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A. Proof of Claim 2.1

Proof of Claim 2.1. Consider 6,6, € C, x € R? with
Ix||< 1,y € Rwith |y|< 1,

U((x,0a);y) — £((x,00); y)|
|£(<X’ 9a>; y) - €(<X’ 9a> + <Xa Hb - 9a>; y)'
A%, 0 — ba)|< Ael|0a — O]

<

Since this holds for every x and y in the chosen domain,
this completes the proof. O

B. Missing Proofs from Section 3

Proof of Lemma 3.3. We first investigate the function
L({Dx;,1);y;). Consider J,, 1, € PC,

[0((Dxs, Fa); yi) — L((Pxi,Tp); yi)|
= [0((Pxi, Va); yi) — L((Px4, Va) + (PXi, 0 — V) 44)|
< A Px4, 0y — Da) .

Using Theorem 3.1, if

m = O((¢" /%) max{logn, log(1/5)}),

then with probability at least 1 — 3, || ®x;||< (147)||x;[|<
2||x;||< 2. Therefore, with probability at least 1 — 3,

[0((Px;,Da); yi) — L({(Pxi, Vp); yi)| < 2X¢]| 06 — V|-

Taking a union bound over all ’s, with probability at least
1—pn, foralli € [n], |Ae(Px;, I — )| < 22X |0y — D0 ||

Replacing 8 by 8/n gives the proof. O
Proof of Lemma 3.4. If S is the set of
points Xi,...,Xy,0, then as mentioned above w(S) =

O(v/logn). For any ¢ € [n], using Corollary 3.2, with
probability at least 1 — /3,

((@x;, B0); i) < L((xi,0); 9:) + Mv[Clla (5)

KASIVISW @ GMAIL.COM

HONGXIA.JIN@SAMSUNG.COM

Taking a union bound over all ¢’s and replacing § by §/n
completes the proof.

Proof of Lemma 3.5. Since 6 € C, by definition,

Ienelg £C0mp(9; (leyl)a ey (Xna yn)7 (I))

< ‘ccomp(e; (Xl,y1>7 ceey (x’myn); (I)) (6)

From Lemma 3.4, with probability at least 1 — f3,

Ecomp(é; (Xla yl)a R (Xn’ yn); (b)
1< -
CES b, 20): )

1

3|

2

< (%6, 0); 9i) + Av[Cll2,

S|

=1

where we used the fact that ||0]|< ||C||2. Using the above
inequality with (6) completes the proof. O

Proof of Proposition 3.7. We discuss the proof for the
case of (e,d)-differential privacy (the proof for the case
of e-differential privacy proceeds similarly by using The-
orem 3.6, Part 2).

Since the inputs ®x;’s are m-dimensional, from guarantees
of Theorem 3.6 (Part 1), we know that with probability at
least 1 — 3,

1 n .
_ . Privy., . \__
n Z€(<®Xzaﬂ >7yl)
=1
i LS (@ 0): )
grelg}j n 2 Xiy V)3 Yi
AL conup V11| ®C||2l0g™ ? (n/5) 1 [log(3) polylog(%)

ne

(N
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Notice that by definition,
- ‘€ (I) z»
i 20
1
=min — > _(((Ox;, BO); ;).
1

Also by construction in Step 2 of Mechanism PROJERM,
PPV = ®@P™V. Substituting these two identities in (7)
provides, that with probability at least 1 — 3,

n

> 0((@x;, DO )

i=1

1
n

— min fZE ((Px;, POY; y;)

oeC n

/\z:wmpWII‘PCIIzlogB/Q(ﬂ/5) v/1og(1/6) polylog(1/5)

:O(

ne

Using the bound from Lemma 3.5, gives that with proba-
bility at least 1 — 23,

n

> L(@xi, @OP); ;)

i=1

1
n

— min 726 (Px;, PO); y;)

oeC n

Using the definition of L(6P™Y;(x1,v1),.

- (%, Yn))
completes the proof. O

Proof of Theorem 3.11. We first discuss the proof for the
case of (e, d)-differential privacy (Part 1). Here, we set

NI
Ven
and correspondingly set m as,

B P2en(w(C) + /logn)?log(n/B)
m=o( w(©) )

With the choice of m, with probability 1 — g, the diameter
of ®C (||®C||2) is at most (1+)[|C||2< 2||C||2. Using this,
along with Lemma 3.10 and Proposition 3.7 (Part 1) gives
that with probability at least 1 — 33,

). L0 (xa9), - s (X yn)) =L 0: (x1,91); -
- Accompx/EIICHzlog?’/Q(n/é) log(}) polylog()
N ne

+ O (Al[Cll2) -

Using the bound on A, . from Lemma 3.3 gives that with

probability at least 1 — 40,

L5 (x1,51)s - -+ (Xny Yn)) = L(0; (X1, 91), - - -,

_0 Azcomp\/ﬁll<I>C||210g3/2(n/5)

ne
O(Aev(Cll2)-
Replacing (3 by 3/2 completes the proof. O
Proof of Lemma 3.10. Consider the set S as
{X1,...,xp} UC, then w(S) < w(C) + v/log n. Using an
argument similar to Lemma 3.4 (based on Theorem 3.1),
for OP™V € C, with probability at least 1 — /3,

(Xn,Yn); @)

((Dxi, DOP); y;)

i=1

1« ;
> =3 (i, 07 ) — A [Clle:
=1

Ecomp (Hpriv
def 1

;(X17y1)7"'a

This implies that with probability at least 1 — /3,

‘Ccomp(eprw (Xl yl) (Xnu yn)v CI))

1 n .
= D (%0, 67 w:) — A€l

ne

10g(1/5)p01y10g(1/5)):0 Ae\/ﬁllcllzlogm(n/& log() polylog(5)

+ O (Avl[ClI2) -

Replacing 8 by 3/5, and simplifying the resulting expres-
sion completes the Part 1 of the proof.

1/;4/3w(C)2/3

)73 and correspondingly set

For Part 2, we set y =
m as,

w4/3(ne)2/3( (C) + logn)?log(n/B)
m=o( s ),

The proof follows along the same lines as the case of (e, §)-

differential privacy. Here we use Proposition 3.7 (Part 2).
O

(XnsYn))

(Xn,Yn))



