set {2 and a test set I" are consistently competitive or
lower than those of geomCG and HalRTC, especially for lower sampling ratios, e.g, for OS 10.

Case S3: large-scale instances. We consider large-scale tensors of size 3000 x 3000 x 3000, 5000 x 5000 x 5000, and
10000 x 10000 x 10000 and ranks r=(5, 5, 5) and (10, 10, 10). OS is 10. We compare our proposed algorithm to geomCG.
Figure A.4 and Figure A.5 show the convergence behavior of the algorithms. The proposed algorithm outperforms geomCG
in all the cases.

Case S4: influence of low sampling. We look into problem instances which result from scarcely sampled data. The test
requires completing a tensor of size 10000 x 10000 x 10000 and rank r=(5,5,5). Figure A.6 and Figure A.7 show the
convergence behavior when OS is {8,6,5}. The case of OS = 5 is particularly interesting. In this case, while the mean
square errors on {2 and I increase for geomCG, the proposed algorithm stably decreases the error in all the five runs.

Case S5: influence of ill-conditioning and low sampling. We consider the problem instance of Case S4 with OS = 5.
Additionally, for generating the instance, we impose a diagonal core G with exponentially decaying positive values of
condition numbers (CN) 5, 50, and 100. Figure A.8 shows that the proposed algorithm outperforms geomCG for all the
considered CN values on a train set (2.

Case S6: influence of noise. We evaluate the convergence properties of algorithms under the presence of noise The tensor
size and rank are same as in Case S4 and OS is 10. Figure A.9 shows that the train error on a train set {2 for each e is
almost identical to the €?||Pq(X*)||%, but our proposed algorithm converges faster than geomCG.

Case S7: rectangular instances. We consider instances where dimensions and ranks along certain modes are different
than others. Two cases are considered. Case (7.a) considers tensors size 20000 x 7000 x 7000, 30000 x 6000 x 6000, and
40000 x 5000 x 5000 and rank r = (5,5,5). Case (7.b) considers a tensor of size 10000 x 10000 x 10000 with ranks
r = (7,6,6), (10,5,5), and (15, 4,4). Figures A.10(a)-(c) and Figures A.11(a)-(c) show that the convergence behavior of
our proposed algorithm is superior to that of geomCG on €2 and T, respectively. Our proposed algorithm also outperforms
geomCG for the asymmetric rank cases as shown in Figure A.10(d)-(f) and Figure A.11(d)-(f).

Case S8: medium-scale instances. We additionally consider medium-scale tensors of size 500 x 500 x 500, 1000 x
1000 x 1000, and 1500 x 1500 x 1500 and ranks r = (5,5, 5), (10, 10, 10), and (15, 15, 15). OS is {10, 20, 30,40}. Our
proposed algorithm and geomCG are only compared as the other algorithms cannot handle these scales efficiently. Figures
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A.12(a)-(c) and A.13(a)-(c) show the convergence behavior on 2 and I', respectively. Figures A.12(d)-(f) and Figures
A.13(d)-(f) also show the mean square error on 2 and I' of rank r = (15,15,15) in all the five runs. The proposed
algorithm performs better than geomCG in all the cases.

Experiments on real-world datasets:

Case R1: hyperspectral image. We also show the performance of our algorithm on the hyperspectral image “Ribeira”.
We show the mean square error on € and I" when OS is {11, 22} in Figure A.14 and Figure A.15, where Figure A.15(a)
is identical to the figure in the manuscript paper. Our proposed algorithm gives lower test errors than those obtained by the
other algorithms. We also show the image recovery results. Figures A.16 and A.17 show the reconstructed images when
OS is {11, 22}, respectively. From these figures, we find that the proposed algorithm shows a good performance, especially
for the lower sampling ratio.

Case R2: MovieLens-10M. Figure A.18 and Figure A.19 show the convergence plots for all the five runs of ranks r =
(4,4,4), (6,6,6), (8,8,8) and (10, 10,10) on 2 and T', respectively. These figures show the superior performance of our
proposed algorithm.

Experiments for online algorithms:

Case O: online instances. Figure A.20 and A.21 show the convergence plots for all the five runs on tensors of ranks
100 x 100 x 5000, and 100 x 100 x 10000 with rank r = (5,5,5) on  and I, respectively. These figures show that
the proposed stochastic gradient descent algorithm gives similar or faster convergence than the proposed batch gradient
descent algorithm.

Figure A.22 and A.23 show the convergence speed comparisons in the train error and the test error of the proposed online
and batch algorithms with TeCPSGD and OLSTEC with rank r = (5, 5,5) on the real-world video sequence Airport Hall
dataset. These figures show that the proposed stochastic gradient descent algorithm gives similar or faster convergence than
the proposed batch algorithm. In addition, Table B shows that the final train and test MSEs show the superior performance
of the proposed algorithms.
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(a) Original. (b) Sampled (4.98% observed). (c) Proposed. (d) geomCG.

(e) HaLRTC. (f) TOpt. (g) Latent. (h) Hard.

Figure A.16. Case R1: recovery results on the hyperspectral image “Ribeira” (frame = 16, OS = 11).

(a) Original. (b) Sampled (9.96% observed). (d) geomCG.

(e) HaLRTC. (f) TOpt. (g) Latent. (h) Hard.

Figure A.17. Case R1: recovery results on the hyperspectral image “Ribeira” (frame = 16, OS = 22).
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Table A.1. Case O: mean square error (5 runs) on Airport Hall dataset.
Error type | Algorithm | run 1 | run 2 | run 3 run 4 run 5
Training error | Proposed (Online) | 7.210000 | 7.211718 | 7.205027 | 7.255203 | 7.230000
on {2 Proposed (Batch) | 7.215763 | 7.211496 | 7.208463 | 7.282901 | 7.218042
TeCPSGD 7.335320 | 7.389269 | 7.364065 | 7.393318 | 7.390530
OLSTEC 7.922385 | 7.653096 | 8.150799 | 8.248936 | 7.753596
Test error Proposed (Online) | 7.462097 | 7.440332 | 7.452799 | 7.443505 | 7.450065
onl Proposed (Batch) | 7.471942 | 7.440508 | 7.446072 | 7.492786 | 7.218042
TeCPSGD 7.592109 | 7.601955 | 7.600740 | 7.579759 | 7.600621
OLSTEC 8.205765 | 7.840107 | 8.599819 | 8.625715 | 7.965405
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Figure A.22. Case O: mean square error on the training set €2 of the Airport Hall dataset.
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Figure A.23. Case O: mean square error on I (test error) for the Aiport Hall dataset.
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